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etwork encoding of molecular
wavefunctions for quantum computing†

Masaya Hagai, *a Mahito Sugiyama, b Koji Tsuda cde and Takeshi Yanai *af

Artificial neural networks (ANNs) for material modeling have received significant interest. We recently

reported an adaptation of ANNs based on Boltzmann machine (BM) architectures to an ansatz of the

multiconfigurational many-electron wavefunction, denoted as a neural-network quantum state (NQS),

for quantum chemistry calculations [Yang et al., J. Chem. Theory Comput., 2020, 16, 3513–3529]. Here,

this study presents its extended formalism to a quantum algorithm that enables the preparation of the

NQS through quantum gates. The descriptors of the ANN model, which are chosen as the occupancies

of electronic configurations, are quantum-mechanically represented by qubits. Our algorithm may thus

bring potential advantages over classical sampling-based computation employed in previous studies. The

NQS can be accurately formed using quantum-native procedures. Still, the training of the model in

terms of energy minimization is efficiently performed on a classical computer; thus, our approach is

a class of variational quantum eigensolvers. The BM models are related to the Gibbs distribution, and our

preparation procedures exploit techniques of quantum phase estimation but with no Hamiltonian

evolution. The proposed algorithm is assessed by implementing it on a quantum computer simulator.

Illustrative molecular calculations at the complete-active-space configuration interaction level of theory

are displayed, confirming consistency with the accuracy of our previous classical approaches.
1 Introduction

Machine learning (ML) with articial neural networks (ANNs)
has been recognized as a versatile and highly practicable
approach for data analysis over recent periods.1 Its marked
ability to compress and extract features from large-scale, high-
dimensional data considerably impacts various elds. In
computational chemistry, its highlighted applications encom-
pass protein structure prediction,2 improvement of density
functionals,3 molecular ngerprints,4 accurate potential func-
tions,5 and many others.6

The use of ANN architectures as models of quantum many-
particle physics is a research subject that has drawn great
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interest. Carleo et al. proposed an intriguing ML-based
approach to use a class of ANN-based generative models, the
restricted Boltzmann machine (RBM), for a representation of
the quantum many-body state.7–13 The RBM auto-encoder is
used to parameterize the coefficients of the linear combination
of many-body basis in the quantum superposition, with
conguration vectors of spins ([ or Y) or electron occupancies
(0 or 1) serving as descriptors. This wavefunction ansatz is
called the neural-network quantum state (NQS). A scheme
related to reinforcement learning is used to train the network
parameters without prior knowledge or datasets, nding the
best possible representation of the ground state as a solution of
the Schrödinger equation for the given Hamiltonian. Ref. 7
demonstrated high applicability towards physical systems with
quantum Ising and Heisenberg models.

This inspiring but transparent formalism by Carleo and
Troyer7 to use ML technology for a wavefunction solver has led
various groups to its application to rst-principles electronic
structure calculations for chemical and material systems.11,14–24

Xia and Kais reported the earliest study that used the RBM-
based NQS for ab initio electronic structure calculations for
molecules, with an additional focus on its extension to a hybrid
quantum-classical algorithm14 along a line similar to this work.
Our group previously presented an adaptation of the NQS as an
encoder of the quantum chemical multireference wavefunction
with a complete-active-space conguration interaction (CAS-CI)
model.15 Our interest attaches to NQS's applicability as a solver
© 2023 The Author(s). Published by the Royal Society of Chemistry
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to describe the so-called static electron (or multireference)
correlation, whose quantum complexity oen becomes chal-
lenging, particularly when studying multiple bond breaking,
state-degeneracies, varying radical nature in reactions, etc. The
CAS-CI method is a basic framework of the approach to the
static correlation problem based on the CI (or linear) expansion
into electronic conguration basis spanning the chemically
important part of the Hilbert space.25,26 In our anstaz, the
number of electron congurations considered in the CAS-CI
scheme is formally written as 2k, where k is the number of
spin-orbitals; in the MR electronic structure cases, these
numerous congurations can individually play major roles in
wavefunction construction.

In ref. 15, we further proposed using the high-order Boltz-
mann machine (HBM), which is hidden-node free, in place of
the RBM from an alternative perspective – specically, the
second- and third-order BM models, termed BM2 and BM3,
respectively. The earlier informatics studies of the HBM
model27,28 indicate that the BM3 can extract higher-order
features to a comparable degree to the RBM and, more impor-
tantly, yields the concave log-likelihood function where the
RBM renders it non-concave. The pilot implementation of the
quantum-chemical NQS was based on the BM2, BM3, and RBM
architectures, demonstrating that the modeled wave functions
for illustrative molecules delivered desirable convergence to the
CAS-CI results. We conrmed that the native combinatorial
complexity arising from evaluating the energy, gradients, and
partition function could be mitigated by stochastic sampling
approaches inML using theMarkov chainMonte Carlo (MCMC)
technique. However, this MCMC-based integration remains the
most computationally demanding, practically hindering calcu-
lations with larger active space. A promising direction to
address this issue may be, as typical to the prevalent ML
computation, to conduct the MCMC process on general-
purpose computing on graphics processing units (GPGPU),
which is considered advantageous over traditional central pro-
cessing units (CPUs).16–19 With advanced implementations, ref.
16–18 studied bicyclobutane and cyclobutadiene as the largest
cases, which involve six p electrons in sixp orbitals and four p
electrons in four p orbitals, respectively. The molecules studied
in ref. 19 are systems with aminor static correlation effect. All of
these studies are thought of as focusing on the computation of
a dynamic (or weak/perturbative) correlation with high-energy
virtual orbital space associated with the dynamic correlation
effect; note that the complexity of perturbative electron corre-
lation is considered not exponential but polynomial.

In this study, we explore an alternative game-changing
strategy by reformulating the ML of the wave function with
the NQS as a quantum algorithm that can run on a quantum
computer (QC). The QC is a future device that should enable
exponential speedup for certain kinds of combinatorial
computations. The use of quantum computing for ML has
attracted signicant attention recently, and quantum algo-
rithms oriented to general-purpose ML have been extensively
studied, emerging as a subeld referred to as quantummachine
learning (QML).29–36 There are numerous earlier developments
of QML that underlie this work. Wiebe et al. presented
© 2023 The Author(s). Published by the Royal Society of Chemistry
a quantum process named GEQS (gradient estimation via
quantum sampling), allowing for the preparation of a state in
which the weights of the superposition obey the Gibbs distri-
bution, corresponding to the probability modeled by the RBM,
as a function of a conguration of visible and hidden units.29 Its
procedure is based on the quantum algorithm developed by
Poulin andWocjan31 for preparing the Gibbs state of interacting
quantum objects through quantum circuits with the use of
Kitaev's quantum phase estimation (QPE).37,38 The algorithm in
ref. 29 incorporates a technique of quantum amplitude
amplication/estimation (QAA/QAE)39 into the state preparation
for reducing the number of samples at a quadratic rate.

The development of QC algorithms for electronic structure
calculations in quantum chemical research has been a topic of
intensive research in the recent past. As reviewed in ref. 40–45,
there are two major canonical frameworks of the algorithm for
estimating the ground state energy on a QC. One is the pio-
neering approach using the iterative QPE scheme proposed by
Aspuru-Guzik et al.46 It is considered susceptible to quantum
noise and ill-suited for using near-term QCs or noisy
intermediate-scale quantum (NISQ) devices. The second
framework is the variational quantum eigensolver (VQE),47

a hybrid quantum-classical approach amenable to the NISQ
devices. Its state preparation is carried out on a QC and can be
potentially built from low-depth circuits but at the cost of an
increasing number of measurements. Various wave function
ansatzes for state preparation have been developed. Of course,
they cannot be all cited, but the most extensively studied are the
unitary coupled-cluster (UCC) framework47 andmany others.48,49

In parallel with the intensive research effort towards NISQ-
friendly algorithms, quantum algorithms for a fault-tolerant
quantum computer have recently been receiving growing
interest.50,51 Ref. 50 showed fault-tolerant quantum circuits for
performing QPE, and ref. 51 reported a low-cost fault-tolerant
approach using tensor hypercontraction Hamiltonian for
quantum chemistry calculation.

