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Current antibacterial treatments cannot overcome the rapidly growing resistance of bacteria to antibiotic

drugs, and novel treatment methods are required. One option is the development of new antimicrobial

peptides (AMPs), to which bacterial resistance build-up is comparatively slow. Deep generative models

have recently emerged as a powerful method for generating novel therapeutic candidates from existing

datasets; however, there has been less research focused on evaluating the search spaces associated with

these generators from which they sample their new data-points. In this research we employ five deep

learning model architectures for de novo generation of antimicrobial peptide sequences and assess the

properties of their associated latent spaces. We train a RNN, RNN with attention, WAE, AAE and

Transformer model and compare their abilities to construct desirable latent spaces in 32, 64, and 128

dimensions. We assess reconstruction accuracy, generative capability, and model interpretability and

demonstrate that while most models are able to create a partitioning in their latent spaces into regions

of low and high AMP sampling probability, they do so in different manners and by appealing to different

underlying physicochemical properties. In this way we demonstrate several benchmarks that must be

considered for such models and suggest that for optimization of search space properties, an ensemble

methodology is most appropriate for design of new AMPs. We design an AMP discovery pipeline and

present candidate sequences and properties from three models that achieved high benchmark scores.

Overall, by tuning models and their accompanying latent spaces properly, targeted sampling of new

anti-microbial peptides with ideal characteristics is achievable.
1 Introduction

Growing antibiotic resistance is a major threat to global health,
turning infections that were once easy to treat into life-
threatening illnesses.1,2 Such rapidly increasing resistance to
traditional antibiotic regimens has led to the necessity of
nding new and unique treatment methods.3 One possible
recourse is the use of antimicrobial peptides (AMPs),4,5 which
have been identied within the innate immune systems of
a multitude of species, including humans, and which act to
modulate the proliferation of infectious diseases.6 AMPs
comprise a candidate class of short proteins, generally no
longer than 100 amino acids and oen much shorter.7 Many of
them preferentially partition onto prokaryotic (bacterial) over
eukaryotic (mammalian) cell membranes and cause bacterial
cell death through destabilization of the membrane and
expulsion of the intracellular contents.8,9 Because of the indis-
criminate manner with which they attack an integral part of the
cell, build-up of resistance to AMPs is relatively slow. Databases
of around 10 000 discovered AMP sequences,10–13 have been
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made publicly available, but there remains signicant need for
further cataloging and disparate analyses.

One tool of growing importance in the arsenal of the
biomolecular designer is generative deep learning, a subset of
deep learning.14 Deep learning, in which a computer optimizes
the parameterization of a neural network model in a data-rich
regime, has become a powerful player in recent years by
leveraging the increasing amounts of scientic data and the
phenomenal growth in computational power over the last
decades. Neural networks are formed by connecting simple
functional units known as “perceptrons” through their inputs
and outputs to form complex function approximators. Non-
linear activation functions between the linear operations
increase model representational capacity at the cost of having to
solve a non-convex optimisation task.15 Generative deep
learning in specic refers to the use of a model trained from
a large body of data to sample new datapoints from an under-
lying probability distribution intended to mimic as closely as
possible that of the training data. One particular variety of
generative deep learning model demonstrating competitive
performance in the sphere of biomolecular design is the varia-
tional auto-encoder (VAE) and its variants,16,17 in which data
points are explicitly embedded in a smooth, continuous “latent
space” that can function as a search space for optimization.18

In the past ve years, there has been an explosion of research
in the eld of deep generative models for small molecule drug
Digital Discovery, 2023, 2, 441–458 | 441
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design.18–22 Most work in this area has, until now, has been
focused on the design of small molecules, with only a few studies
on the design of short peptides,23–25 but in the last year or two
research in this area has begun to grow.23 For example, Das et al.23

constructed a Wasserstein Autoencoder (WAE) model that
formed a complete pipeline for de novo protein design and
identied two sequences with potent antimicrobial activity
against E. coli. In another paper by the same team,24 they created
a tool, (IVELS), for analysing VAE models, throughout the
training process, with which they could select models that
perform best. Two other relevant recent studies have reported on
the use of an Long Short-Term Memory (LSTM) model to design
peptides with experimentally-veried activity against multi-drug
resistant pathogens, and the use of generative Recurrent Neural
Networks (RNNs) to design non-hemolytic AMPs.26,27

One primary point of interest that is beginning to attract
attention is the quality of the latent space itself. Because in data-
rich regimes, VAEs and other generative models can be
extremely powerful, the focus in past work has been primarily
on improving performance.19,28–32 However, construction of an
interpretable and well-organized latent space not only tends to
make targeted feature sample generation easier, it also signi-
cantly improves the ability of the user to apply domain expertise
to the problem at hand. Therefore, although we do not ignore
model performance, a major focus of this article is on inter-
pretability, trustworthiness, and organization of the latent
spaces themselves.

