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We present a lightweight and scalable artificial neural network architecture which is used to reconstruct

a tomographic image from a given sinogram. A self-supervised learning approach is used where the

network iteratively generates an image that is then converted into a sinogram using the Radon

transform; this new sinogram is then compared with the sinogram from the experimental dataset using

a combined mean absolute error and structural similarity index measure loss function to update the

weights of the network accordingly. We demonstrate that the network is able to reconstruct images that

are larger than 1024 × 1024. Furthermore, it is shown that the new network is able to reconstruct

images of higher quality than conventional reconstruction algorithms, such as the filtered back

projection and iterative algorithms (SART, SIRT, CGLS), when sinograms with angular undersampling are

used. The network is tested with simulated data as well as experimental synchrotron X-ray micro-

tomography and X-ray diffraction computed tomography data.
Introduction

Machine learning, in particular deep learning, has revolu-
tionised elds as diverse as image recognition and text trans-
lation over the past decade, replacing pre-determined, ‘hand-
craed’ algorithms with exible neural networks which learn to
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perform a task from training on existing examples. In recent
years, the application of deep neural networks (DNNs) in the life
and physical sciences has also attracted a lot of interest.1–4

Tomographic image reconstruction has witnessed a number of
high-prole breakthroughs where DNNs match or even exceed
the performance of state-of-the-art physics-based approaches.5,6

The majority of work applying DNNs for tomographic image
reconstruction has focused on enhancing the quality of real
space images, which have been generated from sinograms by
traditional algorithms, such as the ltered back projection.7–9 A
number of notable exceptions do exist, where supervised
learning, and generative models have been used to automati-
cally map from sinogram to real space.5,10–16 While these
methods are very promising, bottlenecks still exist to their
application to image reconstruction due to their scalability (i.e.
their ability to handle large images), their network size (large
networks can be computationally very expensive) and particu-
larly for applications where absolute values (as opposed to
normalised values) are important in the reconstructed image,
such as in chemical tomography and in quantitative analysis of
attenuation-based tomography data.

The improved performance of both X-ray sources and
detectors in recent times has seen a number of studies obtain
rapid time-resolved data (i.e. spectra, patterns) from multiple
positions within a single sample or else from a sample
ensemble via the performing of time-resolved imaging/
tomography experiments.17–19 These ‘chemical imaging’
Digital Discovery, 2023, 2, 967–980 | 967
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techniques have reached a stage whereby they enable the study
of functional materials and devices in four or more dimensions
i.e. obtaining spatially resolved (1D/2D) spectra/patterns in 2D/
3D from an evolving sample, such as a catalytic reactor, a fuel
cell or a Li-ion battery, as a function of time (1D) or imposed
operating condition/state (e.g. temperature, pressure, potential,
chemical environment).20–26 The quantity and speed of this data
acquisition poses challenges to traditional image reconstruc-
tion and analysis techniques. The limits to what is currently
achievable with chemical imaging techniques is currently oen
determined by the density of sampling required for the sino-
gram in order to achieve good quality image reconstructions.
Algorithms for improved reconstruction with more sparsely
sampled sinograms are needed to unlock new levels of spatial
and temporal resolution in chemical imaging.

The majority of popular existing algorithms for tomographic
image reconstruction can be divided into two classes; direct
methods and iterative methods. Direct methods such as ltered
back projection (FBP) provide quick results which are artefact-
free if there is an abundance of projections and data with
high signal-to-noise ratio; iterative methods such as total-
variation minimisation work well in sparse projection
scenarios and/or data with low signal-to-noise ratio, but rely on
prior knowledge and ne hyperparameter tuning.27 Recently
DNNs have emerged as a powerful new tool for image recon-
struction. DNNs have been applied to learn the lters for FBP or
map the FBP to a DNN,28–31 to improve the quality of input
projections/sinograms32–35 or of output images from direct
reconstruction techniques.7,36–38
Fig. 1 The flowchart of the SD2I training algorithm. The input of the SD2I
as the reconstructed image's signal. The generator generates an image
a sinogram by the forward operator, which is compared with the sinog
updated by minimising the joint loss function with mean absolute error

968 | Digital Discovery, 2023, 2, 967–980
In 2018 the AUTOMAP network demonstrated the applica-
tion of direct reconstructions of images from projections,5

however the size of image for which AUTOMAP can be applied is
limited by the presence of densely connected layers with many
parameters, which scale poorly with the number of pixels in the
input. Alternative methods based on convolutional neural
networks (CNNs) and generative adversarial networks (GANs)
that include physical information have recently been proposed
which show great promise for image reconstruction, with fewer
restrictions of the sizes of data that can be treated.39–42 The GAN
approach has been demonstrated to be very useful for image
reconstruction, but previous procedures rely on normalising
sinogram and image values.39 This is not necessarily a problem
when the data analysis focuses on image segmentation, but in
the case of chemical tomography where we are reconstructing
images containing spectra at each pixel this information is
essential;43,44 the absolute values are also required when quan-
titative analysis of attenuation-based tomography data is per-
formed (e.g. micro-CT).

