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izability and stability prediction
using a semi-supervised teacher-student dual
neural network

Daniel Gleaves, Nihang Fu, Edirisuriya M. Dilanga Siriwardane, Yong Zhao
and Jianjun Hu *

Data driven generative deep learning models have recently emerged as one of the most promising

approaches for new materials discovery. While generator models can generate millions of candidates, it

is critical to train fast and accurate machine learning models to filter out stable, synthesizable materials

with the desired properties. However, such efforts to build supervised regression or classification

screening models have been severely hindered by the lack of unstable or unsynthesizable samples,

which usually are not collected and deposited in materials databases such as ICSD and Materials Project

(MP). At the same time, there is a significant amount of unlabelled data available in these databases. Here

we propose a semi-supervised deep neural network (TSDNN) model for high-performance formation

energy and synthesizability prediction, which is achieved via its unique teacher-student dual network

architecture and its effective exploitation of the large amount of unlabeled data. For formation energy

based stability screening, our semi-supervised classifier achieves an absolute 10.3% accuracy

improvement compared to the baseline CGCNN regression model. For synthesizability prediction, our

model significantly increases the baseline PU learning's true positive rate from 87.9% to 92.9% using 1/49

model parameters. To further prove the effectiveness of our models, we combined our TSDNN-energy

and TSDNN-synthesizability models with our CubicGAN generator to discover novel stable cubic

structures. Out of the 1000 recommended candidate samples by our models, 512 of them have negative

formation energies as validated by our DFT formation energy calculations. Our experimental results

show that our semi-supervised deep neural networks can significantly improve the screening accuracy in

large-scale generative materials design. Our source code can be accessed at https://git/hub.com/

usccolumbia/tsdnn.
Introduction

Machine learning based screening models have emerged as one
of the most promising approaches for discovery of new mate-
rials either from repositories of known materials1–3 or from
hypothetical materials with compositions4–6 or/and structures7,8

generated by generative deep learning models or by crystal
structure prediction algorithms.9 While existing materials
repositories such as ICSD10 and Materials Project11 can be
conveniently used for nding known synthesizable materials
with potential new functions, the success rate of discovering
materials with extremely novel properties is severely con-
strained by the limited diversity and the number of known
materials: the ICSD has only about 200 000 crystal materials
compared to the almost innite chemical space. To search for
novel materials in uncharted chemical space, it is important to
develop the capability to screen stable and synthesizable
gineering University of South Carolina

@cse.sc.edu

the Royal Society of Chemistry
hypothetical materials12,13 out of the candidates generated by
generative models or CSP algorithms and then apply high-
performance materials property prediction models to nd the
desired candidates.14,15

Given a material's structure, its structural stability can be
estimated by calculating its formation energy using rst-
principles computations such as density functional theory
(DFT) and the phase stability of a structure can be quantied by
using the energy above the hull (Ehull).16 However, DFT based
calculation of formation energy or Ehull is too computationally
expensive, which leads to a large number of machine learning
models for formation energy/enthalpy prediction17,18 based on
composition without18–25 or with structures.15,21,26–28 However
despite the development of more than a dozen formation
energy/enthalpy prediction models, they all suffer from
a neglected strong bias from the training data: most of the
training samples from the repositories of known materials are
stable structures with negative formation energy. For example,
out of the 138 613 samples of the Materials Project database,
only 11 340 samples have positive formation energy. This makes
Digital Discovery, 2023, 2, 377–391 | 377
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it difficult to train good supervised classication or regression
models that can differentiate stable materials from the unstable
candidates.

These methods usually formulate the formation energy
prediction problem as a regression problem with models
trained with a majority of negative formation energy. However,
such formation energy prediction models are most interesting
when they can be used to differentiate stable versus non-stable
hypothetical materials, most of which tend to be unstable and
have positive formation energy. Despite the claimed high
accuracy of these models,17,25 they are mainly evaluated on
stable materials with negative formation energy, leading to their
questionable extrapolation performance on out-of-distribution
non-stable materials with positive formation energy.29 The
question here is how we can train ML models with a majority of
samples with only negative formation energy while they are
expected to differentiate stable materials with negative forma-
tion energy from unstable materials with positive formation
energy. In addition to this issue, it is argued that the accurate
prediction of formation alone does not correspond exactly to
high accuracy of predicting stability which can be better
measured by the quantity DHf and be obtained by a convex hull
construction in formation enthalpy (DHf)-composition space.25

Synthesizability of a hypothetical material is another
important property needed for effective materials screening,30,31

which is challenging to predict accurately.32 It is found that
many naive generative models for molecules tend to generate
unsynthesizable candidates.31 Unfortunately, synthesizability is
much more challenging to be predicted using ML models or
other computational methods.32,33 One approach is to predict
the synthesis path given a material composition;34–37 however,
these methods are newly emerging and cannot yet be applied to
the large scale of hypothetical materials. Another option is ML
based models for materials synthesizability prediction. For
inorganic materials, a recent study using the positive and
unlabelled semi-supervised machine learning algorithm (PU-
learning)13 has been applied to predict synthesizability with
promising results. Davariashtiyani et al. proposed a 3D voxel
representation based convolution network for synthesizability
classication trained with 600 anomaly samples.38 However, the
extrapolation prediction power of their model is expected to be
low due to their highly biased and limited selection of anomaly
structures.

Semi-supervised learning39,40 has been widely and success-
fully used in computer vision,41 natural language processing,42

and medical diagnosis43 to mainly address the scarce annota-
tion data issue or just to improve the performance using unla-
belled data. However, despite the well-known small data issue
in materials ML problems, semi-supervised learning has rarely
been used in such problems except in a few studies13,44,45 for
materials synthesis classication, microstructure classication,
and synthesizability prediction.13

SSL algorithms are developed on several fundamental
assumptions40 including (1) the smoothness assumption: two
samples close to each other in the input space tend to have
similar labels; (2) low-density assumption: the decision
boundary should not pass through high-density areas in the
378 | Digital Discovery, 2023, 2, 377–391
input space; (3) manifold assumption: data points on the same
low-dimensional manifold should have the same label. These
assumptions can be interpreted as specic instances of the
cluster assumption: similar points tend to belong to the same
group/cluster. There are two main categories of SSL algorithms
including graph based transductive methods which focus on
label propagation and inductive methods which aim to build
a ML model f: x / y by incorporating unlabelled data either in
pre-processing steps, directly inside the loss function, or via
a pseudo-labeling step. SSL algorithms have demonstrated
strong performance especially in the deep learning
framework.42

Here we propose a semi-supervised learning (SSL)
approach for the materials formation energy and synthesiz-
ability prediction problems by considering both the database
bias that most samples are stable, synthesizable materials
with negative formation energy and the model application
scenarios for which we need to apply the models to differen-
tiate stable and unstable hypothetical materials. In this work,
we exploit a deep learning based SSL framework, the teacher-
student deep neural network (TSDNN),46 to address the lack of
negative samples in synthesizability prediction and formation
energy prediction. A TSDNN is characterized by a dual-
network architecture with a teacher model trained using
a supervised signal and an unsupervised feedback signal from
the student network to improve the teacher's pseudo-labeling
capability. The teacher model provides pseudo-labels for
unlabeled data for the student model to learn from. Unlike
the previous positive-unlabeled SSL algorithm for synthesiz-
ability prediction,13 our TSDNN model has much fewer
parameters while achieving 5.3% higher prediction accuracy
and improving the positive rate from 87.9% to 92.9% using
the same performance evaluation. Extensive experiments on
the formation energy classiers also show that our TSDNN
can screen negative formation energies with 7.5% higher
precision, a 10.3% higher F1 score, and 9.7% higher accuracy
than the CGCNN regression model.