In work by Gómez-Bombarelli et al.,18,31,33 the authors
demonstrated that training a property predictor on the latent
space and forcing the model to consider the quality of its
predictions as part of its overall goal leads to an ordering of the
latent space, which is desirable for generating candidates with
particular features. Because latent spaces tend towards dimen-
sionalities on the order of 30 or above, this orderedness has
been visually presented through projection onto a two-
dimensional space, oen by using principal components anal-
ysis (PCA) to identify the most relevant variables. Since PCA is
a linear projection, it remains unclear how well this visual
orderedness is preserved in the high-dimensional space, and
therefore we make a point to address the trustworthiness of this
simple, rapid, and useful analytic technique.

While previous methods have focused on the longer proteins
that represent a larger fraction of the known proteome this
research focuses on small antimicrobial peptides (AMPs). Much
of the previous work discovering protein embeddings with deep
neural networks has used large latent space representations34–36

to maximize data throughput or graph-based representations
which require the use of graph neural networks to process the
protein graphs. In this work we emphasize small latent repre-
sentations and model interpretability in order to construct
interpretable search spaces for AMP design.

More generally, in this article, we focus on the question of
latent space quality and interpretability for the relevant test case
of generation of novel antimicrobial peptide sequences. We train
ve different deep generative models with VAE-like latent spaces
and assess and compare their different behaviors in terms of
reconstruction accuracy, generative capacity, and interpretability.
442 | Digital Discovery, 2023, 2, 441–458
We demonstrate that, as expected, a property predictor leads to
an ordering in the latent space. We quantify this ordering and
assess how well a PCA projection captures the properties of the
original latent space. We argue that the better the PCA projection,
the more interpretable the latent space, because we can apply
a ranking to linear combinations of the latent space dimensions,
allowing us to more easily identify bridge variables that tell us
what the model considers important. We also show that the
models are capable of generating unique and diverse sequences
that grow more AMP-like in specic regions of the latent space.
2 Methods

We trained ve different models of three different latent-space
sizes on a dataset of approximately 300 000 short peptides. In
the following sections, we describe and justify the dataset and
its properties, the model architectures and the training proce-
dure with relevant hyperparameters.
2.1 AMP dataset construction

The datasets used in this study are a subset of peptides from the
Uniprot database,37 composed of 268 195 short peptide
sequences with a maximum sequence length of 50 residues,
combined with a set of 35 806 sequences from the StarPep
database, which features short bio-active peptides.38 We restrict
our training set to sequences of lengths 2–50 amino acids
because a signicant majority of AMPs are short peptides with
length <50, and 85% of the peptides featured in StarPep are
between 2 and 50 amino acids long.39 Preliminary testing
demonstrated that retaining peptides up to 100 amino acids in
length led to worse performance, presumably due to the
heightened sparsication of the dataset in that regime.

Out of the total 45 120 peptides in the StarPep database, 13
437 of them are labelled as having antimicrobial properties
(Fig. S2†). StarPep aggregates bioactive peptides from over 40
existing datasets featuring peptides with sequence lengths
between 2 and 100 amino acids. Aer removing from the
dataset the 15% of the peptides featured in StarPep with
sequence lengths greater than 50 amino acids and peptides with
non-standard amino acids, we retained 35 806 of the original 45
120 sequences, of which 10 841 are labelled as having antimi-
crobial properties. The remaining 24 965 peptides from Starpep
did not have the label antimicrobial.

Although certain deep learning algorithms can perform well
when trained on “smaller” datasets of tens of thousands of
datapoints,26,27 these are more typically classiers rather than
generators. When we trained our models on the 35 806 data-
points from the StarPep database alone, we found that the
models demonstrated poor reconstruction accuracy, low
robustness, and high error. One method for solving this is to
pretrain on a large corpus and ne-tune on a smaller one;
however, we chose instead to train all at once on a larger corpus,
as has previously been done for natural language models and
chemical language models.18–22