In this work we introduce the SingleDigit2Image (SD2I)
network – a simple, scalable generative network that can be
used for direct conversion of sinogram to image (Fig. 1). The
input of the SD2I is a random constant which preferably has
a similar order of magnitude as the reconstructed image's
signal. The SD2I acts as a generator network that creates an
image based on the single number input; the generated image
is then converted into a sinogram by the differentiable forward
operator which is the Radon transform. This new sinogram is
compared with the sinogram from the experimental dataset
is a random constant which preferably has a similar order of magnitude
based on the single input; the generated image is then converted into
ram from the experimental dataset. The weights of the generator are
(MAE) and structural similarity index measure (SSIM).45

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00105e


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
7:

29
:1

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
using a loss function and the weights of the SD2I network are
updated accordingly. Our approach relies on a relatively simple
and scalable architecture. We show that our approach can
reconstruct a series of different modality tomography images
with at least as good an accuracy as the FBP algorithm. We
demonstrate the scalability of our method compared to the
state-of-the-art methods. We also show that our method is able
to deal with a commonly encountered challenge to FBP recon-
struction, specically sinograms exhibiting angular under-
sampling. We have tested our approach on a Shepp–Logan
phantom as well as on experimental X-ray diffraction computed
tomography (XRD-CT) and micro-CT sinogram data high-
lighting the exibility and applicability of the method.
SD2I architecture

The architecture of the articial neural network used for
reconstructing the images from the sinograms is depicted in
Fig. 2. There are two novelties in this design compared to other
architectures previously proposed for tomographic image
reconstruction. First, the SD2I network, as the name suggests,
starts from a single number rather than a 2D image which
signicantly reduces the number of parameters in the archi-
tecture. In other networks, the input is a 2D image which is
either attened and connected to a dense layer containing 100s
of neurons (e.g. 256 in the GANrec) or is followed by a series of
2D convolutional and downsampling layers with the nal layer
Fig. 2 A representation of the CNN reconstruction SD2I architecture w
shown in the figure. The final fully connected layer size is adjusted by an
following reshape, upsampling and convolutional layers. All layers in the n
layer which employs the absolute value function.

© 2023 The Author(s). Published by the Royal Society of Chemistry
being attened and connected to the aforementioned dense
layer. The second novelty is related to the large dense layer and
the convolutional layers that are connected to it which
dramatically reduces the number of parameters in the
network's architecture. In this paper, we are going to use two
types of SD2I architectures which are called the SD2I and the
SD2I with upsampling layers (SD2Iu) respectively. The SD2I
presented in Fig. S1† shows an architecture that receives
a single number as input and has a large fully connected layer in
the middle. As this architecture lacks the encoder network
present in both GANrec and AUTOMAP architectures, SD2I can
allocate more parameters to augment the decoding network's
size. Consequently, under the same model size constraints,
SD2I is capable of reconstructing images with higher quality
than GANrec and AUTOMAP. The impact of k factors on the
performance of the SD2I network is also presented in Fig. S2
and Table S1.† Simultaneously, the SD2Iu architecture depicted
in Fig. 2 possesses fewer parameters than the SD2I architecture,
achieved by reducing the size of the fully connected layers. The
network initially predicts an image at a lower resolution and
subsequently upscales it to the original image size through the
use of upsampling and convolutional layers. To clarify, the
initial single number (input layer) is followed by three small
dense layers, each containing 64 neurons. The third small dense
layer is then connected to a larger dense layer consisting of (m/
4) × (m/4) × k neurons, where m is the number of pixels in one
dimension of the fully reconstructed images which have size
ith upsampling (SD2Iu). The kernel types and parameter settings are
integer k, which adjusts the number of kernels used as the input of the
eural network use ReLU as their activation function, except for the final