In this work, we present the development of an algorithm to
build a trained ANN object on a QC as a materialized repre-
sentation of the theoretical molecular many-electron wave
function. It is classied as a VQE type. Unlike UCC47 or others,48

the NQS ansatz does not require the prerequisite of the refer-
ence wave function nor involve any wave operators represented
by excitation operators. The quantum algorithm of NQS prep-
aration based on the BM2, BM3, and RBM energy functions is
explored here as a primal objective. As mentioned earlier, the
RBM-based NQS method as the VQE algorithm was similarly
investigated by Xia and Kais.14 However, their algorithm does
not form an NQS on a QC in complete form. Still, it only
prepares an intermediate quantum state, sampled randomly by
measures to evaluate the energy and gradients as expectation
values classically using the sampled data. Similarly, the prepa-
ration (or reconstruction) of the RBM-based NQS for quantum
computing was explored on hardware by Torlai et al.52 from
a somewhat different perspective while again restricting the
measurements to a nite number of samples against their
formal exponential requirement.
Digital Discovery, 2023, 2, 634–650 | 635
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Table 1 List of abbreviations

ANN Articial Neural Network
BM2 Second-order Boltzmann Machine
BM3 Third-order Boltzmann Machine
CAS-CI Complete Active-Space Conguration Interaction
CMO Canonical Molecular Orbital
FCI Full Conguration Interaction
FS Fock Space
HBM High-order Boltzmann Machine
LMO Localized Molecular Orbital
MCMC Markov Chain Monte Carlo
ML Machine Learning
NOON Natural Orbital Occupation Number
NQS Neural-network Quantum State
PES Potential Energy Curve
PN Particle Number
QAA Quantum Amplitude Amplication
QC Quantum Computer
QML Quantum Machine Learning
QPE Quantum Phase Estimation
QUBO Quadratic Unconstrained Binary Optimization
RBM Restricted Boltzmann machine
RDM Reduced Density Matrix
RHF Restricted Hartree–Fock
UCC Unitary Coupled Cluster
VQE Variational Quantum Eigensolver
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Developing a full-edged quantum process (or oracle) to
prepare the NQS via quantum circuits should be valued for
meaningfully bridging the gap between VQE and QML and was
carried out in this study. The aim of this work is not to offer
a substitution outperforming the existing VQE algorithms in
terms of the circuit depth and the CNOT gate number, but is
primarily weighted towards uncovering a direct route to connect
the RBM-based NQS theory and quantum computing. Through
the training of the NQS, as was performed fully classically in ref.
15, we aim to solve the equation to determine the ground-state
Fig. 1 (a) The neural network architecture of the NQS based on the RBM
hidden units are represented with qubits. (b). The overall workflow of
determining the ground-state wave function and energy.

636 | Digital Discovery, 2023, 2, 634–650
molecular electronic structure and associated energy at the CAS-
CI level of theory, a suited ab initio quantum chemistry model to
handle chemical systems involving multireference electron
correlation. The convergence behavior in optimizing network
parameters is essentially the same as those observed in our
previous study15 based on Carleo's approach. Ref. 15 demon-
strated the NQS calculation of the CAS-CI(8e,8o) wavefunction.

Note that Table 1 summarizes the abbreviations used in this
paper, and the additional background of this work is mentioned
in Section S1.8.
2 Theory and algorithms

Here, we describe a hybrid quantum-classical approach to
machine learning (ML) based on the NQS machinery to deter-
mine the CAS-CI wave function. The procedure is divided into
two major tasks: a quantum computing process for state prep-
aration and a classical one for updating the learning parame-
ters(Fig. 1). In what follows, we begin by outlining the network
architecture of the NQS and its training scheme. Subsequently,
the quantum algorithm to form the NQS on a QC is described.
Finally, the application of our algorithm to molecular calcula-
tions using a simulator is shown to verify the algorithm's
viability.
2.1 Boltzmann machine-based neural network training as
a many-electron wavefunction

The basic formulation of the NQS ansatz and its ML is based on
the method of the NQS solver developed in our previous work15

oriented to the ML executed by classical computation. Carleo
and Troyer rst introduced the NQSmethod using the restricted
Boltzmann machine (RBM) for the ANN that serves as a gener-
ative model to represent the ground state of many-body
quantum systems.7 In Ref. 15, the use of a higher-order
and HBM (BM2 and BM3) models. The binary signals of the visible and
the hybrid quantum-classical algorithm to train the NQS model for

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Boltzmann machine (HBM)27,28 in place of the RBM was addi-
tionally proposed to offer another route to an NQS model that
can be well trained despite the absence of hidden nodes in its
perception architecture. We investigated the HBM based on the
fully visible BM with bipartite graphs, referred to as the second-
order BM or BM2, and its extended variant with the inclusion of
tripartite graphs, denoted as the third-order BM or BM3.

The probability distribution is modeled using the energy
function at the heart of the BM-based ANNs. It is given for BM2,
BM3, and RBM as the following:

EBM2ðv; qÞ ¼
Xnv
i

viai þ
Xnv
ij

vivjwij ; (1)

EBM3ðv; qÞ ¼
Xnv
i

viai þ
Xnv
ij

vivjwij þ
Xnv
ijk

vivjvkwijk; (2)

ERBMðv; h; qÞ ¼
Xnv
i

viai þ
Xnh
j

hjbj þ
Xnv ;nh
ij

vihjwij ; (3)

respectively, where ai and bj are the biases associated with the
visible nodes vi and the hidden nodes hj, respectively; and wij

and wijk are the edge weights of the bipartite and tripartite
interactions between the nodes, respectively. The joint param-
eters {ai}4 {bj}4 {wij}4 {wijk} are denoted as q. The structures
of the neural networks are sketched in Fig. 1a.

Eqn (1)–(3) are functions of the bitstrings v ˛ {0,1}nv and h ˛
{0,1}nh. In this approach, the binary signal of the unit vi = 0, 1 is
seamlessly homologized to the two levels of a qubit; the same
applies to the binary unit hj = 0, 1. With this mapping between
nodes and qubits, a superposition of {jvi} in the NQS, written as

jJi ¼
X
v

Cvjvi; (4)

can be formed on a QC, where the coefficients Cv are numeri-
cally determined by the training under the condition

P
vjCvj2 =

1. We use the jJi prepared on a QC as a central computational
object representing the CAS-CI wavefunction of quantum
chemistry calculations.

As a viable form of the NQS for quantum computing, we use
the following ansatz for structuring Cv,15

Cv ¼ e
i
2
EBM2ðv;sÞ|fflfflfflfflffl{zfflfflfflfflffl}
phase

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ZðqÞ f ðv; qÞ
s
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

amplitude

; (5)

where Z(q) acts as the partition function Z(q) =
P

vf(v;q), and
f(v;q) has three variants dened by

f ðv; qÞ ¼

8>>><
>>>:

eE
BM2=BM3ðv;qÞ ðBM2=BM3Þ X

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE

RBMðv;h;qÞ
p !2

ðRBMÞ ; (6)

for BM2, BM3, and RBM, respectively. Eqn (5) is formulated
using the two BMs associated with two different network
parameter sets q and s (which are real-valued) to encode the
amplitude and phase segments of Cv, respectively. Note that for
© 2023 The Author(s). Published by the Royal Society of Chemistry
BM3 and RBM, the form of Cv (eqn (5)) somewhat differs from
the denitions employed in ref. 15. This ansatz indicates that by
measuring jJi, it collapses onto a certain bit conguration v

with the probability jCvj2 ¼ 1
ZðqÞ f ðv; qÞhPðv; qÞ, which has no

dependence on the s (phase). Note that in eqn (5), the phase
segment formulated and implemented in this work is limited to
the BM2; however, we can readily derive the preparation of the
state that uses the BM3 and RBM models in its place.