Our contributions in this paper can be summarized as
follows:

� We identify the inherent dataset bias in formation energy
and synthesizability prediction problems and propose to
formulate both as semi-supervised classication problems.

� We exploit a novel teacher-student dual network deep
neural network model framework to achieve high-performance
semi-supervised learning for both formation energy and syn-
thesizability classication. Compared to previous approaches,
our models achieved >10% performance improvement with
much simpler model structures and 98% fewer model sizes.

� We evaluate our algorithms on different dataset congu-
rations and demonstrate the effectiveness and advantage of SSL
for both problems.

� We apply our TSDNN based formation energy and syn-
thesizability SSL model for screening new materials from the
hypothetical cubic crystal materials and identify a set of new
stable materials as veried by DFT formation energy
calculations.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Results

In many problem domains, particularly materials science, there
is a severe lack of quality labeled data. The set is oen too small,
unbalanced, or has missing data classes. For example, there are
only about 2700 crystal materials with labelled thermal
conductivity values47 and less than 1700 annotated piezoelectric
materials in the Materials Project (MP) database.48 In the same
database, only 8.2% of materials have a positive formation
energy. As a result, it becomes difficult to train a well-converged
machine learning model using these data and obtain adequate
performance on out-of-distribution samples. In this work, we
propose to combine the TSDNN semi-supervised learning
framework shown in Fig. 1 with a crystal graph convolutional
neural network (CGCNN)26 (Fig. 2) for structure-based synthe-
sizabiliy and formation energy prediction. The teacher-student
deep neural network (TSDNN) leverages unlabeled data to
overcome the issues of a small labeled dataset and the severe
issue of a lack of negative samples. In this case, we are lacking
known unstable samples as they do not exist.

Semi-supervised learning based screening models using
teacher-student deep neural networks (TSDNNs)

A TSDNN is a semi-supervised learning framework composed of
two neural network models (Fig. 1b): a teacher network and
a student network. These twomodels are trained in parallel. The
Fig. 1 PU-learning based dataset generation and training procedure for t
and negative samples from the unlabeled set. Since there are only positive
to select themost likely negative samples from the unlabeled set. It starts
selects unlabeled samples (equal in number to the positive) as negative
classify all samples. This random sampling and prediction process is repea
as shown in the gradient bar. From this, we assemble a complete data
selected as the positive test set and 9629 lowest (N Test) ones as the ne
selected as shown, and the middle section of uncertain classifications is
then trained using this clustered dataset. (b) A TSDNNmodel is trained us
on labeled data (PL + NL) and predicts pseudo-labels (classification sco
pseudo-labels exclusively. The teacher model also has a feedback signal4

on the batch of labeled data. This allows for the teacher model to be u
model is saved and used for testing and predictions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
teacher model generates pseudo labels on the unlabelled data
which are then used to train the student network. The teacher
model is trained with two objectives in our case: labeled data
(synthesizability or formation energy classication) perfor-
mance and a feedback signal46 from the student model based on
its performance on the labelled dataset. This feedback signal
provides a guide for the teacher model in the case when the
unlabeled samples are unlike the labeled data. The student
model is trained only on unlabeled data with hard pseudo-
labels provided by the teacher model. This leverages unla-
beled data to improve further than supervised learning and
smooth biases that may be found in the labeled data, such as
through dataset imbalances, as seen with formation energy
classication.

Given a labeled dataset and an unlabeled dataset, the
training process of the TSDNN goes as follows: rst, a batch of
labeled and a batch of unlabeled data are sampled. The
teacher's loss is calculated on the labeled batch. The teacher
model then provides pseudo-labels for the unlabeled batch for
training the student network. The student model's loss is
calculated on the labeled data both before and aer the student
model is updated with the pseudo-labels from the teacher
model. The change in this performance from the teacher's
pseudo-labels is used to calculate the student model's feedback
signal, which is combined with the teacher's loss over labeled
data to update the teacher model. This helps the student
he TSDNN framework. (a) The first step of a TSDNN is to cluster positive
samples in our raw dataset, we use an iterative PU learning procedure13

with only positive (green) and unlabeled (gray) samples. It first randomly
ones. A TSDNN model is then trained using these labels and used to
ted 5 times and the classification scores are averaged for eachmaterial,
set: 9629 materials with the highest classification scores (P Test) are
gative test set. The labeled training dataset (P labeled and N labeled) is
left as the unknown set (unlabeled). A final fine-tuned TSDNN model is
ing a teacher model and a student model. The teacher model is trained
re) for the unlabeled data (U). The student model learns from these
6 from the student model based on the student model's loss calculated
pdated to optimize for the student model's performance. The student

Digital Discovery, 2023, 2, 377–391 | 379
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Fig. 2 CGCNN architecture for structure based materials property prediction.
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network to learn the true labels of a large set of unlabeled data
by ensuring that the student model is clustering the unlabeled
data consistent with the labeled dataset. The benet of this is
that a small labeled dataset can be used and augmented with
a much larger unlabeled dataset, resulting in a more robust
student model that has been trained on the unlabeled data.

Loss functions of our student and teacher networks include:

Lu
S ¼ Exu½CEðTðxuÞ;SðxuÞÞ� (1)

where Lu represents the cross-entropy loss CE on a batch of
unlabeled dataset Xu for the student network S with respect to
the labels produced by the teacher model T. This is the student
model's only loss function.

Ll
T ¼ Exl ;yl½CEðyl;TðxlÞÞ� (2)

where Ll
T represents the standard supervised cross-entropy loss

CE for a batch of labeled data (xl, yl) for the teacher model T.
A feedback signal from the student model46 is additionally

included to further optimize the teacher model by improving its
pseudo-labeling. This reduces labeled data bias by introducing
a dynamic teacher; while a static teacher model would replicate
implicit biases, this dynamic teacher model is able to adapt to
the full context of the unlabeled dataset, which in turn leads to
a less biased nal model.