Digital Discovery, 2023, 2, 967–980 | 969
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equal to m × m. The k factor is an integer and increasing it can
lead to better performance of the neural network but also
increases the number of parameters. In this work and aer
initial testing, we used a range of k between 4 and 8; this range
provides a good balance between network size/training speed
and quality of reconstructed images (Fig. S3†). The large dense
layer is then reshaped to a 2D layer of size, followed by an
upsampling layer resulting in an image with size of (m/2, m/2).
This is followed by three 2D convolutional layers and a second
upsampling layer resulting in an image with size of (m,m). Each
of these 2D convolutional layers has 64 lters with a kernel size
of 3 and stride equal to 1. The nal layer of the architecture is
a 2D convolutional layer with one kernel (kernel size of 3) and
stride equal to 1. We employed ReLU as the activation function
for all hidden layers, except the nal output layer. To determine
the most suitable activation function for the output layer, we
assessed the performance of various alternatives and ultimately
selected the absolute function as our choice for the output
layer.46,47 The performance comparison of the various activation
functions is illustrated in Fig. S4 and Table S2.† Our ndings
indicate that the absolute function outperforms the rest.
Although ReLU could be considered as a potential alternative,
we experienced numerous dead-pixel issues when using it,
particularly with experimental data containing noise so for all
results presented in this work we used the absolute function.

Overall, the network starts with a single number (input layer)
and yields a 2D image with size of (m, m) which is equal to the
image size obtained with the conventional tomographic
reconstruction algorithms. The SD2Iu's architecture allows for
radical decrease in the number of parameters and allows it to
reconstruct images that are more than 1028 × 1028 large.

While several deep learning approaches have proved very
successful for CT reconstruction, a major barrier to their
widespread adoption is that the number of parameters (and
hence required computational resources) scales poorly as the
size of sinogram increases. The new architecture that we
propose, has at least an order of magnitude fewer parameters
than existing deep learning approaches (e.g. Automap and
GANrec), as shown in Fig. 3 and Table S3.† Note that for these
Fig. 3 Comparison of the Automap, GANrec and SD2I architectures (U:

970 | Digital Discovery, 2023, 2, 967–980
tests it was not possible to use Automap on images larger than
128 × 128 pixels, due to memory constraints.
Results & discussion
Simulated data

We start by comparing the performance of our new architecture
against the ltered back projection (FBP) algorithm and other
neural network based reconstruction algorithms. For this
comparison we use a sinogram created using the Shepp–Logan
phantom with image size of 256 × 256 pixels; the sinogram size
is 256 × 400 pixels, corresponding to detector elements and
number of projections respectively. The reconstructed images
are presented in Fig. 4 while Table 1 compares the results from
the various reconstruction methods applied, using several
common image quality metrics and specically the mean
absolute error (MAE), mean squared error (MSE), structural
similarity index measure (SSIM)45 and peak signal to noise ratio
(PSNR). We nd that all variants of our SD2I architecture
outperform both GANrec and FBP across all metrics. The SD2I
architectures that perform best are those where the convolu-
tional part of the network is a single size, rather than including
upsampling layers. However, even the SD2I architecture with
upsampling convolutional layers (SD2Iu) (which has signi-
cantly fewer parameters than that without upsampling)
performs very well. We also nd that changing the size of the
nal dense layer in the SD2I architecture (the factor k) has
a small but appreciable effect on the image quality. Somewhat
surprisingly, of the architectures with no upsampling layers
(SD2I), the one with the smaller nal dense layer performs
slightly better, this could be due to local minima trapping in the
larger network. Nonetheless, the main point is that SD2I
performs very well on the standard Shepp–Logan phantom,
regardless of architecture hyperparameters (within a reasonable
range). Adam was used as the optimisation algorithm,48

a combined MAE and SSIM loss function49 was used with the
following formula:

Loss = (1 − m) × MAE + m × SSIM
upsampling) for reconstructing images of different sizes.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comparison between the SD2I result and conventional reconstructionmethods. The image size is 256× 256, and reconstructed from the
256 × 400 Shepp–Logan sinogram.
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here we used m = 0.84 for all simulated Shepp–Logan images.
The learning rate was set to 0.0005 for networks presented in
this work. The learning rate was automatically reduced during
Table 1 Accuracy. Comparison of approaches for a 256× 400 Shepp–Lo
and PSNR and three significant figures for MAE and MSE

GANrec SD2I (k = 4) SD2I (k = 8)