Now let a joint set of the parameters be dened as sh (q,s).
The update of the whole parameters s for the training of the BM
models is a task that can be processed efficiently by classical
computation. This is achieved by nding variationally optimal s
based on energy minimization. This optimization is related to
reinforcement learning because neither reference data nor prior
knowledge of the wave function is used. For the updating, we
use the gradients of the energy E (= hJjHjJi) with respect to the
parameters, which are calculated to be
vE
vs

¼ 2Re½hHOsi � hHihOsi� where the Hamiltonian H is ob-

tained from a user-specied chemical structure in the rst-
principles manner, and Os is expressed in the locally dis-

cretized form with the basis jvi as Ov
s ¼ v

vs
logCv (see ref. 15 for

more details). Iteratively updating s leads us to determine the

optimal parameters that meet the variational condition
vE
vs

¼ 0

(Fig. 1b).
As discussed in Section S1.6, the quantity hHi (= hJjHjJi) is

an object that can be evaluated as a sum of Pauli operator terms
measured with J prepared with the given neural network
parameters s. Importantly, in the case of BM2, BM3, or other
HBM, this simplicity can be further applied to hHOsi and hOsi
for gradients (eqn (S19)–(S20)†); thus, the QC efficiency can fully
benet the computation of these quantities via quantum-native
processes. However, for the RBM, the gradient-related objects
hHOsi and hOsi cannot be simply evaluated in a similar manner
because of the presence of the sigmoid function (Sig) in its
gradient formulae (eqn (S21)†). With the QC simulator, we
evaluate Sig in RBM's gradients classically. The state of prepa-
ration will be discussed in detail later. In the previous imple-
mentations tailored to classical computing, these expectation
values were evaluated using the stochastic approach. This
widely used ML technique takes a statistical average from
Markov chain Monte Carlo (MCMC) sampling over the distri-
bution generated by the ML model. This classical sampling
process is entirely replaced by the quantum computing proce-
dure in this study.
2.2 Quantum algorithm for preparing the neural network
state

Here, let us detail our proposed algorithm to construct the NQS
representation of J on a QC through quantum circuits. It is
highly related to the quantum algorithms to sample the Gibbs
distribution, such as GEQS29 and others.31 The overall proce-
dures, consisting of several steps, are outlined in Fig. 2, and its
pseudo-program is displayed in Algorithm 1.
Digital Discovery, 2023, 2, 634–650 | 637
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Fig. 2 (a) Qubit architecture employed in this study. (b) The whole proce
representation of a quantum circuit for preparing the Gibbs distribution
evaluating the Gibbs factor using the controlled Ry gate.

638 | Digital Discovery, 2023, 2, 634–650
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2.2.1 Qubit architecture. Qubits used in the present algo-
rithm are classied into four groups: visible, hidden, ancilla,
and energy register (Fig. 2a). Let nv and nh refer to the numbers
of the visible and hidden qubits, respectively, which are equal to
those of the visible and hidden nodes of the BM models (eqn
(1)–(3)), respectively. We use an equal number of qubits for the
ancilla and energy register; thus, it is commonly denoted as nreg.
The numeric precision of a single value stored in the energy
register is determined by nreg, which is user-specied and bears
a relation with the permitted error 3 as nreg = log2(1/3).

2.2.2 QPE based procedure. The state preparation begins
by initializing the state jJi in j0i, as denoted in the following
expression: jJi / j0i. In the rest of this section, unless
otherwise noted, we focus solely on the BM2 model for
simplicity, which has no hidden nodes. The theory and
formalisms for BM2 can be readily applied to the BM3 model
and the RBM models with hidden nodes, although tangible
procedures will not be shown.

Then, we apply the Hadamard gate to all the visible qubits,
forming the following uniform superposition in the visible
qubit space:

jJi/ 1ffiffiffiffiffiffi
2nv

p
X
v

jvij0inregj0inreg: (7)

As an alternative to this state, we may employ a uniform
superposition of the subgroup of {jvi} built under the constraint
of the particle-number (PN) symmetry54 (see also Section 3 and
S1.5† for details); indeed, it is used extensively in our test
calculations. The PN-conserving preparation circuit for the case
of the singlet state with four electrons in four orbitals is shown
in the ESI.†

The next step is to obtain the following state by transforming
eqn (7) via Kitaev's QPE procedure:37

jJi/ 1ffiffiffiffiffiffi
2nv

p
X
v

jvi��~Ev

E
nreg

j0inreg; (8)
dural steps of the state preparation of the NQS on a QC. (c) Graphical
state (eqn (14)). (d) Illustrative process of the bitwise operations for

© 2023 The Author(s). Published by the Royal Society of Chemistry
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where ~Ev is a binary representation of the converted energy of E
(eqn (1)–(3)) as a function of the conguration v stored in the
energy register qubits. The binary number ~Ev =

:~E1v~E
2.~Env reg (~Eiv = 0,1) encodes the decimal number ~E1v2

−1 +
~E2v2

−2 + / + ~Env reg2
−nreg, expressing ~Ev in nite precision. The

converted energy ~Ev is a mapping of the energy function E(v;q)
(eqn (1)–(3)) into a value ranging from 0 to 1. In this study, it is
parameterized as

~Ev(q) h E(v;q)/D + D (9)

with the scaling constant D and shi constant D. By preparing
Emax =maxvE(v;q) and Emin =minvE(v;q), the constants D and D

can be given as D = (Emax − Emin) and D = −Emin/D, ensuring
that j~Ev(q)i varies between j00.0inreg and j11.1inreg. Finding
Emax and Emin are subject to the QUBO problem and can
possibly be obtained via quantum annealing.53 We will not
investigate the quantum computing of Emax and Emin in detail,
which is assumed to be carried out using the third-party
quantum algorithms as a subprocess of our algorithm.

The QPE algorithm is a technique for nding qn of the
eigenvalue e2pi qn on a QC, given the unitary operator U and the
eigenvector jjni such that Ujjni = e2pi qnjjni.37 The QPE-based
procedure is shown in Algorithm S1† with its subroutine for U
Algorithm S2.† Note that Algorithms S1 and S2 are provided in
Section S1.1 and S1.2 of the ESI,† respectively. The structure of
U is a key ingredient to realize the formation of eqn (8) via the
QPE, and its quantum circuit, here named the energy curation
gate, should be built, in this case, based on the postulation Ujvi
= e2pi ~Evjvi. This U appears to behave as an evolution operator
that attaches the converted BM energy function ~Ev via the phase
kickback to the basis jvi in jJi non-iteratively. We underscore
that it does not involve Hamiltonian evolution or Trotter steps.
The quantum algorithm of applying U based on the phase shi
rotation R0

zðqÞ is dened as,

R
0
zðqÞ ¼

 
1 0

0 eiq

!
(10)

with its controlled gate discussed in detail in Algorithm S2.†
This quantum gate serves as a subroutine built into the QPE
process (eqn (8)), as shown in Algorithm 1.

2.2.3 Quantum Gibbs distribution state formation with re-
scaling. Let us proceed to the building of the Gibbs distribution
state from eqn (8) (Algorithm 1). Note that the Gibbs “distri-
bution” state (see eqn (14) and ref. 29) investigated in this work
should be distinguished from the Gibbs state that is a major
subject that has been intensively studied in recent years in
quantum computing research, evaluating the thermal mixed
states r = e−bH for the Hamiltonian of a given quantum system
H.31,55–71

A primary part of the task can be achieved by applying
a sequence of bitwise transformations on the energy register
qubits. This operation aims to read out the stored ~Ev and

transform it into the rescaled coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expfð~EvðqÞ � DÞ=Dg

q
ð¼

ffiffiffiffiffiffiffiffiffiffiffiffi
eEðv;qÞ

p
Þ, by which the basis of the superposition is scalarly

scaled via the qubit rotations. In this operation, which is
© 2023 The Author(s). Published by the Royal Society of Chemistry
bitwise, the Ry(Q) gate is applied on the k-th anicilla qubit with
the angle Q = 2arccos(e−D2−(k+1)

) conditioned on the k-th energy
register qubit. This allows the state with the k-th ancilla qubit in
the state j0i to be transformed as follows:

1ffiffiffiffiffiffi
2nv

p
X
v

jvi��~Ev

E
nreg

��0/0k/0
�
nreg

/
1ffiffiffiffiffiffi
2nv

p
X
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

�
~E
k
v 2

�k
�
D

q
jvi��~Ev

E
nreg

��0/0k/0
�
nreg

þ 1ffiffiffiffiffiffi
2nv

p
X
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e

�
~E
k
v 2

�k
�
D

q
jvi��~Ev

E
nreg

��0/1k/0
�
nreg

(11)

By subsequently applying this transformation for k = 1 to nreg,
we achieve the key process to build the BM distribution of the
amplitude segment of our NQS model Cv (eqn (5)) as follows:

jJi/C

(X
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp
n�

~Ev

1
2�1 þ ~Ev

2
2�2 þ/þ ~Ev

nreg
2�nreg � D

	
D
or

� jvi��~Ev

E
nreg

j0inreg þ/
o

¼ C
0

8<
:X

v

ffiffiffiffiffiffiffiffiffiffiffiffi
eEðv;qÞ

Z

s
jvi��~Ev

E
nreg

j0inreg þ/

9=
;:

(12)

Because of the normalization nature of the state, the constants
C and C′ are adjustably settled, and the partition function Z is
ctitiously given at this time but naturally established at the

end. Note that the constant
ffiffiffiffiffiffiffiffiffiffi
e�DD

p
comes with the normaliza-

tion C. Importantly, the reconstructed E(v;q) appearing in eqn
(12) has a nite numeric precision in value, whose precision
hinges on nreg.