In the TSDNN, before training can commence, the dataset
must be prepared for our semi-supervised framework. In the
case of synthesizability, there are only positive data, so we must
rst identify candidate negative samples. This is possible by
Fig. 3 Distribution of formation energy for the MP dataset with few pos

380 | Digital Discovery, 2023, 2, 377–391
clustering, since synthesizability is dened with respect to other
previously synthesized materials. For synthesizability, selecting
the most optimal negative labels is integral to assembling an
accurate labelled dataset. For formation energy classication,
the two greatest challenges to overcome are the high density of
materials with near-zero formation energies, as shown in Fig. 3,
and the labelled dataset imbalance with relatively few negative
samples. Once these issues are resolved, the TSDNN model can
be trained.
Synthesizability dataset generation using PU learning

Material synthesizability prediction is a positive and unknown
(PU) learning problem, meaning that there are only positive
samples, materials with ICSD entries which have been previ-
ously synthesized, and unlabeled samples, hypothetical mate-
rials which may or may not be able to be synthesized. To utilize
these unlabelled samples, the PU learning framework was
proposed in ref. 13 (Fig. 1a), which we use to cluster the unla-
beled data and produce an experimental labeled dataset. By
clustering the unlabeled data, we can identify likely synthesiz-
able materials clustered with known synthesizable materials as
well as identify the cluster of likely unsynthesizable materials
that we can then use as a negative class to ll in a full labeled
dataset.

The PU learning framework is a modied transductive
bagging support vector machine.49 In this framework, a model
is trained with a random selection of the unlabeled data set as
itive values and the Cubic test dataset with many positive energies.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the negative class equal in size to the positive class. This model
then produces predictions on the remaining unlabeled data not
chosen as the negative class. Aer a given number of iterations,
the unlabeled scores are averaged, resulting in a nal score. The
motivation in this is to identify a cluster of samples that lie
apart from the positive class. This is useful for identifying the
highest and lowest prediction score materials, but still leaves
a large amount of uncertain data with a score near the classi-
cation boundary. Using our TSDNN semi-supervised frame-
work, we train our nal ne-tuned model on the new labeled
dataset produced from the PU learning dataset generation step
and use it to classify the remaining unknown data.

CGCNN model for structure-based classication

The TSDNN model is a wrapper framework for semi-supervised
classication, which can be combined with any material prop-
erty prediction model architecture. Here we adopt the CGCNN
model for structure based synthesizablity and formation energy
classication. The CGCNN (Fig. 2) works by converting material
structures in their unit cell into crystal graphs by encoding
atoms as nodes and bonds as the edges between them. By
encoding both the atomic features and bond interactions
between atoms, the inherent structural characteristics can be
learned. A set of convolutional layers are then built on top of the
crystal graphs to extract the feature representations, which are
fed to the hidden layers for nal classication.

TSDNN-syn: a synthesizability screening model using semi-
supervised learning models

Our synthesizability screening model (TSDNN-syn) is a binary
classication model trained using the above-mentioned semi-
supervised teacher-student neural network (TSDNN). We ob-
tained the raw dataset of crystal structures from the Materials
Project (MP) database and used the following procedure to
prepare the training and testing datasets. First we obtained 125
619 materials with 48 146 of them being ICSD entries, which are
labeled as positive samples to indicate that they are synthesiz-
able materials. However, there are no ground truth negative
samples, the un-synthesizable materials from the downloaded
MP dataset. There are only ICSD entries and virtual materials,
the latter with an unknown synthesizability status. This lack of
negative samples prevents a traditional supervised classica-
tion model from being trained as it normally would. To over-
come this, we used the positive and unknown (PU) learning
method13 discussed above to cluster the unlabeled data and
identify materials with low synthesizability scores to be used as
negative samples, as discussed above for the initial experi-
mental dataset. We rst remove 9629 randomly selected posi-
tive samples to be used as the test set prior to any training.
Then, we generate the clustered unlabeled dataset as shown in
Fig. 1b, where our TSDNN model is trained for 5 independent
iterations. In each iteration, a random subset of the unlabeled
dataset is selected to be the negative set with a size equal to the
number of samples in the positive set. A TSDNN model is then
trained on these data. This model makes predictions on the
unlabeled samples not selected as the negative set. The nal
© 2023 The Author(s). Published by the Royal Society of Chemistry
predicted scores are averaged across the 5 iterations to provide
the clustered dataset. We then selected the lowest 9629 lowest-
scored materials as negative samples to be used in the nal test
set to ensure our nal model accurately classies the positive
and negative set that was determined by clustering. Then, the
next 38 517 lowest-scored materials (all scored below 0.33) were
selected to match the 38 517 positive samples for the labelled
dataset. This provides a full labeled dataset with negative labels
and a full test set in which accuracy can be determined. The
remaining 29 327 samples are considered inconclusive and
remain as the unlabeled set to be ltered by the nal model.

This dataset could be directly used to train a supervised or
semi-supervised model, which is performed with the balanced
TSDNN and supervised CGCNN models. However, since the
negatively labeled materials are selected as the result of an
imperfect model's predictions, there will be false negatives
introduced into the training data. This increases as materials
are selected that had prediction scores closer to 0.5 than to 0.0.
As a countermeasure to this, we leverage our semi-supervised
model to gain insight into the dataset and select optimal
negative samples. When trained with our semi-supervised
model, the true negative rate is especially low compared to
the true positive rate. However, when the threshold for negative
samples is moved lower from the 0.33 prediction score, this
performance improves. By utilizing this, we are able to deter-
mine the optimal negative class threshold to balance the true
positive rate and true negative rate, which leads to improved
performance of the unbalanced TSDNN.
TSDNN-fe: a formation energy based screener using a semi-
supervised TSDNN framework

We design two different TSDNN models for formation energy
prediction to overcome biases inherent of previous methods
due to having few samples with positive formation energy. We
design the rst model, a separated TSDNN, to classify whether
the formation energy of a material is above or below a threshold
of −2.0 eV. We chose this threshold since there are many
materials with a slightly negative formation energy (−2.0, 0) that
may be very structurally similar to those with slightly positive
formation energies (0, 1.0). For this model, we use the materials
with formation energies below −2.0 eV (n = 5549) as positive
samples in the labeled dataset. We select an equal number of
samples with the highest formation energies as negative
samples.

For the second model, an unseparated TSDNN, we use only
materials with positive formation energies (n = 2444) as nega-
tive samples and an equal number of randomly selected mate-
rials with negative formation energy as positive samples. This is
optimized for a representative distribution of positive samples,
with the intent of ensuring dataset smoothness and a low
density. This allows for improved smoothness by including
samples with near-zero eV formation energies while still
ensuring a low density near the classication threshold of
0.0 eV. This is a general screener for positive vs. negative
formation energy screening as opposed to the rst approach,
which is optimized for strictly low eV classication. This
Digital Discovery, 2023, 2, 377–391 | 381
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approach results in a high-precision model, where 78.4% of
samples with predicted scores greater than 0.5 have a formation
energy of less than −2.0 eV and 99.0% of samples have a nega-
tive formation energy. It correctly classies 57.8% of the
possible samples with formation energies less than −2.0 eV.

In both models, we use an unlabeled dataset with 500 000
CubicGAN-generated structures. These two models ensure that
there is a low sample density at the classication threshold. To
use the dataset as-is with a threshold of 0.0 eV would result in
a very high density of materials at the threshold. As such, we use
the different thresholds and data-selection methods to account
for this. Each model has distinct benets that are best suited for
different applications, as shown in Fig. 5.