MAE 0.009714 0.0009582 0.0005762
MSE 0.0006505 4.267 × 106 2.854 × 106

SSIM 0.9318 0.9988 0.99965
PSNR 31.87 53.70 55.44

© 2023 The Author(s). Published by the Royal Society of Chemistry
training if the loss function was not decreasing aer 300 itera-
tions using a downscaling factor of 0.5 (Tensorow Reduc-
eLROnPlateau implementation50); 6000 epochs were used
gan sinogram. Metrics calculated using four significant figures for SSIM

SD2Iu (k = 4) SD2Iu (k = 8) FBP

0.001747 0.002600 0.007819
3.493 × 105 5.827 × 105 7.783 × 104

0.9974 0.9950 0.9565
44.57 42.35 31.09

Digital Discovery, 2023, 2, 967–980 | 971

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00105e


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
7:

29
:1

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
during the image reconstruction process. It is important to note
here that the various metrics provide only an indication of the
image quality reconstruction and one should always inspect the
resulting images regardless of the values of the various metrics.
Reconstruction times are presented in Tables S4–S6.†

To demonstrate the enhancement in the quality of the
reconstructed image as a result of the single digit input, we
assessed the performance of the networks, specically the SD2I
and SD2Iu models, starting from the last fully connected layer.
Fig. 5 Comparison between conventional and neural network reconstru
256 × 256, and reconstructed from the 256 × 64 Shepp–Logan sinogra

972 | Digital Discovery, 2023, 2, 967–980
When the networks were provided with a 64-unit vector of ones
(the same size as the fully connected layer preceding the nal
layer), the results were markedly poorer and could not compete
with the SD2Iu in terms of reconstructing the 256 × 64 size
sinogram. The results are presented in Fig. S5.†

Furthermore, we evaluated a pixel learning network that
receives a single digit as input and consists of a singular
extensive fully connected layer, equivalent to the total number
of pixels in the image. This network, devoid of convolutional
ction approaches with different parameter settings. The image size is
m.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Accuracy. Comparison of approaches for a 256 × 64 Shepp–
Logan sinogram. 250 iterations were used for the SART, SIRT and CGLS
algorithms. Metrics calculated using four significant figures

MAE MSE SSIM PSNR

FBP 0.01906 0.001405 0.6129 28.52
SART 0.01702 0.001851 0.7572 27.33
CGLS 0.01722 0.001717 0.7329 27.65
SIRT 0.01768 0.002327 0.7984 26.33
GANrec 0.02408 0.002521 0.7070 25.98
SD2I (k = 4) 0.004527 0.0001181 0.9776 39.27
SD2I (k = 8) 0.004548 0.0001269 0.9778 38.96
SD2Iu (k = 4) 0.003229 0.0001088 0.9911 39.29
SD2Iu (k = 8) 0.002881 0.00009763 0.9931 40.10

Table 3 Accuracy. Comparison of approaches for the example pho-
tocatalyst experimental XRD-CT image shown in Fig. 6. The CGLS with
300 projections is considered as the ground truth. Metrics calculated
using four significant figures

FBP SART CGLS SIRT SD2Iu

MAE 0.3867 0.3520 0.3413 0.3596 0.1473
MSE 0.3663 0.3194 0.3111 0.3436 0.0548
SSIM 0.5602 0.6331 0.6578 0.6442 0.7815
PSNR 20.16 20.76 20.87 20.44 28.42
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layers, equates to the iterative approach that learns each
distinct pixel from a map of ones, utilizing the same training
loop as SD2I. The results are compared with those from the
Fig. 6 Photocatalyst XRD-CT image with the size of 331 × 331.52

© 2023 The Author(s). Published by the Royal Society of Chemistry
SD2I, using a full range 256 × 400 sinogram, in Fig. S6.† It is
evident that the presence of multiple fully connected layers and
convolutional layers signicantly assists the SD2I in producing
far more precise and rened results compared to the straight-
forward pixel learning network.
Angular undersampling

A striking advantage of many deep learning based reconstruc-
tion approaches, when compared to traditional methods, such
as FBP, is their ability to achieve high quality reconstructions
when only challenging data are practically available. These can
be sinograms with angular undersampling, low signal-to-noise
ratio or incomplete sinograms (e.g. not covering the full 0–
180° angular range).9,39 However, most of the approaches are
applied on the FBP reconstructed images (i.e. post-processing of
the reconstructed images) rather than performing directly the
tomographic reconstruction and importantly rely on supervised
learning which assumes (a) that artefact-free images (labelled
data) are available and (b) that the networks can generalise (e.g.
train with non-scientic datasets typically used for developing
neural networks and yield high quality images when applied to
experimental data). Unfortunately, these assumptions are rarely
valid and the applicability of such networks to real experimental
data is limited at best. Here, we show that the SD2I, apart from
its ability to reconstruct large tomographic images in a self-
supervised manner, is able to suppress the angular under-
sampling artefacts while performing the tomographic recon-
struction. In Fig. 5, we show the reconstruction of the Shepp–
Digital Discovery, 2023, 2, 967–980 | 973
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Logan phantom with a severe angular-undersampling where we
only have less than 1