As written in Algorithm 1, we then apply the aforementioned
QPE procedure (Algorithm S1†) on eqn (12) in reverse, allowing
the energy register qubits to revert to j0i as follows:29

jJi/C00

8<
:X

v

ffiffiffiffiffiffiffiffiffiffiffi
eEðv;qÞ

Z

s
jvij0inregj0inreg þ/

9=
; (13)

Next, a measurement is performed on the ancilla qubits. If
j0inreg is observed, the state is indicated to result in the forma-
tion of the Gibbs distribution state:

jJi/
X
v

ffiffiffiffiffiffiffiffiffiffiffiffi
eEðv;qÞ

Z

s
jvi; (14)

where 1/Z serves as the normalization constant. This observa-
tion occurs at a certain probability. Otherwise, the state prepa-
ration needs to be performed from the beginning.

Finally, we turn to the preparation of the phase segment of
eqn (5) as the rest of the task. We apply the phase shi rotation
R0

z (eqn (10)) on eqn (14) over all the visible qubits and
furthermore apply its controlled gate over all the pairs (see also
Algorithm S3 in Section S1.3 for details†), nally obtaining the
target NQS:
Digital Discovery, 2023, 2, 634–650 | 639
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jJi/
X
v

e
i
2
EBM2ðv;sÞ

ffiffiffiffiffiffiffiffiffiffiffi
eEðv;qÞ

Z

s
jvi (15)

It is used to compute energy, gradients required for training the
model, other observables such as reduced density matrices
(RDMs), etc.

2.2.4 Use of quantum amplitude amplication (QAA). As
discussed earlier, we may fail to observe j0inreg at a certain
probability in the measurement on the ancilla qubits. This
means that the whole identical steps to prepare the state eqn
(14) from the initial state need to be reiterated until j0inreg is
successfully observed. In practice, an additional algorithm,
referred to as the quantum amplitude amplication (QAA),39 to
increase the success rate is incorporated into the state prepa-
ration procedure, as shown in Algorithm 1. The QAA is related
to Grover's algorithm and enables quadratically increasing the
probability of nding the desired state. In Algorithm S4 dis-
cussed in Section S1.4 of the ESI,† the workow of the QAA is
shown in detail.

The QAA process performs amplication iteratively. Given
that the whole process of the state preparation to form eqn (14)
is written as jJi = Sj0i, the whole process of the same S is
repeatedly performed during the single QAA process. Thus, an
important consequence is that the number of amplication
iterations is a factor arising in the scaling of the circuit depth.
2.3 Relation to other quantum algorithms on Gibbs state
preparation

As mentioned in Section 2.2.3, a central step of our algorithm is
the preparation of a superposition state with the Gibbs distri-

bution factor eEðv;qÞ=2=
ffiffiffi
Z

p
. In recent years, signicant attention

has been drawn to quantum algorithms to prepare the “Gibbs
state” r= e−bH/Z for the Hamiltonian H of a quantum system of
interest. Note again that in this work, our model based on the
classical function E(v;q) is called the Gibbs distribution state29

to distinguish it from such quantum Gibbs states for simulating
a quantum system via its H. Here, b is the inverse temperature
b = (kBT)

−1 where kB is Boltzmann's constant.
The research on quantum computing to prepare the Gibbs

state for a quantum system, e−bH, is motivated by its importance
in statistical simulation, ML, and various others.31,32,56 There are
several proposed algorithms, which were rst shown by Terhal
and DiVincenzo,55 followed by Poulin and Wocjan31 revealing
rigorous upper bounds, and then reported based on quantum
walks and Metropolis sampling,56–59 and others.60,61 These
algorithms, however, are considered to be formidable for the
NISQ devices.62

The use of the variational quantum algorithm (VQA)
approach has been recently highlighted for preparing a Gibbs
state with high delity and low-depth circuits.62–72 The VQA class
is a classical/quantum hybrid scheme in which a quantum
circuit is optimized classically but the objects evaluated on a QC
can be reduced in number.67,68,73–75

The work of Wu and Hsieh62 shows a VQA to prepare a Gibbs
state r via purication of the thermal state preparation named
thermoeld double (TFD) states. The TFD state is written as
640 | Digital Discovery, 2023, 2, 634–650
j a!; g!i ¼Qn
k¼1e

iakHABeigkðHAþHBÞ=2jj0i using the dual Hamilto-
nian HA + HB = H 5 1 + 1 5 H and entangled Hamiltonian

HAB ¼ PN
k¼1

ðXAkXBk þ YAkYBk þ ZAkZBkÞ where jj0i is the ground

state of the HAB. This ansatz is related to the quantum approx-
imate optimization algorithm (QAOA)73 and involves alternating
time evolution of the Hamiltonian HA + HB and HAB. This hybrid
approach is oriented to optimizing the parameters ð a!; g!Þ by
minimizing the Gibbs free energy F(rA) = E(rA) − kBTS(rA) =
Tr(rAH) − b−1 Tr(rA ln(rA)), which serves as a cost function,
where rA ¼ TrBj a!; g!ih a!; g!j. Warren et al. showed an exten-
sion of this approach introducing a more viable cost function
C(r) = − Tr(e−bHr)/Z + Tr(r2)/2 avoiding the estimation of the
von Neumann entropy.63 As pointed out in ref. 63, measuring
the entropy S and its gradients is a difficult task. In addition, the
dynamically generated compact ansatz realized by the adaptive
derivative assembled problem-tailored (ADAPT) based VQAs48,76

was used for preparing the state at a lower circuit depth. The
combination of the idea of this ADAPT-based algorithmwith the
formation of our Gibbs distribution state (eqn (14)) is inter-
esting; however, its direct combination seems to be difficult
because there is no operator form of H (e.g., HA =

P
iZA,iZA,i+1)

directly representing the BM energy function E(v;q) (eqn (1)–(3))
in our Gibbs distribution state.

Tong et al.77 recently presented a quantum algorithm called
fast inversion to solve a class of quantum linear system prob-
lems (A + B)−1jbi via block encoding.78 The algorithm assumes
that A is usually large but ‖B‖, ‖A−1‖, ‖(A + B)−1‖ is O(1). It was
shown to enable preparing the Gibbs state as a special case from
e−Hjbi with H = A + B by setting jbi to the maximally entangled
state. The core of the block encoding lies in using a sub-
normalized unitary matrix UA to encode A as a submatrix,

UA ¼
"
A=a $
$ $

#
(16)

with a normalization constant a > 0. This algorithm is based on
the separation of the Hamiltonian H = A + B (‖A‖[ ‖B‖) while
such a separation is not considered in our BM energy
functions.

Another approach closely related to the Gibbs state prepa-
ration is the quantum Boltzmann machine (QBM)32,70,71,79–82 as
a realization of QML towards data modeling (not molecular
wave functionmodeling). Unlike the conventional BM approach
with the classical energy function {Eqi } used in this work, the
QBM uses the energy operator, namely a parameterized
Hamiltonian Hq, typically represented by an Ising network, for
the neural networks. The distribution of the QBM is thus
modeled by the quantum Gibbs state e−Hq/Z, which bears
a resemblance to the energy-function-based BM distribution
eEi

q

=Z (e.g., eqn (14) in our case). Very recently, Zoufal et al.70

and independently, Shingu et al.71 proposed a VQA approach to
prepare the Gibbs state of the QBM e�Hq=Z via the variational
imaginary time simulation algorithm recently proposed by ref.
67 and 68, based on the normalized imaginary time evolution
(ITE) ansatz jj(s)i = C(s)e−Hqsjj(0)i where

CðsÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trfe�2Hqsjjð0Þihjð0Þjgp

. This hybrid VQA approach
© 2023 The Author(s). Published by the Royal Society of Chemistry
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to QBM modeling including the computation of the cost func-
tion and its gradients has been proposed, revealing that it is
compatible with the NISQ computers due to the feasibility of the
underlying variational quantum ITE scheme. The fully visible
QBM network with bipartite graphs has been so far
studied,70,71,80 corresponding to quantum analogy to BM2, and
ref. 70 demonstrated compatibility to its variant involving the
hidden nodes. The QBM approach with the variational
quantum ITE scheme appears to be extremely powerful for
constructing the Gibbs state for the QBM neural network and
training it on noisy intermediate-scale quantum computers. As
analyzed by ref. 80, the QBM and conventional BMmodels have,
by construction, unequal learnability but offer similar (in some
cases different) capabilities of feature extraction. It would be
thus interesting to explore the adaptation of this variational
QBM approach to the NQS-based electronic structure compu-
tation for future work.