We structure our datasets in this way to correct for biases
and inconsistencies that models are ingrained with due to the
unbalanced nature of formation energy datasets. As shown in
Fig. 3a, the Materials Project has an overwhelming majority of
<0 eV materials. If trained from the raw data, it is likely that
a model will bias heavily toward predicting >0 eV materials as
being <0 eV. For this reason, we seek to combine the benet of
our TSDNN model with a balanced dataset to remove this bias.
It is of particular importance that the model be unbiased when
used with generated materials, such as those produced by our
CubicGAN, as they contain many more >0 eV materials. We seek
to apply our method to provide superior screening performance
in identifying low formation energy materials.

Datasets

We use inorganic material structures obtained from the Mate-
rials Project11,50,51 (MP) database [Version v2020.09.08, accessed
01/28/2021] for both our synthesizability prediction model and
our formation energy prediction models. The MP database is
a widely used material database consisting of materials ob-
tained from the ICSD10 database or through high-throughput
DFT calculations. In the case of synthesizability, we use the
MP materials with ICSD entries as the positive dataset and the
negative labels selected from the virtual MP materials as
described in the TSDNN-syn section. For our formation energy
model, we use a combination of the MP database and a custom
dataset of material structures generated by our CubicGAN
model.8 Our criteria for selecting positive and negative samples
are detailed in the TSDNN-fe section. Table 1 shows the source
and number of samples in each dataset for each model. To
compare the performance of our TSDNNmodels with that of the
baseline PU-learning method, we rst prepare a random test
dataset in the same way as in previous work,13 which is
composed of a random selection of 9629 positive
Table 1 Training datasets

Synthesizability

Model Labeled Src Unlabeled Src

Supervised CGCNN 77 035 MP 0 N/A
Balanced TSDNN 77 035 MP 29 327 MP
Unbalanced TSDNN 45 165 MP 29 327 MP
PU-learning13 46 781 MP 78 734 MP

382 | Digital Discovery, 2023, 2, 377–391
(synthesizable) samples from the labeled set. To validate that
our model is able to accurately classify materials structurally
different to those in the training set, we prepared a balanced
test set composed of the 9629 negative samples with the lowest
classication score from the PU learning dataset generation and
a group of randomly selected 9629 positive samples. By intro-
ducing the negative samples, we are able to ensure that the
model does not simply predict all materials as positive and has
actually learned the structure features linked to synthesizability.

The supervised CGCNN and balanced TSDNN models use
the same labeled datasets. The balanced TSDNN model is
trained using the remaining samples as the unlabeled set. This
uses the unoptimized dataset provided from the dataset
generation step. The unbalanced TSDNN uses the optimized
labeled dataset from the optimization step discussed in the
formation energy classication performance section.

Due to the fact that our CubicGAN generative model
produces strictly cubic structures, we utilized only cubic Mate-
rials Project structures to train a formation-energy classication
model to predict samples with negative formation energies. We
used two selections of data for our formation energy models.
The rst model, the unseparated TSDNN, uses only materials
with formation energies lower than 0.0 eV as negative data (n =

2444). We then randomly selected an equal number from the
remaining samples as positive data (n = 2444). This allowed for
a balanced labeled dataset with the full distribution of negative
formation energy samples represented. The second model, the
separated TSDNN, is trained using the lowest 25% eV samples
(n = 5539) as positive data and the highest eV materials (n =

5539) as negative data. This excludes the range of materials
close to 0.0 eV. The motivation for this is to separate the positive
and negative classes in the input space. The motivation for this
is to train the model to identify only low formation energy
materials. The CGCNN regression model is trained using the
full cubic training dataset. We validate our formation energy
models' performance by testing it on our own dataset of cubic
structures produced by the CubicGAN with DFT-calculated
formation energies. For each model, we used a test set of 36
847 CubicGAN-generated structures with DFT-calculated
formation energies. This test set has 16 407 negative forma-
tion energy samples and 20 440 positive formation energy
samples.

Performance evaluation of TSDNN based semi-supervised
learning

We compare our TSDNN-syn and TSDNN-fe models against
previous structure-based methods for predicting
Stability (formation energy)

Model Labeled Src Unlabeled Src

Unseparated FE TSDNN 4888 MP 500 000 CG
Separated FE TSDNN 11 078 MP 500 000 CG
CGCNN regressor 20 614 MP 0 N/A

© 2023 The Author(s). Published by the Royal Society of Chemistry
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synthesizability and formation energies, respectively. For syn-
thesizability classication, we compare against the previous
semi-supervised method of PU learning.13 In the case of
formation energy screening, we compare against a CGCNN
regression model. We perform additional performance valida-
tion of our method by screening 2 545 713 novel CubicGAN-
generated materials and selecting the top 1000 for analysis.
We perform DFT calculations to calculate their formation
energies to analyze their stability and likely synthesizability.
Synthesizability classication performance

Due to the lack of known true negative samples (non-
synthesizable samples) for synthesizability prediction, the true
positive rate is used here to evaluate the performance of the
synthesizability prediction models. We include the accuracy
metric for our tests as we utilize our method for selecting high-
quality negative samples in addition to the true positive rate.
This is to validate that there is not simply a positive bias that
results in a high true positive rate, but there is in fact an
observable differentiation in the model predictions.

We show the results of our synthesizability prediction in
Table 2. The balanced TSDNN was trained using the full labeled
dataset and a comparatively small unlabeled dataset to compare
it to the strictly supervised CGCNN classier method. These two
models have equivalent performance, with the supervised
Table 2 Synthesizability result comparison

Model TPR Accuracy Test Set

Supervised CGCNN (baseline) 81.60% 62.73% 9629 holdout
Balanced TSDNN (ours) 81.20% 56.40% 9629 holdout
Seeded TSDNN (ours) 93.80% 91.48% 9629 unlabeled
Unbalanced TSDNN (ours) 92.90% 94.11% 9629 holdout
PU-learning (baseline)13 87.90% N/A 9629 holdout

Fig. 4 Scatter plot of our TSDNN predicted scores vs. PU learning on IC
falsely classified many more materials as negative (Quadrant IV) than ou

© 2023 The Author(s). Published by the Royal Society of Chemistry
CGCNN achieving an 81.60% TPR and the balanced TSDNN
achieving an 81.20% TPR. To improve on this and benet from
semi-supervised learning, we then use the optimized dataset
described in the TSDNN-syn method section for training the
unbalanced TSDNN model, which achieved the highest accu-
racy of 94.11% along with a TPR of 92.90%. We also evaluate
this model by moving the test data into the unlabeled dataset
for the seeded TSDNN test. We use this test to evaluate the
pseudo-labeling ability of our teacher model and to show that
the true labels of data in the unlabeled set are learned correctly.
The seeded TSDNN achieves the highest TPR of 93.80% and an
accuracy of 91.48%, which demonstrates accurate teacher
pseudo-labelling for unlabeled data. It increased the TPR of the
unbalanced TSDNN from 92.90% to 93.80%. This is the best
comparison to real-world performance, as the unlabeled data
would be the desired data to be classied.