4 of the original sinogram projections
(projections corresponding to 1

4 of the detector elements). For
comparison, also shown are the results obtained from the most
oen used iterative algorithms (SART, CGLS and SIRT) using
Fig. 7 Two example XRD-CT reconstruction images: (a) chemical ima
sponding to the Cu phase. All SD2I results are using k factors equal to 8
structed from the sinogram size as 547 × 100. The ground truth is obta

974 | Digital Discovery, 2023, 2, 967–980
the ASTRA Toolbox51 as well as from GANrec. Compared to all
conventional reconstruction algorithms tested SD2I produces
results with signicantly fewer artefacts and much closer to the
ground truth reconstruction. Importantly, it is clearly shown
that the SD2Iu networks, which correspond to the smallest
ge corresponding to the NMC532 phase, (b) chemical image corre-
. The image sizes are 547 × 547. The SD2I and FBP results are recon-
ined by the CGLS reconstruction of the 547 × 400 sinogram.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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possible networks in terms of number of parameters, yield the
best results. The use of the upsampling convolution layers
actually improves the quality of the reconstruction, performing
a function similar to denoising on the resultant images. It
should be noted though that the network does not denoise the
reconstructed images, it removes the angular undersampling
artefacts. It therefore requires projection/sinogram data with
high signal-to-noise ratio; it does not lead to higher quality
reconstructed images than the FBP algorithm when the signal-
to-noise ratio is low.

Table 2 also shows the performance of the FBP, SIRT, CGLS,
SART, GANrec and various SD2I architectures on undersampled
Shepp–Logan Sinograms. These metrics conrm what is shown
in the gures, with the SD2I outperforming other methods and
the SD2I architecture with convolutional upsampling perform-
ing the best. The results in Fig. S7† show that this approach can
be applied to larger image reconstruction tasks and the
performance gains remain for SD2I. For calculating the SSIM
and PSNR, we used the maximum possible pixel value as 1. A
larger Shepp–Logan phantom image (512× 512) was also tested
(sinogram with size equal to 512 × 128) and the SD2I results are
presented in Fig. S7 and Table S7.† The impact of the loss
function is shown in Table S8.†

It should be noted here that the results for the various
metrics strongly depend on the choice of the ground truth
image. This is not an issue for the Shepp–Logan phantom but it
is a problem for the experimental data where there is no ground
truth image available. This means that the quality of the
reconstructed images has to be done primarily through visual
inspection as the results from the various metrics can be
misleading. To illustrate this problem, we measured the
performance of SD2I as well as FBP, SART, SIRT and CGLS using
different images as the ground truth image for the Shepp–
Logan image (Fig. S8 and Tables S9–S11†). If the FBP recon-
structed image using the full projection set (400 projections) is
used as the ground truth, then the metrics suggest that SIRT
and CGLS outperform the SD2I. However, this is clearly not the
case as shown in Fig. 5 and S7† and from the fact that the clean
(real ground truth) Shepp–Logan phantom image shows worse
results for all metrics (Table S10†). The result obtained with the
CGLS method using the full projection set (400 projections)
looks closer to the ground truth image compared to the FBP,
Table 4 Accuracy. Comparison of approaches for the example XRD-
CT experimental images shown in Fig. 7. The CGLS with 400 projec-
tions is considered the ground truth. 250 iterations were used for the
SART, SIRT and CGLS algorithms. Metrics were calculated using four
significant figures

FBP SART CGLS SIRT SD2Iu

(a) MAE 0.3262 0.3310 0.3125 0.4563 0.1668
MSE 0.3599 0.3333 0.2923 0.5881 0.1087
SSIM 0.6632 0.7026 0.7197 0.6457 0.8265
PSNR 23.21 23.55 24.12 21.08 28.414

(b) MAE 0.6081 0.4630 0.4548 0.5141 0.3374
MSE 1.525 0.9419 0.8539 1.299 0.5936
SSIM 0.5276 0.6918 0.6753 0.6751 0.7472
PSNR 20.79 22.88 23.31 21.48 24.89