3 Computational details

Our hybrid quantum-classical algorithm for determining the
NQS was implemented into a Python-based computer code fully
running on a conventional computer as a prototype (see also
Section S1.7 for details). The source code for the BM2 model is
provided as part of the ESI† in order to help the understanding
of our algorithm described in the previous section. We per-
formed benchmark calculations on three molecular systems;
the hydrogen molecule H2, butadiene C4H6, and pentaar-
ylbiimidazole (PABI)83 C36H24N4. The STO-3G basis set84 was
used for the atomic orbital basis to represent the second-
quantized form of the Hamiltonian. The canonical molecular
orbitals (CMOs) were determined at the restricted Hartree–Fock
(RHF) level of theory. For H2, the HOMO and LUMO were used
as the molecular orbitals considered in the calculation, referred
to as active orbitals. For butadiene and PABI, the HOMO−1,
HOMO, LUMO, and LUMO+1 were used as the active orbitals.
With these orbital setups, our quantum chemical models of the
systems correspond to the complete-active-space (CAS) treat-
ment25,26 with two electrons in two orbitals, denoted as
CAS(2e,2o), for H2, and CAS(4e,4o) for butadiene and PABI. The
localized molecular orbitals (LMOs) were additionally obtained
by the unitary transformation of the active orbitals via the
Pipek-Mezey localization scheme.85 Two types of the active-
space Hamiltonian for a given system were constructed with
CMOs and LMOs, respectively, and used for NQS calculations as
different test cases. The entanglement structures of the resul-
tant NQS wave functions should differ depending on the orbital
types. This was exploited to assess our approaches against
different degrees of entanglement but with the same system.

The bond dissociation energy curves of H2 were calculated
with the bond length ranging from 0.25 to 1.95 Å. The geome-
tries of cis- and trans-conformers of 1,3-butadiene were deter-
mined by the geometry optimization at the B3LYP/cc-pVDZ level
of theory,86,87 are provided in the ESI.† All the single-point
structures used in the potential energy curve (PEC) calcula-
tions for the electrocyclic reaction of the PABI are tabulated in
the ESI.†
© 2023 The Author(s). Published by the Royal Society of Chemistry
Two types of the initial states for the visible qubits in the
state preparation of the NQS were used. They changed the
treatment of the particle-number subspaces. The rst type is the
Hadamard-transformed state, as described in Section 2,
involving 2nv basis states, which are complete with spanning the
Fock space for the given second-quantized Hamiltonian. The
use of this initial state, denoted as FS, considers all possible
numbers of electrons with arbitrary spins in constructing the
NQS. The second type is the particle-number (PN) state,
prepared using the quantum circuit shown by Gard et al.54 It is
an equally weighted superposition like the Hadamard-
transformed state but only using the basis states with
a desired number of electrons. The PN-conserving initial state
undergoes our state preparation process, forming an NQS as
a superposition of these PN-conserving basis states. Fig. S1†
shows a PN circuit used as the initial state for the CAS(4e,4o)
calculations. The BM2 and BM3 states prepared with the FS
treatment are denoted as BM2(FS) and BM3(FS), respectively,
while those with the PN-conserving basis states were denoted as
BM2(PN) and BM3(PN), respectively.

The trained NQS models with BM2 and BM3 were obtained
for all systems. We tested the various numbers of the energy
register qubits to gauge their impact on the accuracy in the
prepared state. The examined nreg was 6, 8, 10, and 12 for H2

and C4H6, and 6 for PABI. For comparison, the reference data
were obtained with 50 energy register qubits, offering near
double-precision accuracy. The RBM energies were calculated
for H2 with nreg set to 8 and 50 and for butadiene with nreg set to
8. The numbers of hidden nodes (nh) were tested to be 2, 3, 4,
and 5 for H2 and 4 for butadiene. As shown in Fig. 5a, with nreg
= 6, where obtaining stable convergence was difficult, we used
the lowest of the energies of the training history as the energy of
the solution.

It should be noted that the noise and system errors were not
considered in all the quantum-computing simulations unless
otherwise stated.
4 Numerical simulations and
discussion

Let us now turn to numerical assessments of our approach
using its prototype implementation on a QC simulator, for
which we used the library QULACS.88 Also see the source code
offered as part of the ESI† for details.
4.1 H2 potential energy curve calculation

As the rst test case, the results here are presented on the bond
dissociation energy curve of the H2 molecule. Fig. 3a shows the
curves of the total energies determined by BM2(FS) and BM3(FS)
with CMO and LMO basis and nreg = 8. For comparison, the
RHF and FCI energies are also shown in the graph. The plots of
the energies obtained with our approaches at all the points
appear to match the FCI energies with good agreement. The
correlation energy, corresponding to the difference in the total
energy between FCI and RHF, is increasingly more signicant
with increasing bond length, exhibiting the degree of static or
Digital Discovery, 2023, 2, 634–650 | 641
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Fig. 3 (a) The bond dissociation energy curves of the H2molecule computed using BM2(FS) and BM3(FS) with the CMO and LMObasis and nreg=
8 along with RHF and full CI (FCI) energies. The errors of the PECs relative to the FCI predictions for (b) BM2(FS)/CMO, (c) BM2(FS)/LMO, (d)
BM3(FS)/CMO, (e) BM3(FS)/LMO, (f) BM2(PN)/CMO, (g) BM2(PN)/LMO, (h) BM3(PN)/CMO, and (i) BM3(PN)/LMO as a function of nreg= 6, 8, 10, 12,
and 50. The errors of the PECs obtainedwith the RBMmodel with (j) CMO/nreg= 8, (k) LMO/nreg= 8, (l) CMO/nreg= 50, and (m) LMO/nreg= 50 as
a function of nv= 2, 3, 4, and 5. The distributions of the weights jCvj2 determined by BM2/LMOwith nreg= 6 and 8 as well as FCI for bond lengths
of (n) 0.25 and (o) 0.9 Å.
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multireference correlation. Even in the structures with a large
amount of electron correlation, the BM2 and BM3 models with
8-qubit energy registers were shown to yield accuracy consistent
with the predictions of the near-equilibrium structures
involving a small amount of electron correlation.

Fig. 3b–e show the errors of the potential energy curves
(PECs) relative to the FCI predictions as a function of tested nreg
for BM2/CMO, BM2/LMO, BM3/CMO, and BM3/LMO, respec-
tively, prepared with the FS treatment. Regardless of the model
and orbital type, the total energies with nreg $ 10 are accurate to
10−6 Eh, far exceeding the chemical accuracy (z1 mEh). Round-
off errors associated with the truncation of energy register
qubits were not wholly vanishing in the obtained energies even
with nreg = 10 and 12, compared to the results with nreg = 50;
however, they are negligible. The round-off errors are system-
atically eliminated with increasing nreg, exhibiting an approxi-
mately quadratic convergence with nreg. Interestingly, the
coarsest representation of the energy registers with nreg = 6
corresponding to a precision of 2−6 z 0.016 can produce errors
in energy falling below 1 mEh. Overall, the energies were pre-
dicted better with LMOs than with CMOs for the given number
of the energy register qubits. The BM3 does not consistently
outperform the BM2 across the curves in this system. This
contradicts the theoretical assumption but appears to be
ascribed to the exceeding complexity of the BM3
642 | Digital Discovery, 2023, 2, 634–650
parameterization compared to the relatively simple structure of
the H2 wavefunction.

In Fig. 3f–i, the errors of the PECs obtained with the models
prepared as a PN state54 with BM2/CMO, BM2/LMO, BM3/CMO,
and BM3/LMO, respectively, are monitored. As detailed in the
Methods section, this preparation can efficiently train the BM
models, focusing on the descriptors (i.e., congurations)
conserving the target electron number. In this test system, the
PN-conserving congurations amount to 6 = (4C2), which is
much smaller than the dimension of FS, 16 = (24). This
reduction should have a favorable impact on the represent-
ability of the BMmodels. It was indeed conrmed in the drastic
rectication of the errors observed in all the predicted PECs
compared to those of the FS variants (Fig. 3b–e).