In both the basic PU learning method for synthesizability13

and our TSDNN framework, a decision boundary of 0.5 is used
for determining synthesizable vs. unsynthesizable materials
for both classiers. To show the consistency and performance
of both models, Fig. 4 plots the probabilities of being stable
materials for all the ICSD materials from our test set by the PU
learning model against those predicted by our TSDNN model.
The gure is divided into quadrants, with each quadrant
signifying agreement or disagreement between the PU
learning method and our TSDNN framework. The top right
quadrant signies correct agreement between the models,
where both models correctly classify the materials as positive.
As expected due to the similarity in methods, both models
correctly agree for 92.24% of samples. The bottom le quad-
rant, similarly, denotes the incorrect agreement that the
materials should be classied as negative. These are very few,
totaling only 0.62% of samples. The bottom right quadrant
signies a disagreement in which the TSDNN model correctly
classies the materials and the PU learning method does not.
SD materials from the test set. This shows that the PU learning method
r TSDNN model (Quadrant II) for the PU learning predictions.

Digital Discovery, 2023, 2, 377–391 | 383
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It can be easily found that the bottom right quadrant contains
much more samples compared to the top le quadrant, con-
taining 5.91% and 1.22% of samples, respectively, solidly
indicating that there are many materials with very high
prediction scores correctly predicted by our TSDNN model but
were incorrectly classied by the PU learning method as being
unsynthesizable. These results show that while our model has
an improved true positive rate, the improvement is not simply
a result of materials being classied right at the 0.5 classi-
cation boundary.
Further performance validation

To further validate our model's performance, we conducted two
additional experiments. We trained the model in the same way
as described above but only using data from the Materials
Project database [v2021.11.10, accessed 12/10/2022] entered
into the database before 2018. We withheld all materials that
were entered into the database in 2018 or later. This resulted in
a training dataset consisting of 34 047 positive samples and 41
387 unlabeled samples. The withheld test set contained 15 747
positive samples and 55 138 unlabeled samples. We used the 15
747 true positive samples from the post-2018 test set to evaluate
our model's performance as it would be used to make predic-
tions for new data.

The second experiment was conducted in the same manner
but withholding any materials containing the element Mn. This
experiment was conducted to evaluate the model's reliance on
relating the similarity of materials. The training dataset con-
sisted of 47 635 positive samples and 85 393 unlabeled samples
that do not include the element Mn. The nal test set contained
2159 positive samples and 11 132 unlabeled samples each
containing the element Mn. The results for each experiment are
found in Table 3.

We compare our time-based splitting validation with the
standard PU learning method from ref. 13. They use an older
version of the training dataset with data pre-2015, so we simi-
larly used the latest 5 years of data for testing to match their
dataset splitting. Our model's consistent performance when
trained on historical data demonstrates our model's efficacy for
use in real-world application for future predictions.

Similarly, with the element holdout experiment, our model
demonstrates the expected performance. Though this experi-
ment is orthogonal to real-world material discovery through
similarity to existing materials, the model demonstrates that it
can still perform well with little knowledge of the interactions of
Mn.
Table 3 Comparison of synthesizability classification performance of
additional validation datasets

Model TPR

Time-based splitting PU-learning (baseline)13 86.20%
TSDNN (ours) 91.65%

Element holdout TSDNN (ours) 72.67%

384 | Digital Discovery, 2023, 2, 377–391
Formation energy classication performance

Formation energy based material screening can be performed
using either regression models or classication models,
depending on the motivation of the screening. For screening
hypothetical materials, the rst step is identifying potentially
stable candidates with negative formation energies. As the exact
formation energy is not needed, this can be performed effec-
tively by an accurate formation energy classication model. To
evaluate the performance of models for formation energy clas-
sication, we consider accuracy, precision, and F1 score, as
each metric corresponds to a specic screening motivation. We
notably do not use recall as for our problem here, as simply
achieving a high recall may not be meaningful on its own
because it may include many false positives that are not stable.
The F1 score better represents performance in this regard, as it
measures the performance with balanced recall and precision.
In this situation, predicting few false-positives while still
correctly classifying a majority of the actual positive materials is
desired. For precision, in situations in which it is imperative
that the screened materials be below a given eV threshold (e.g.
nding materials with high-condence stability), a high-
precision model is the most optimal choice regardless of its
accuracy or F1 score. Precision and F1 score are useful metrics
at any eV threshold. Accuracy, however, is only signicant with
an eV threshold of 0.0 eV for our test set, as we are seeking to
classify samples with negative or positive formation energies.
With lower eV thresholds, the number of negative samples
vastly outweighs the number of positive samples, as shown in
Fig. 3b. A model could have a high accuracy at a low eV
threshold while correctly classifying few actual positive
samples. Accuracy is most useful for identifying >0.0 eV per
atom materials. A high-accuracy model with a threshold of
0.0 eV achieves the best balance between correctly identifying
actual positive and negative samples.

Table 4 shows the classication performance of the three
models on our test set of materials. Our unseperated TSDNN
model achieves a 74.60% F1 score compared to the CGCNN
regression model's F1 score of 64.3%, with a signicant abso-
lute 10.3% improvement by using our semi-supervised learning
approach. At the same time, this model achieves an accuracy of
74%, with an absolute 9.7% improvement over the CGCNN
model. Our separated TSDNNmodel shows that our approach is
able to be tweaked for achieving higher precision by adjusting
the training threshold, resulting in a high-condence model.
Here, the table shows that the model can be tuned to achieve
100% precision for identifying candidates which are highly
likely to be stable materials.
Table 4 Comparison of classification performance for formation
energy with an eV threshold of 0.0

Model Precision F1 score Accuracy

CGCNN 58.60% 64.30% 64.30%
Unseparated FE TSDNN 66.10% 74.60% 74.00%
Separated FE TSDNN 100.00% 16.50% 59.50%

© 2023 The Author(s). Published by the Royal Society of Chemistry
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To further illustrate the advantage of our TSDNN models, we
show the formation energy distributions of the positively clas-
sied samples (with negative formation energies) from our test
set by using our classiers and the baseline CGCNN regression
model. As shown in Fig. 5a, our test set contains a large number
of samples with positive formation energy to fully test the
model's ability to differentiate between samples with positive
and negative formation energies. The desired formation energy
distribution of screened samples is seen in the bottom group of
samples at around −2.0 eV. Fig. 5b shows that our separated
TSDNNmodel has just obtained the desired sample groups with
the formation energy distributed around the peak of −2.2 eV,
which indicates that our separated FE TSDNN is effective for
applications which require a high certainty that a material will
have a low formation energy because of its very high precision.
For more general screening with an eV threshold of 0.0, our
unseparated TSDNN model is more suitable (Fig. 5c). With the
vast array of materials with formation energies very close to
0.0 eV, it is very challenging to train a model to accurately
differentiate between materials with small positive and small
negative formation energies. As shown in Fig. 5d, the CGCNN
model is not able to capture the full distribution of negative
Fig. 5 Comparison of the formation energy distributions of test sample
different models versus the ground truth. (a) The distribution of the f
Distribution of Ef of positive samples predicted by the separated TSDN
unseparated TSDNN model. (d) Ef distribution of positive samples predic