© 2023 The Author(s). Published by the Royal Society of Chemistry
SART and SIRT results obtained using the full projection set and
for this reason it is used as the ground truth for evaluating the
performance of the SD2I network for the experimental data.
Finally, it is important to note that when the clean Shepp–Logan
image (real ground truth) or the CGLS image obtained using the
full projection set are used as the ground truth, it can be seen
that the SD2I with less than 1

4 projections (64 projections)
outperforms FBP, SART and SIRT reconstructions using the full
projection set (400 projections). This result further illustrates
the accuracy of the SD2I reconstructions and the potential of
this new network for data exhibiting angular undersampling.
Experimental data

We now turn our attention to testing the SD2I architecture on
real experimental synchrotron X-ray tomography data. We
obtain a ‘ground truth’ reconstruction in this case by recon-
structing the images using CGLS with the full projection set. We
then decrease the projection set to 1

4 of the original size and
compare the results of the reconstruction using CGLS, FBP,
SART, SIRT and SD2I on the decreased sinogram.

First, we compare the results obtained from SD2Iu and the
other methods using an experimental XRD-CT dataset acquired
from a 3D printed SrNbO2N photocatalyst used for degradation
of organic pollutants in water.52 The original sinograms of this
dataset had 300 projections and 331 translation steps (the
image size is then 331× 331). The image reconstructed by CGLS
with the full 300 projections is considered as the ground truth
image when calculating the metrics shown in Table 3 while the
reconstructed images using the various methods are presented
in Fig. 6. The hyperparameters for the SD2I networks used in
this work for the XRD-CT data were kept the same for all data-
sets and no tweaking was required (initial learning rate of
0.0005 with a decaying rate and a safe margin of 6000 epochs). It
can be clearly seen that both the visual inspection and the
metrics shown in Table 3 indicate that the SD2I performed the
best among all the conventional methods we tested. The
magnied region in Fig. 6 also shows that SD2I is able to retain
very ne features present in the images, in this case corre-
sponding to the channels and network of the 3D printed
catalyst.

In Fig. 7 we show results from another XRD-CT dataset,
using two larger sinograms selected from two diffraction peaks
of interest (i.e. NMC532 and Cu phases respectively). This XRD-
CT dataset was acquired using a commercially available 10440
NMC532 Li-ion battery.25 The ground truth image was obtained
using the CGLS algorithm on the 547 × 400 sinograms which
already have fewer projections (i.e. 400 projections) than the
Nyquist sampling theorem dictates (i.e. p/2 × 547). All the
reconstruction algorithms and neural networks were tested
using 547 × 100 sinograms which are severely undersampled
data. As shown in Fig. 7, both reconstructed images indicate
that the SD2I reconstructions have suppressed the angular
undersampling artefacts while these are clearly present in the
traditional methods.

Themetrics shown in Table 4 show that SD2I outperforms all
other approaches but, as discussed previously, visual inspection
Digital Discovery, 2023, 2, 967–980 | 975
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and assessment of the reconstructed images is more important
as there is no real ground truth image available for the experi-
mental data. This is another advantage of the network
compared to iterative approaches such as SART, SIRT and CGLS
where there is no standard loss function one can use to
Fig. 8 Two examplemicro-CT reconstruction images. All SD2I results are
FBP results are reconstructed from the sinogram size as 779 × 261. The g
sinogram.

976 | Digital Discovery, 2023, 2, 967–980
calculate the optimal number of iterations (convergence crite-
rion), especially when trying to reconstruct different datasets.
The visual results clearly demonstrate that the SD2I recon-
structions are considerably better quality than all other
methods (FBP, CGLS, SART and SIRT) on the undersampled
using k factors equal to 8. The image sizes are 779× 779. The SD2I and
round truth is obtained by the CGLS reconstruction of the 779 × 1561

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Accuracy. Comparison of approaches for the example micro-CT experimental images shown in Fig. 8. The CGLS with 1561 projections
is considered as the ground truth. Metrics calculated using four significant figures

FBP SART CGLS SIRT SD2Iu

(a) MAE 0.001724 0.001633 0.001596 0.001642 0.001146
MSE 7.228 × 10−6 9.044 × 10−6 7.048 × 10−6 1.042 × 10−5 3.275 × 10−6

SSIM 0.6204 0.6678 0.6671 0.6711 0.7760
PSNR 25.73 24.76 25.84 24.14 29.17

(b) MAE 0.0004891 0.0004969 0.0004697 0.0005104 0.0003332
MSE 5.546 × 10−7 7.018 × 10−7 5.494 × 10−7 8.217 × 10−7 2.636 × 10−7