The training as an FS state requires that the models predict
the coefficients Cv to be exactly zero for the PN-unconserving v.
This particular requirement is imposed during the training
process, i.e., optimizing q and s; nonetheless, the optimization
does not discriminate between the PN-conserving and -uncon-
serving v. In our experience with FS-based calculations, the cost
of learning for the PN-unconserving v was comparable to or
even more signicant than the cost of learning for the PN-
conserving v. The modeling of the BM that outputs zero
precisely against several different inputs is seemingly a numer-
ically difficult task. In the PN approach, this requirement and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a–d) Errors of the NQS-based CAS-CI total energies (Eh) predicted by 100 re-runs of state preparation for H2 (H–H = 0.75 Å) at the
BM2(FS)/LMO (nreg = 6) level with an error rate per gate of (a) 10−3, (b) 10−4, (c) 10−5, and (d) 10−6 as a function of the number of shots (102, 103,
104, and 105), relative to the noise-free prediction (−1.136 38 Eh). (e–f) Absolute errors of the total energies (Eh) obtained with (e) 104 shots and (f)
105 shots with a 10−k error rate per gate (k = 3, 4, 5, 6). (g and h) The average noise errors and standard deviations in the total energies (Eh)
obtained with various shot and gate noises tested.
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related cost completely disappear because the values of these
PN-unconserving coefficients automatically vanish regardless of
the BM's parameters. Compared to the FS approach, this
compactness in the PN approach indeed plays a benecial role
in showing better performance even with nreg = 6. It should be
emphasized that the difficulties pointed out above in the FS
treatment stem from the nature of our underlying MLmodel, as
observed in the previous study based on the MCMC sampling,
and are not fundamentally caused by our quantum algorithm of
state preparation.

Fig. 3j–m show the errors of the PECs computed using the
RBM model as a function of varying nh with CMO and LMO
basis in addition to testing nreg = 8 and 50. The results with nreg
= 50 indicated that the RBM-based ANN state with nh = 2, the
smallest RBM, is capable of reproducing the FCI energies across
the curve with a near machine accuracy. Our quantum algo-
rithm's validity for preparing the RBM state was conrmed even
for enlarging nh. Moreover, reducing nreg to 8 for the state
preparation for the RBM still yields a reasonable accuracy in
energy prediction.

We attempted to closely analyze the effect of the round-off
errors in the energy register qubits on the coefficients Cv. In
Fig. 3n and o, the distributions of the weights jCvj2 determined
by BM2/LMO with nreg = 6 are shown for bond lengths of 0.25
and 0.9 Å. The exact distributions taken from the corresponding
FCI results are included in the graph for comparison. The BM
distribution errors appear appreciable for a bond length of 0.25
Å, whereas they were negligible for 0.9 Å.
© 2023 The Author(s). Published by the Royal Society of Chemistry
To scrutinize these errors, we focus on the weight ratio
between two congurations v and v′. We found that the preci-
sion to represent the ratio jCvj2/jCv′j2 is in fact limited depend-
ing on nreg and D, and formally written as exp(−2nreg$D). This
limited precision stems from the nite binary representation of
the energy register ~Ev (eqn (9)). With a bond length of 0.25 Å, the
exact ratio of the weights for v = (1100) and v′ = (1001) is
observed to be 1.20 (= 0.272/0.227) from the FCI result;
however, the BM2 calculation with the resulting scaling
constant D = 78 can express the ratio with a precision of 3.38
(=exp(−26 × 78)), which exceeds the exact one. This poor
precision underlies the errors in Fig. 3n. On the other hand, the
BM calculation with the bond length of 0.9 Å resulted in
a scaling constant D = 38, and thus, can express the ratio of the
weights between v = (1100) and v′ = (1001) with a precision of
1.81 (= exp(−26 × 38)). This precision is comparable to the ratio
of the corresponding weight for FCI results, 1.83 (= 0.324/
0.177); thus, the satisfactory accuracy in Fig. 3o was delivered.
The above discussion indicates that the scaling constant D plays
a crucial role in determining reliability but is an uncontrollable
parameter. An increase in the number of the energy register
qubits is a simple way to rectify the round-off errors arising in Cv

and consequently enhance the accuracy of the energy
prediction.
4.2 Effect of shot and gate noises on state preparation of the
NQS

Using the simulator implemented with QULACS, we checked
the inuence of the noise on the BM-based NQS preparation via
Digital Discovery, 2023, 2, 634–650 | 643
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Table 2 Predicted total energies (inmEh) of s-trans and s-cis butadiene and their energy differenceDE (inmEh) using BM2, BM3 and RBMmodels
using CMO and LMO basis with PN treatment. The total energies presented are subtracted from −153 Eh

s-trans (CMO) s-cis (CMO) DE s-trans (LMO) s-cis (LMO) DE

RHF −16.49 −14.04 2.46
CAS-CI −102.70 −100.30 2.40 −102.70 −100.30 2.40
BM2

6 Qubits −88.92 −85.00 3.92 −102.57 −100.11 2.46
8 Qubits −90.64 −85.88 4.77 −102.65 −100.25 2.41
50 Qubits −90.82 −86.09 4.73 −102.67 −100.26 2.41

BM3
6 Qubits −88.05 −83.46 4.59 −102.55 −99.90 2.66
8 Qubits −90.02 −87.03 3.00 −102.65 −100.27 2.38
50 Qubits −90.22 −87.24 2.98 −102.69 −100.30 2.39

RBMa

8 Qubits −54.89 −52.69 2.20 −101.54 −99.20 2.35

a nv = 4.
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the quantum circuit. With the use of the LMO basis and nreg= 6,
we prepared the BM2(FS) state for H2 with a bond length of 0.75
Å and evaluated the energy E as an expectation value in the
presence of noise. The corresponding noise-free state was
studied in Section 4.1. We re-used the learning parameters ob-
tained by the noise-free calculation with no further optimiza-
tion. This allows us to check to what extent the error is caused
by the presence of noise in the E(= hJjHjJi) reproduced using
the BM2 state J with the given parameters but prepared with
noise. The noise considered was twofold: varying amounts of
shot noise and error rate per gate modeled based on the so-
called depolarizing noise. The QULACS offers the functionality
(add_noise_gate) to add the depolarizing noise88 to all the gates
of the BM2 preparation circuit. The number of gates in this test
case was calculated to be ve hundred. In the circuit construc-
tion, a single three-bit gate was explicitly expressed using ve
two-bit gates because the noise can only be applied to the one-
and two-bit gates. We carried out 100 repeats (re-run) of the
state preparation followed by the estimation of hHi with 10m (=
NC) shots (m= 2, 3, 4, 5) and a 10−k (= 3G) error rate per gate (k=
3, 4, 5, 6).

The noise error was characterized by the error of E relative to
the noise-free prediction. This error is compatible with the
errors in the estimation of the gradients because they are also
evaluated as expectation values. Fig. 4a–d compile the errors of
100 re-run E predicted via the NQS quantum circuit simulator
considering the aforementioned noises. We observed that
adding the depolarizing noise to the gates in some cases caused
an overshooting of the variational E. Recompiling the data in
Fig. 4e and f, we found that the absolute errors decrease with
decreasing gate noise, systematically approaching the noise-free
E, with either 104 and 105 shot noises. This behavior is reected
by the fact that the average of the errors of 100 re-runs yields
very similar error convergence regardless of the number of shots
(Fig. 4g). Thus, the average of the errors appears to be robust
against the shot noise. Fig. 4g indicates that the error trend is
approximately linearly proportional to that of 3G. Fig. 4h plots
the standard deviation of the errors of E predictions, revealing
644 | Digital Discovery, 2023, 2, 634–650
that the standard deviations behave in approximately
O(N−0.48

C 30.42G ). Thus, increasing NC and decreasing 3G may have
similar impacts on the mitigation of the standard deviation of
the noise errors. Further error mitigation can be investigated for
future work. From a perspective of fault-tolerant simulations for
quantum chemistry calculation, which have been recently
highlighted,50,51 the fault-tolerant technologies may realize the
fault-tolerant simulation of the noise-susceptible ansatz.
4.3 Relative energies of s-trans and s-cis butadiene

We next present the calculations of the relative energy of
butadiene between the s-trans and s-cis isomers. Table 2 shows
the total energies of s-trans and s-cis butadienes and the relative
energies computed with BM2, BM3, and RBM models on a QC
simulator along with the results at the RHF and CAS-CI levels of
theory. The BM2 and BM3models using LMO basis with nreg= 8
yield the total and relative energies in good agreement with the
CAS-CI results. The relative energies were predicted with an
error of 0.01 mEh, which is smaller than the error in the total
energies, estimated to be 0.05mEh. The error cancellation in the
relative energies is considered favorable in chemical applica-
tions. For the BM models using a CMO basis, the total and
relative energy errors were relatively large even with increasing
nreg. Fig. S2† shows that the vanishing weights in the CAS-CI
wavefunction are fewer with LMOs than with CMOs. As dis-
cussed earlier, this feature in the use of LMOs plays a valuable
role in the performance of the BM calculations.