© 2023 The Author(s). Published by the Royal Society of Chemistry
formation energy materials in the test set and has difficulty in
differentiating between samples with positive and negative
formation energies. As shown in Table 4, our unseparated
TSDNN model is able to improve greatly in performance with
a 7.5% increase in precision, a 10.3% increase in F1 score, and
a 9.7% increase in accuracy compared to the CGCNN. This
makes it preferred for applications that wish to screen for stable
materials (usually with negative formation energy).
New materials discovery using both formation energy and
synthesizability screening models

Generation of candidate cubic structures for screening.
CubicGAN8 is a generative adversarial network based model for
generating novel cubic crystal structures. CubicGAN reports
that when generating 10 million virtual cubic crystal structures,
most of the materials in training datasets, Materials Project and
ICSD can be rediscovered. Thus, we use CubicGAN to generate
10 million virtual cubic crystal structures, of which around 90%
of the materials can be recognized as the same space groups
they are assigned to. The next step is to remove duplicate crystal
structures. We consider materials with the same compositions
and the same corresponding atom positions as duplicate
s predicted/classified to have negative formation energy by the three
ormation energies of all test samples. 35% of them are positive. (b)
N model. (c) Distribution of Ef of positive samples predicted by the
ted by the CGCNN regression model.
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Table 5 The chemical formulae and the space group symmetries for
sample materials found to have 0.0 Ehull

Chemical formula Space group
Eform (eV
per atom)

TbLuO2 225 −3.599
HoPaF6 216 −3.551
RbPmF6 216 −3.108
Pm2IO6 225 −2.785
PaSnF6 216 −2.427
PaMoF6 216 −2.351
PaIF6 216 −2.255

Fig. 7 The screened CubicGAN materials' formation energies and
prediction scores.
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materials. Around 25% of the materials (2.5 millions) are le for
further analysis.

Starting with 2.5 million candidate materials, we rst apply
our separated TSDNN model to classify them as having positive
or negative formation energies. 918 686 of them are predicted as
having a negative formation energy. We then select 5000 of
these materials with the highest prediction scores and apply our
unbalanced TSDNN synthesizability model to predict their
probability of being able to be synthesized. We nally select the
top 1000 samples with the highest probability to be synthesiz-
able. These samples are sent for DFT relaxation and further
validation.

DFT validation of predicted candidate structures. The
density functional theory (DFT) based rst principle calcula-
tions were performed using the Vienna ab initio simulation
package (VASP)52–55 with details described in methods. Out of
1000 crystal structures, which were optimized using DFT, 512 of
them have negative formation energies. We have then identied
7 candidate structures with 0.0 energy above the convex hull
(Ehull). Table 5 shows these materials. Interestingly, all 7
materials have rare-earth elements. Half of them have PaF6 type
chemical formulae. In all of these structures, F is the common
element with the rest of the elements making bonds with F (see
Fig. 6).56
Fig. 6 The discovered new crystal structures with zero Ehull.

386 | Digital Discovery, 2023, 2, 377–391
We plot the correlation between the TSDNN prediction score
and the calculated formation energy of the selected materials in
Fig. 7. Formation energy is not a suitable indicator for a mate-
rial's synthesizability, so we do not see a strong correlation as
these scores are the nal predictions from our synthesizability
prediction model.
Discussion

With the advent of large-scale material databases and genera-
tive machine learning models, an immense expanse of the
wider inorganic material chemical design space is now possible
with high throughput experiments or computation. This
extensive amount of data makes it a prime target for developing
machine learning models for both synthesizability and forma-
tion energy based screening. However, there is comparatively
little labeled data in both cases and particularly few negative
samples. Obtaining new labeled data can be costly, time-
consuming, and unreliable.

Previously, CGCNN-based regression models have been used
to screen for stable material candidates using predicted
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Scatter plot of CGCNN predicted formation energy. With few samples with positive formation energy, the CGCNN model tends to
underestimate true positive formation energy materials and overestimate true negative formation energy materials. Furthermore, it seems that
the CGCNN has greatly overestimated a portion of the materials substantially.
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formation energy. The issue with such models to screen for
material candidates with low formation energies is the intro-
duction of model and prediction biases due to the dataset
imbalance. As shown in Fig. 3a, only 8.2% of the total MP
database is comprised of materials with a formation energy
greater than 0 eV. This results in ML based regression models
that bias their predictions heavily toward negative formation
energies with true positive samples, as shown in Fig. 8.

Here we proposed a dual crystal graph convolutional neural
network-based semi-supervised learning framework for syn-
thesizability and formation energy prediction. Comprehensive
testing and validation show that our TSDNN models can
successfully exploit the unlabeled data in each use case in
conjunction with existing labeled data to accurately and effec-
tively predict synthesizability and formation energies. Our
TSDNN models can be paired with existing and future material
generation models for efficient screening across a variety of
applications, as shown with our CubicGAN. Our models' inte-
gration with generative models provides for a greatly optimized
and more reliable search for new materials. Compared to the
CGCNN based regression model, which misclassied a large
grouping of materials as having positive formation energies due
to the bias caused by the dataset imbalance, our semi-
supervised TSDNN classication model reduces this bias, as it
is designed with screening in mind from start. Furthermore, by
using our TSDNN framework in conjunction with our Cubic-
GANmodel, we were able to use the large amount of unscreened
data as unlabeled data to train our model for improved
performance.

We recognize that currently the CGCNN is no longer the
state-of-the-art graph neural network model for formation
energy prediction with the emergence of new variants such as
Megnet,27 DeeperGATGNN,14 and ALIGNN.57 Our twin network
model can be easily combined with these algorithms to achieve
© 2023 The Author(s). Published by the Royal Society of Chemistry
even better performance for semi-supervised materials property
prediction.
Methods
The framework for generative design of materials

We follow a generation-and-screening approach for the
discovery of novel materials: rst, we use generative deep
learning algorithms to generate hypothetical crystal structures
in a high-throughput manner with millions of candidates.8 The
generated candidates will then be screened quickly using
formation energy and synthesizability machine learning
models. Finally, a set of top screened candidates will be veried
by DFT based formation energy calculations. It should be noted
that generative algorithms of materials compositions4 can also
be used here to rst generate and screen out top compositions
that are then fed to crystal structure prediction algorithms for
structure determination and follow-up DFT validation.