SSIM 0.6903 0.6984 0.7191 0.6845 0.8371
PSNR 26.52 25.49 26.56 24.81 29.74
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sinogram. Finally, it should be noted that, although the images
have been normalised for better visualisation presentation, the
SD2I, in contrast to other neural network reconstruction
methods such as the GANrec, maintains the absolute intensity
information which is essential in chemical tomography
methods, such as XRD-CT. We tested two more experimental
XRD-CT images with SD2Iu, which are shown in Fig. S9 and
S10† with the metrics calculated in Tables S12 and S13.†

Fig. 8 and Table 5 present the results from the reconstruc-
tions of synchrotron X-ray micro-CT data acquired from the
same 10440 NMC532 Li-ion battery corresponding to two
different cross-sections. These two sinograms correspond to
two different positions along the length of the battery
(Fig. S11†); in position (a) only the Cu current collector is
primarily visible in the battery jelly roll while in position (b) the
NMC532 cathode can also be observed. As with the XRD-CT data
above, ground-truth is obtained by CGLS of a full projection and
the sinogram is then decreased to 1

4 of the original size and
reconstructions obtained with FBP, SD2I as well as the SIRT,
CGLS and SART iterative methods. The hyperparameters for the
SD2I networks used in this work for themicro-CT data were kept
the same for all datasets and no tweaking was required (initial
learning rate of 0.001 with a decaying rate and a safe margin of
8000 epochs).

As with the XRD-CT data, the SD2I reconstructions have
fewer artefacts than the images obtained with all other
methods. It is important to note here the image size; the
resulting images are 779 × 779 pixels large. To the best of our
knowledge, there is currently no other available self-supervised
neural network that can perform direct reconstruction of such
large sinograms/images without requiring a tremendous
amount of GPU memory. We summarised the number of
projections that the SD2Iu used to reconstruct the images
shown in the paper and the number of projections that Nyquist
sampling theorem dictates in Table S14.† Furthermore, in
Fig. S12 and Table S15† we also show that the SD2I is able to
reconstruct images with 1559 × 1559 pixels which demon-
strates the scalability of this new architecture.

Summary and conclusions

We have presented a lightweight and scalable articial neural
network architecture, SD2I, for tomographic image recon-
struction. The SD2I approach uses a generator network to
© 2023 The Author(s). Published by the Royal Society of Chemistry
produce a sample image, which is then converted to a sinogram
via the Radon transform; the parameters of the network are
updated by backpropagation to minimise the difference
between the experimental sinogram and the sinogram
produced by the network. Similar to other deep-learning
reconstruction approaches, our SD2I approach is much more
robust to angular undersampling than traditional reconstruc-
tion approaches. However, SD2I is also considerably more
computationally efficient than other deep-learning reconstruc-
tion methods. This means the SD2I can be applied to much
larger sinograms and can produce results with a signicantly
lighter hardware requirement than other deep-learning
approaches. The advantages of the new architecture can be
summarised as the following:

� Scalability: two new approaches in the architecture which
radically reduce the number of parameters.

B Single digit input.
B Upsampling-type architecture aer the last dense layer –

this allows for decreasing the number of neurons in the last
dense layer by a factor of at least 4.

� Ability to suppress angular undersampling artefacts which
we demonstrated using both simulated and experimental data.

� Information regarding absolute intensities is maintained;
the images are not normalised.

� Ease-of-use: the code can be run by a non-expert and does
not require multiple hyperparameter tuning in contrast to other
conventional methods (e.g. SART/SIRT/CGLS as well as
regularisation-based methods).

� Simplicity: the addition of a discriminator network makes
the trainingmore complex and does not necessarily improve the
resulting images (Fig. S13–S15 and Table S16†).

The ability to accurately reconstruct images from sparsely-
sampled sinograms is critical for time-resolved in situ/oper-
ando tomography experiments as well as for reducing X-ray dose
inmedical CT. In its current form, the neural network cannot be
compared to FBP in terms of speed but we have demonstrated
its potential to suppress angular undersampling using real
experimental data. Furthermore, the network could be poten-
tially applied to other tomographic methods and modalities,
such as neutron tomography and X-ray uorescence tomog-
raphy. Last but not least, the network has been developed for
tomographic image reconstruction using 2D parallel/pencil
beam geometries but we can foresee its application for other
Digital Discovery, 2023, 2, 967–980 | 977
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inverse problems in imaging if the appropriate forwardmodel is
known, such as the parallax problem in XRD-CT.