As shown in Fig. 5a, we monitored the training progress of
the BM2/LMO energy for the s-trans isomer with various nreg.
The results with nreg = 6 shows a largely oscillating behavior.
This instability was relatively mitigated with nreg = 8. Ten or
more energy register qubits were required to achieve stable
training. The optimization of the BM parameters can suffer
from convergence issues analogous to the Barren plateau
problem in the VQE optimization. Our previous study15 miti-
gated this issue to a certain degree via the two-step optimiza-
tion: the rst hundred learning iterations only optimize the
phase parameters s with the amplitude parameters q xed with
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) The progress of BM2/LMO energy as a function of training iteration for s-trans butadiene with nreg = 6, 8, 10, and 12. (b) The counts of
QAA cycles as the progress of training of the BM2 for CMO and LMO basis with FS and PN treatments. The heat maps of network parametersWij

(eqn (18)) for (c) BM2/CMO and (e) BM2/LMO, and of particle correlation Iij (eqn (17)) for (d) BM2/CMO and (f) BM2/LMO, calculated for the s-trans
isomer.
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the initial random values, and the rest of the iterations undergo
the optimization of both q and s. This scheme was used in the
present work. The convergence should be checked using
different random seeds. Ref. 89 and 90 studied Barren plateaus
for the QBM.

Fig. 5b shows the number of QAA39 cycles (Algorithm S4) to
achieve a desired, amplied state in every state preparation
process for the BM2 calculation of the s-trans isomer using nreg
= 8. The average number of the QAA operations per iteration
varies depending on the orbital type (LMO or CMO) and the
particle-conservation treatment (PN or FS). Compared to the
CMOs, using LMOs resulted in fewer QAA operations, with
a frequency of 1.0 and 4.5 times per iteration for the PN and FS
treatment, respectively. This is related to the fact that when
using the LMOs, the conguration distribution of the prepared
state is widely spreading (also see Fig. S2†) to a more signicant
degree than in the CMO case and less dissimilar to that of the
initial state that begins with a uniform distribution. The PN
treatment signicantly reduces the cost associated with the
amplication compared to the FS treatment. Note that
marginalizing the hidden layer of RBM's Cv lowers the proba-

bility of the target state by a factor of approximately
ffiffiffiffiffiffi
2nv

p
; thus,

the number of the QAA cycles required is much larger, scaling
up exponentially with nv, compared to the BM cases.

In Fig. 5, we attempt to show a numerical comparison
between the resulting ANN parameters and the physical quan-
tities computed from the ANN state. Fig. 5d and f show heat
maps of the so-called particle correlation Iij,91

Iij: = hJjn̂in̂jjJi − hJjn̂ijJihJjn̂jjJi (17)

evaluated with the trained BM2/CMO and BM2/LMO wave-
functions for the s-trans isomer. The number operator n̂i is
written using the second-quantization operators as n̂i= a†i ai. We
constructed a metric comparable to Iij using a linear mixture of
the ANN parameters ai and wij. Although there is arbitrariness
in the mixture, one given as
© 2023 The Author(s). Published by the Royal Society of Chemistry
Wij : = {wij + (ai + wii)/6 + (aj + wjj)/6}(1 − dij) (18)

with the Kronecker delta dij is shown in Fig. 5c and e using the
ANN parameters of the trained BM2/CMO and BM2/LMO
models, respectively. Eqn (18) is derived in terms of satisfying
the relation EBM2(v;q) =

P
ijvivjWij for doubly occupied v. Inter-

estingly, the heat maps of Wij appear to capture some parts of
the feature of those of the particle correlation Iij for both LMO
and CMO cases; however, there is no overall coherent relation
between Wij and Iij.
4.4 PABI potential energy curve calculation

As a realistic test case, we present here the PEC calculation of
the ring-opening isomerization reaction of the organic mole-
cule, pentaarylbiimidazole (PABI)83 (Fig. 6a). This photo-
irradiation reaction activated a transient metastable species
with the resonance hybrid of an open-shell biradical form and
a closed-shell quinoid form of two dissociated imidazolyl
moieties. Fig. 6b shows the CMOs obtained from the RHF
calculations and used as the active MOs in the CAS(4e,4o)
treatment. The total energies of the S0 state predicted with the
BM models with LMO and CMO basis as a function of the
progress of the ring-open reaction are displayed in Fig. 6c. The
BM models with six energy register qubits (nreg = 6) were
sufficiently accurate for capturing the formation of the high-
energy meta-stable state in the open-ring structure, which was
conrmed in a previous spectroscopic research study.83 The
errors of the PECs relative to the CAS-CI results indicate that the
energies of BM2 with nreg = 6 are accurate with an error of less
than 1mEh. An increase in nreg and the connectivity order of the
BM is apt to improve the accuracy that approaches the CAS-CI
quality (Fig. 6d and e).

Fig. 6f and g show the natural orbital occupation numbers
(NOONs) of the state calculated at the closed-ring and open-ring
geometries, respectively. This analysis shows that the electronic
character of the closed-ring structure is of a quinoidal nature,
Digital Discovery, 2023, 2, 634–650 | 645
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Fig. 6 (a) Molecular structures of closed-ring and open-ring forms of pentaarylbiimidazole (PABI). (b) Active orbitals considered in the CAS-
CI(4e,4o) treatment. (c) Potential energies curves of the ring-opening isomerization reaction of PABI calculated with FCI andwith the BM2model
using CMO and LMO basis with nreg = 6 and 50. The errors of PEC energies predicted with (d) BM2 and (e) BM3 relative to the FCI values. The
NOONs of the ground state calculated at the (f) closed-ring and (g) open-ring geometries.
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which is within the single-determinant picture using the CMO
basis. At the open-ring structure, however, the open-shell bir-
adical nature emerges, as evidenced by the half-integer NOONs
of NO2 and NO3, which are approximately 1.6 and 0.4, respec-
tively. As indicated by the distribution of the congurations
(Fig. S4†), the biradical state is of multireference (or strongly
corrected) electronic character. These calculations thus
demonstrated that our quantum computation of the BM-based
models is within reach of accurate multireference wavefunction
calculations that involve a variation between quinoidal and
radical nature.
4.5 Comparison with QPE and UCCSD

Let us here discuss a comparison of the BM2-based NQS with
the other representative quantum solvers, QPE46 and UCCSD.47

Algorithmic features of QPE, UCCSD, and NQS are summarized
in Table 3. The wavefunction ansatz is based on CI and cluster
expansions for QPE and UCCSD, respectively, while the NQS
models the CI expansion coefficients with the BM and RBM-
based ansatz. The total energy associated with the wave func-
tion arises as an eigenvalue in QPE. In contrast, it is obtained as
a variational expectation value of the Hamiltonian in the VQE
framework, including UCCSD and NQS. Another common
feature between UCCSD and NQS is that the solution is found by
iteratively alternating the quantum process to prepare the
Table 3 Comparison of algorithmic features between QPE, UCCSD, and

QPE

Ref. Ref. 46
Framework QPE
Energy Eigenvalue
No. of qubits NCAS + nreg
No. of gates O(N5