In this work, we use our recently developed CubicGAN
algorithm8 to generate 10 million hypothetical ternary cubic
crystal structures of three space groups (221 225, and 216)
which are reduced to 2.5 million unique candidate cubic
structures. With such a high volume of candidates, nding
stable and synthesizable ones is almost like nding a needle in
a haystack. To address this challenge, we develop semi-
supervised deep learning based classication models for iden-
tifying hypothetical materials candidates with negative forma-
tion energy and high synthesizability, respectively.
General training procedure

The general training procedure of our models is as follows. The
full dataset is split into a training dataset and a testing dataset,
according to the requirements of the experiment. The training
dataset will consist of positive samples, either ICSD entries for
Digital Discovery, 2023, 2, 377–391 | 387
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the TSDNN-syn or low formation energy samples for the
TSDNN-fe, and unlabeled samples, which are the remaining
samples aer positive samples are removed. The test set, unless
otherwise specied by an experiment, consists of a random
subset of positive samples withheld before training. Negative
samples can be added for balance before the nal model is
trained by sampling from the lowest average unlabeled sample
scores to show that the model does not converge to only predict
the positive class.

Five independent models are trained under the PU learning
framework, using a random subset of the unlabeled samples as
negative samples to complete a labeled dataset. Each model is
trained using that iteration's labeled and unlabeled sets, with
an 80% training and 20% validation split for the labeled set.
Aer each iteration has completed, the prediction scores for
each unlabeled sample are averaged. The lowest of these
average scores are used as negative samples in a new labeled
dataset to train a sixth and nal model, along with the
remaining unlabeled samples. This model is used to make
predictions and is evaluated using the initial test set withheld at
the beginning.

The hyper-parameters of our TSDNN models are set for
training as found in Table 6.

We follow the hyperparameters as specied in ref. 13 for
direct comparison. Specic synthesizability dataset splitting
procedures may be found in the TSDNN-syn section. Similarly,
specic formation energy dataset splitting procedures may be
found in the TSDNN-fe section. Eachmodel is trained according
to the general training procedure described above.
Evaluation criteria

We evaluate the TSDNN-syn models based on their true positive
rate on each model's respective test set. We use a prediction
score boundary of 0.5 to determine a positive or negative sample
classication. This classication performance can be expressed
as

TPR ¼ TP

TPþ FN
(3)

where TP is the number of true positive samples with predicted
scores $ 0.5 and FN is the number of true positive samples
Table 6 Hyper-parameters for TSDNN training

Hyper-parameters Value

Number of bagging iterations 5
Dataset holdout for testing 20%
Holdout validation per iteration 20%
Number of epochs per iteration 100
Learning rate 0.001
Momentum 0.9
Weight decay 0
Atomic feature length 90
Hidden feature length 180
Number of convolution layers 3
Number of hidden layers 1
Optimizer SGD

388 | Digital Discovery, 2023, 2, 377–391
falsely negatively classied with a predicted score < 0.5. Since
only positive samples are known, the true positive rate is the
best indicator of performance in showing a model that accu-
rately classies true positive samples.

We evaluate the TSDNN-fe models on three metrics with
variable formation energy thresholds: accuracy, precision, and
F1 score. We again use a prediction score boundary of 0.5 to
determine a positive or negative sample classication. The
accuracy metric is shown as

ACCðTÞ ¼ TPþ TN

ðTPþ FNÞ þ ðTNþ FPÞ (4)

where TP denotes the number of samples with a formation
energy below the threshold T with predicted scores $ 0.5. TN is
the number of samples with a formation energy above T with
predicted scores < 0.5. FN and FP are the number of false
negative and false positive classications using the same
thresholds.

The precision and recall metrics can be expressed as

PRðTÞ ¼ TP

TPþ FP
(5)

F1ðTÞ ¼ 2� P� R

Pþ R
(6)

where P is the model's precision and R is the model's recall both
with respect to the given formation energy threshold T.

DFT validation of predicted candidate structures

The density functional theory (DFT) based rst principle
calculations were performed using the Vienna ab initio simu-
lation package (VASP).52–55 The electron–ion interactions were
treated employing the projected augmented wave (PAW) pseu-
dopotentials where 520 eV plane-wave cutoff energy was set.58,59

The generalized gradient approximation (GGA)-based exchange-
correlation functional was considered with the Perdew–Burke–
Ernzerhof (PBE) method.60,61 The energy convergence criterion
was set as 10−5 eV. The atomic positions were relaxed to opti-
mize the coordinates with a force convergence criterion of
10−2 eV Å−1. Brillouin zone integration was performed for the
unit cells employing the G-centered Monkhorst–Pack k-meshes.
The formation energies (in eV per atom) of the materials were
computed using eqn (7), where E[Material] is the total energy
per unit formula of the material, E[Ai] is the energy of the ith
atom, xi is the number of Ai atoms in the unit formula, and n is

the total number of atoms in the unit formula
�
n ¼P

i
xi

�
.

Eform ¼ 1

n

 
E½Material� �

X
i

xiE½Ai�
!

(7)

Conclusion

Machine learning based materials property prediction faces the
challenge of the lack of sufficient annotated property data and
the issue of missing negative samples (non-stable materials),
© 2023 The Author(s). Published by the Royal Society of Chemistry
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which are needed for building screening models for new
materials discovery. To address these two issues, we propose
a teacher-student twin graph neural network model (TSDNN)
for materials property prediction using formation energy and
synthesizability as examples. We formulate both problems as
a semi-supervised binary classication problem which matches
well to the real-world screening scenarios where these ML
screening models are used to pick stable and synthesizable
materials candidates from the big pool of hypothetical mate-
rials. Our extensive experiments show that our TSDNN models
are able to signicantly improve the prediction performance
compared to previous methods in both synthesizability and
formation energy prediction. We achieve a 92.9% true positive
rate for synthesizability prediction with a much simpler model
architecture and 74% prediction accuracy for formation energy
screening. As further validation, we applied our models to the 2
545 713 hypothetical materials generated by our CubicGAN
model. Overall, we screened 918 686 materials that were posi-
tively classied by the formation energy model with our syn-
thesizability prediction model. We select the top 1000 of these
nal screened materials for DFT verication and nd that
51.2% have negative formation energies. These results show
that our TSDNN semi-supervised learning framework is effec-
tive for large-scale material discovery screening.

Data availability

The dataset of inorganic material structures are obtained from
the Materials Project database for both our synthesizability
prediction model and our formation energy prediction model.
The source code, our results with the corresponding structures
and calculations, and our pretrained models are freely available
at our GitHub repository https://github.com/usccolumbia/
tsdnn.

Author contribution

Conceptualization, J. H.; methodology, D. G., J. H., E. S, Y. Z.,
and N. F.; soware, D. G.; validation, E. S. and J. H.; investiga-
tion, J. H., D. G., E. S., and Y. Z.; resources, J. H.; data curation, J.
H., and Y. Z.; writing–original dra preparation, D. G., J. H., and
E. S.; writing–review and editing, J. H, D. G., and N. F.; visuali-
zation, D. G.; supervision, J. H.; funding acquisition, J. H.

Conflicts of interest

The authors declare there are no conicts of interest.