Methods
Experimental XRD-CT and micro-CT data

XRD-CT measurements of a commercial AAA Li-ion NMC532
Trustre battery cell were performed at beamline station P07 of
the DESY synchrotron using a 103.5 keV (l = 0.11979 Å)
monochromatic X-ray beam focused to have a spot size of 20× 3
mm (H × V). 2D powder diffraction patterns were collected also
using the Pilatus3 X CdTe 2 M hybrid photon counting area
detector. The sample was mounted onto a goniometer which
was placed on the rotation stage. The rotation stage was
mounted perpendicularly to the hexapod; the hexapod was used
to translate the sample across the beam. The XRD-CT scans
were measured by performing a series of zigzag line scans in the
z (vertical) direction using the hexapod and rotation steps. The
XRD-CT scan was made with 550 translation steps (with
a translation step size of 20 mm) covering 0–180° angular range,
in 400 steps. The total acquisition time per point was 10 ms.
XRD-CT measurements were also performed at beamline
station ID15A of the ESRF53 using a MnNaW/SiO2 catalyst54 and
a 92.8 keV monochromatic X-ray beam focused to a spot size of
25 mm × 25 mm. 2D powder diffraction patterns were collected
using a Pilatus3 X CdTe 300 K (487× 619 pixels, pixel size of 172
mm) hybrid photon counting area detector. The acquisition time
per point was 50 ms. The tomographic measurements were
made with 180 translation steps covering 0–180° angular range,
in steps of 1.5° (i.e. 120 line scans). XRD-CTmeasurements were
performed at beamline ID15A of the ESRF using a 3D printed
SrNbO2N photocatalyst52 and a 100 keV monochromatic X-ray
beam focused to have a spot size of ca. 40 × 20 mm (hori-
zontal × vertical). 2D powder diffraction patterns were acquired
using the Pilatus3 X CdTe 2 M hybrid photon counting area
detector. The XRD-CT scans were measured by performing
a series of zigzag line scans. An exposure time of 10 ms and an
angular range of 0–180° with 300 projections in total were used
for the XRD-CT dataset. A translation step size of 100 microns
was applied; in total 330 translation steps were made per line
scan. Finally, XRD-CT measurements were made at beamline
station ID31 of the ESRF using a Ni–Pd/CeO2–ZrO2/Al2O3 cata-
lyst21 and a 70 keV monochromatic X-ray beam focused to have
a spot size of 20 × 20 mm. Here, the total acquisition time per
point was 20 ms. Tomographic measurements were made with
225 translation steps (translation step size of 20 mm) covering 0–
180° angular range, in steps of 1.125° (i.e., 160 line scans). In
each case, the detector calibration was performed using a CeO2

standard. Every 2D diffraction image was calibrated and
azimuthally integrated to a 1D powder diffraction pattern with
a 10% trimmed mean lter using the pyFAI soware package
and the nDTomo soware suite.55,56 Sinograms of interest were
extracted from the data volumes corresponding to the distri-
bution of NMC532 and Cu battery cell components (AAA Li-ion
NMC532), SrNbO2N (photocatalyst), NiO (Ni–Pd/CeO2–ZrO2/
Al2O3 catalyst) and SiO2 cristobalite (MnNaW/SiO2 catalyst).
Micro-CT measurements of the same commercial AAA Li-ion
978 | Digital Discovery, 2023, 2, 967–980
NMC532 Trustre battery cell were performed at beamline
station I12 of the Diamond Light Source using a 100 keV
monochromatic X-ray beam. A PCO.edge X-ray imaging camera
with 7.91 mm pixel size (beamline I12 module 2) was used for
acquiring the radiographs during the CT scan. In total 1800
frames with an exposure time of 8 ms per frame during a 0–180°
scan (angular step size of 0.1°). Each frame had a size of 2160 ×

2560 pixels. Prior to the micro-CT scan, 50 dark current and at
eld images were acquired which were used to normalise the
radiographs prior to reconstruction. Two sinograms of interest
were extracted from the data volume for the image reconstruc-
tion tests; each of these two sinograms was acquired aer
taking the mean of seven neighbouring sinograms (i.e. to
increase the signal-to-noise ratio in the sinograms).

Data availability

All of the data and code used in this paper are publicly available
through the following github repository which includes Google
Colab notebooks to run the code: https://github.com/
robindong3/SD2I.
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