CASnregNTrotter)
Opt. iterations O(1) but long-time evolusion
Reference required

a The same for BM3. b Extra complexity O((N3
CASnreg)NQAA) is added for BM

646 | Digital Discovery, 2023, 2, 634–650
objective state and the classical process to optimize the ampli-
tude parameters. In the quantum process, the quantum state is
built through quantum circuits and used to compute the Pauli
operators' expectation values. In UCCSD and the NQS, the
iteration of the hybrid quantum-classical process needs to be
repeated O(N3

orb/3
2) times to achieve the convergence with an

error of 3 in total energy. Contrarily, QPE undergoes a process
involving an iterative time evolution but no optimization
process to infer the ground-state eigenvalue using a number of
the register qubits, which can be reduced to one in the iterative
variant treatment (IQPE).92

For all these algorithms, the total number of qubits required
grows in proportion to the number of the orbital basis used to
represent the correlated electronic congurations. In addition,
the register qubits are further required for QPE and the NQS. It
is widely acknowledged that realizing the QPE calculation
necessitates the use of fault-tolerant and scalable QCs to handle
its long sequence of quantum operations, O(N5

orbNregNTrotter),-
where the required number of Trotter steps (NTrotter) is generally
very large for achieving an acceptable accuracy. The VQE algo-
rithm on NISQ devices can mitigate this hardware challenge; in
its UCC ansatz, the number of gates is drastically reduced
mainly because NTrotter is relatively fewer compared to the QPE
case. Notably, the operators in the exponent of the BM/RBM
models are commutable, although it is not so in QPE and
BM2-based NQS

UCCSD BM2 based NQS

Ref. 47 This work
VQE VQE
Expectation value Expectation value
Norb NCAS + 2nreg

a

O(N3
orbN

2
elecNTrotter) O((N2

CASnreg + n2reg)NQAA)
b

O(N3
orb/3

2) O(N3
CAS/3

2)
required No

3.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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UCC; thus, the NQS algorithm forgoes the Trotter decomposi-
tion. The critical factor in determining the depth of the
quantum circuits in the NQS is, as written earlier, the number of
QAA39 cycles (NQAA). As illustrated in Fig. 4b, NQAA largely varies
depending on systems and basis types and can be small when
the resulting distribution is close to an equally weighted
superposition that is used as an initial state.

Another marked difference is that QPE and UCCSD require
the prerequisite of the reference wave function, for which the
HF state is typically chosen, while the NQS does not. This
should have a characteristic effect on the depth of the quantum
circuit of the state preparation. As mentioned earlier, the main
aim of this work is to nd a direct route or quantum-native
algorithm that can suitably connect the ML-inspired NQS
theory and quantum computing, but not to explore an substi-
tution to UCC or other highly tuned-up VQE methods.

5 Concluding remarks

In this work, a formalism using quantum gates to form the ML-
inspired quantum state, NQS, with the BM2, BM3, and RBM
energy functions on a QC has been developed for the materi-
alization of neural networks trained as quantum chemical
objects. Qubits play a role in quantum-mechanically repre-
senting bitstrings of occupancies of congurations, which are
descriptors of this ANN model. With the energy and its gradi-
ents estimated via quantum measurements, training the
network parameters towards learning the superposition struc-
ture of the CAS-CI state is efficiently performed by classical
computations. The appealing features of our approach are the
following:

� The process to prepare the HBM-based NQS representing
the CAS-CI state is fully quantum-native, forgoing the
random sampling of the intermediate state performed in
the approach by Xia and Kais.

� Kitaev's QPE37,38 is exploited to evaluate the BM energy
functions via its phase kickback trick with a avor similar
to the GEQS algorithm29 of the general-purpose QML.
Unlike the way of using the QPE in Hamiltonian evolution
as done by Aspuru-Guzik et al. and others,46 our approach
for preparing a single NQS uses it in a non-iterative
manner with no time evolution or Trotter steps.

� The NQS described in this study is a hybrid quantum-
classical algorithm and classied as a VQE type.

� The HBM energy functions with no hidden nodes, namely
BM2, BM3, or even higher-order, are a suited class of
underlying ANNs for an NQS prepared on a QC. With the
HBM, our approach estimates analytical gradients of the
energy with respect to network parameters using the
prepared NQS, just as the energy is calculated from the
expectation values of Pauli strings.

Meanwhile, some concerns are found in the NQS prepara-
tion algorithm as follows:

� The re-scaling parameters for the energy function have to
be determined, requiring an additional quantum treat-
ment subject to the QUBO problem53 to nd the maximum
and minimum of a function.
© 2023 The Author(s). Published by the Royal Society of Chemistry
� The values of the re-scaled energy functions with a bit-
vector representation are efficiently calculated and stored
in a user-given number of energy register qubits, which
can thus suffer round-off errors. In our test cases, the use
of ten energy register qubits showed satisfactorily conver-
gent results.

� Formulation with the RBM model for our quantum algo-
rithm is straightforward; however, several concerns are
aroused in the implementation. (i) The energy gradients
cannot be analytically computed on a QC as a sum of the
expectation values of Pauli strings because of the involve-
ment of the sigmoid function, which is, in contrast, absent
in the HBM. (ii) The qubits proportionally increase with an
increasing number of hidden nodes. Contrarily, the HBM
has no dependence in the number of qubits on its order.
(iii) Our testing on the simulator revealed that marginal-
izing the hidden layer of RBM's Cv lessens the probability
of the target state by a factor of approximately

ffiffiffiffiffiffi
2nv

p
in

Gibbs distribution state preparation. This means that NQAA

grows rapidly with increasing nv.
In addition, the following characteristics of our approach are

interesting, but their in-depth understanding should be inves-
tigated in future work:

� As analyzed in Section 4.3, the critical factor determining
the depth of NQS's quantum circuits is the number of the
QAA cycles to amplify the probability of the desired state.
The numerical tests showed that it is apt to be relatively
small if the resultant state is near maximally entangled or
highly multireference.

� The NQS ansatz does not require the prerequisite of the
reference wave function unlike the UCC, which usually
uses the HF/CMO state as the reference. On a comple-
mentary note, it is well acknowledged that when using
CMOs, the ground state of the closed-shell small molecule
is usually of a single-determinant character or weakly
correlated. Despite the same wavefunction, this correla-
tion nature is drastically changed to a multi-determinant
(or strongly correlated) character when using LMOs (also
see Fig. S2 and S4†), as also emphasized in ref. 15. Our
assessments were thus carefully performed using CMOs
and LMOs from such a perspective.

We have conrmed on the simulator that the quantum
algorithm (Algorithm 1) is implementable with the use of
elementary quantum gates except for the process to determine
D and D, and formally involves no approximation to the given
NQS ansatz except the round-off errors due to the nite preci-
sion of the energy register. The NQS calculations simulated for
illustrative molecules overall reproduced the ground-state CAS-
CI energy and wave function with high accuracy when the
computational conditions were given properly. The errors of the
trained NQS compared to the CAS-CI wavefunction are funda-
mentally irrelevant to the use of quantum state preparation
proposed in this work, and have the same nature of error as was
observed in the fully classical NQS scheme studied in the
previous work. It should also be similarly pointed out that
convergence behavior in training the NQS's network parameters
is the same as those observed in our previous study15 and
Digital Discovery, 2023, 2, 634–650 | 647
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essentially inherited from Carleo's approach. The concerns
related to them are not in the scope of this research. In ref. 15,
the progress of the training for the fully classical NQS based
CAS-CI calculation with CAS(6e,6o) was reported along with the
results with CAS(8e,8o). The fully-visible-unit nature of the HBM
neural networks plays a crucial role in its well-suited accom-
modation to a quantum algorithm. This adaptability in the
HBM should be underscored as a marked advantage over the
RBM with the hidden nodes. Additionally, as demonstrated in
the previous work, it is of great importance that the increase in
the order of the HBM instead of the hidden nodes for the RBM
can systematically improve a model with a certain numerical
stability. This exceptional usability of the HBM introduced in
our previous study for the NQS should benet the general-
purpose QML.
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79 M. Kieferová and N. Wiebe, Phys. Rev. A, 2017, 96, 062327.
80 M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy and

R. Melko, Phys. Rev. X, 2018, 8, 021050.
Digital Discovery, 2023, 2, 634–650 | 649

https://arxiv.org/abs/2203.12757
https://arxiv.org/abs/2203.12757
https://arxiv.org/abs/2002.00055
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00093h


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/2

/2
02

6 
2:

07
:0

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
81 E. R. Anschuetz and Y. Cao, Realizing Quantum Boltzmann
Machines Through Eigenstate Thermalization, 2019, https://
arxiv.org/abs/1903.01359.
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