Acknowledgements

Research reported in this work was supported in part by NSF
under grants 2110033, 1940099 and 1905775. The views,
perspective, and content do not necessarily represent the offi-
cial views of the NSF. This work was supported in part by the
South Carolina Honors College Research Program. This work
was partially supported by a grant from the University of South
Carolina Magellan Scholar Program.
© 2023 The Author(s). Published by the Royal Society of Chemistry
References

1 A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N Duerloo, Y. Cui
and E. J. Reed, Holistic computational structure screening
of more than 12000 candidates for solid lithium-ion
conductor materials, Energy Environ. Sci., 2017, 10(1), 306–
320.

2 A. D. Sendek, Ekin D. Cubuk, E. R. Antoniuk, G. Cheon,
Y. Cui and E. J. Reed, Machine learning-assisted discovery
of solid li-ion conducting materials, Chem. Mater., 2018,
31(2), 342–352.

3 C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng and S. P. Ong, A critical
review of machine learning of energy materials, Adv. Energy
Mater., 2020, 10(8), 1903242.

4 Y. Dan, Y. Zhao, L. Xiang, S. Li, M. Hu and J. Hu, Generative
adversarial networks (gan) based efficient sampling of
chemical composition space for inverse design of inorganic
materials, npj Comput. Mater., 2020, 6(1), 1–7.

5 Y. Song, E. M. D. Siriwardane, Y. Zhao and J. Hu,
Computational discovery of new 2d materials using deep
learning generative models, ACS Appl. Mater. Interfaces,
2021, 13(45), 53303–53313.

6 Y. Song, J. Lindsay, Y. Zhao, A. Nasiri, S.-Y. Louis, J. Ling,
M. Hu and J. Hu, Machine learning based prediction of
noncentrosymmetric crystal materials, Comput. Mater. Sci.,
2020, 183, 109792.

7 Z. Ren, J. Noh, S. Tian, F. Oviedo, G. Xing, Q. Liang, A. Aberle,
Y. Liu, Q. Li and S. Jayavelu et al., Inverse design of crystals
using generalized invertible crystallographic
representation, arXiv, 2020, preprint, arXiv:2005.07609.

8 Y. Zhao, M. Al-Fahdi, M. Hu, M. Edirisuriya, D. Siriwardane,
Y. Song, A. Nasiri and J. Hu, High-throughput discovery of
novel cubic crystal materials using deep generative neural
networks, Adv. Sci., 2021, 8(20), 2100566.

9 A. R. Oganov, C. J. Pickard, Q. Zhu and R. J. Needs, Structure
prediction drives materials discovery, Nat. Rev. Mater., 2019,
4(5), 331–348.

10 G. Bergerhoff, I. D. Brown and F. Allen et al., Crystallographic
databases, International Union of Crystallography, Chester,
1987, vol. 360, pp. 77–95.

11 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, The Materials Project: A materials genome
approach to accelerating materials innovation, APL Mater.,
2013, 1(1), 011002.

12 M. Aykol, I. H. Vinay, L. Hung, S. Suram, P. Herring,
C. Wolverton and J. S. Hummelshøj, Network analysis of
synthesizable materials discovery, Nat. Commun., 2019,
10(1), 1–7.

13 J. Jang, G. H. Gu, J. Noh, J. Kim and Y. Jung, Structure-based
synthesizability prediction of crystals using partially
supervised learning, J. Am. Chem. Soc., 2020, 142(44),
18836–18843.

14 S. S. Omee, S.-Y. Louis, N. Fu, W. Lai, S. Dey, R. Dong, Q. Li
and J. Hu, Scalable deeper graph neural networks for high-
Digital Discovery, 2023, 2, 377–391 | 389

https://github.com/usccolumbia/tsdnn
https://github.com/usccolumbia/tsdnn
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00098a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
0/

15
/2

02
4 

6:
15

:1
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
performance materials property prediction, arXiv, 2021,
preprint, arXiv:2109.12283.

15 S.-Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song, F. Liu and
J. Hu, Graph convolutional neural networks with global
attention for improved materials property prediction, Phys.
Chem. Chem. Phys., 2020, 22(32), 18141–18148.

16 Md S. Islam, A. M. Nolan, S. Wang, Q. Bai and Y. Mo, A
computational study of fast proton diffusion in
brownmillerite sr2co2o5, Chem. Mater., 2020, 32(12), 5028–
5035.

17 L. Huang and L. Chen, Practicing deep learning in materials
science: An evaluation for predicting the formation energies,
J. Appl. Phys., 2020, 128(12), 124901.

18 G. Peterson and J. Brgoch, Materials discovery through
machine learning formation energy, J. Phys.: Energy, 2021,
3(2), 022002.

19 D. Jha, L. Ward, A. Paul, W.-K. Liao, A. Choudhary,
C. Wolverton and A. Agrawal, Elemnet: Deep learning the
chemistry of materials from only elemental composition,
Sci. Rep., 2018, 8(1), 1–13.

20 D. Jha, K. Choudhary, F. Tavazza, W.-K. Liao, A. Choudhary,
C. Campbell and A. Agrawal, Enhancing materials property
prediction by leveraging computational and experimental
data using deep transfer learning, Nat. Commun., 2019,
10(1), 1–12.

21 D. Jha, V. Gupta, L. Ward, Z. Yang, C. Wolverton, I. Foster,
W.-K. Liao, A. Choudhary and A. Agrawal, Enabling deeper
learning on big data for materials informatics applications,
Sci. Rep., 2021, 11(1), 1–12.

22 Z. Zhang, L. Mu, K. Flores and R. Mishra, Machine learning
formation enthalpies of intermetallics, J. Appl. Phys., 2020,
128(10), 105103.

23 R. E. A. Goodall and A. A. Lee, Predicting materials
properties without crystal structure: Deep representation
learning from stoichiometry, Nat. Commun., 2020, 11(1), 1–9.

24 A. M. Krajewski, J. W. Siegel, J. Xu and Z.-K. Liu, Extensible
structure-informed prediction of formation energy with
improved accuracy and usability employing neural
networks, arXiv, 2020, preprint, arXiv:2008.13654.

25 C. J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain and
G. Ceder, A critical examination of compound stability
predictions from machine-learned formation energies, npj
Comput. Mater., 2020, 6(1), 1–11.

26 X. Tian and J. C. Grossman, Crystal graph convolutional
neural networks for an accurate and interpretable
prediction of material properties, Phys. Rev. Lett., 2018,
120(14), 145301.

27 C. Chen, W. Ye, Y. Zuo, C. Zheng and S. P. Ong, Graph
networks as a universal machine learning framework for
molecules and crystals, Chem. Mater., 2019, 31(9), 3564–
3572.

28 V. Fung, J. Zhang, E. Juarez and B. G. Sumpter,
Benchmarking graph neural networks for materials
chemistry, npj Comput. Mater., 2021, 7(1), 1–8.

29 X. Zheng, Y. Cui, Z. Liu, Y. Zhao, M. Hu and J. Hu, Evaluating
explorative prediction power of machine learning
390 | Digital Discovery, 2023, 2, 377–391
algorithms for materials discovery using k-fold forward
cross-validation, Comput. Mater. Sci., 2020, 171, 109203.
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