Since preliminary analysis on the StarPep database
sequences indicated that 35 806 was not a large enough dataset
© 2023 The Author(s). Published by the Royal Society of Chemistry
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to properly train our generative VAE-based models, we
expanded the dataset by adding negative examples from Uni-
prot. Aer executing the query [(length:[2 TO 50]) AND
(keyword:(KW-0929))], we found 714 of unreviewed peptide
sequences with the label “antimicrobial” and, placing “NOT”
before the keyword, found 3 713 736 of unreviewed peptide
sequences without the label “antimicrobial”. We also found
1108 of reviewed peptide sequences with the label “antimicro-
bial” and 11 941 reviewed peptides without the label “antimi-
crobial”. Since we would not have been able to signicantly
expand our dataset by using solely reviewed sequences, we
choose to include some non-reviewed sequences. We recognize
that in the worse case it is possible that this may include
a potentially substantial number of AMPs that have not been
identied as such. We considered the possibility of utilizing an
existing sequence predictor for AMPs to identify these possibly
unlabeled AMPs; however, we decided against it to avoid
introducing unknown assumptions into the data at this stage.
Instead we consider a different goal for ordering the space. We
employ a property predictor that classies as hits peptides with
experimentally-veried antimicrobial properties (which we
label with integer 1) and as misses peptides without
experimentally-veried antimicrobial properties (which we
label with integer 0) and demonstrate that training such
a predictor enforces an ordering of the space that allows
generation of AMP-like sequences.

To avoid having a prohibitively small percentage of
experimentally-veried AMPs in the dataset and to match the
sizes of datasets used in previous experiments with similar
architectures, we subsampled 10% of the 3 million unreviewed
datapoints of Uniprot and selected 268 195 to form an addi-
tional set of datapoints. Subsampling was done at random,
subject to the constraint of retaining a roughly equal number of
peptide sequences of each length to ameliorate the extent to
which themodels focused on this aspect, though there are fewer
very short sequences due combinatoric constraints (Fig. S9†).

Together the 268 195 peptides from Uniprot and 35 806 from
StarPep form our full dataset of 304 001 peptides, of which 10
841 were labeled “veried AMPs” (all from StarPep) and 293 160
were labeled “non-veried-AMPs” (a mixture of Uniprot and
Starpep sequences). We note here again that we only labeled
those sequences as AMPs that are experimentally veried as
such. Although this could introduce a bias into the property
predictor from the unreviewed sequences, we believe that this
choice is justied because our goal is not to classify sequences
but to order the space in a sensible manner. Aer ensuring
there was no sequence redundancy between the merged data-
sets, we inspected various physicochemical properties of the
“veried AMP” and “non-veried-AMP” labeled data sets to
ensure they represented a broad distribution over peptide
sequence space and had largely similar distributions of various
physico-chemical properties (Fig. S10–S19†).
2.2 Deep learning models

Deep generative models are powerful research tools for de novo
drug design. Throughout the training process these models can
© 2023 The Author(s). Published by the Royal Society of Chemistry
construct smooth latent space embeddings. Once fully trained
the learned latent spaces can be explored, and information-rich
clusters can be identied. Such continuous latent spaces allow
users to sample and decode novel molecules with desirable
features.

We investigated ve different deep learning architectures
applied to the task of generating new peptide sequences from
a learned distribution, all of which incorporate a variational
autoencoder (VAE) element, along with a VAE-like latent space.

The variational autoencoder is a model introduced in
Kingma and Welling16 that combines an “encoder” and
a “decoder” to form a variational inference model. In specic,
given a dataset with a marginal likelihood pq(x), the objective of
the VAE is to learn the parameter set {q} that most closely
reproduces the data's distribution p(x).17,40,41 VAEs operate
under an evidence lower bound (ELBO) maximization objective
that leads to a joint maximisation of the marginal likelihood
pq(x) and a minimization of the Kullback–Leibler (KL) diver-
gence of the decoder-approximated posterior qf(zjx) from the
true posterior pq(zjx), where z represents the embedding vari-
ables of the latent space and pq(z) is the latent space prior,
which for the standard VAE is a Gaussian distribution.

There are multiple types of generative models; the two most
well-known and oen-used are VAEs and Generative Adversarial
Networks (GANs). We choose to employ VAE-based models
because VAEs boast a number of properties of particular rele-
vance for our specic case of developing smooth, interpretable
latent spaces with potential use as search spaces for computer-
aided biomolecular design. In comparison to GANs, VAEs have
a more natural formulation of an associated latent space, with
a rigorous mathematical derivation from Bayesian probability
theory.17 The assumption of a Gaussian prior enforces a certain
level of smoothness and continuity that is desirable in a design
space, and allows for the sampling of Gaussian distributions
“near” any dened point in the space. Finally, on a practical
note, they have demonstrated utility in the eld of de novo small
molecule design,18 and we wanted to determine their utility for
sequence-based AMP design as well. VAE's also feature an
encoder which can directly map new samples of interest to their
respective latent vectors, a feature not present, out of the box, in
GAN architectures.

The architectures in this research all feature a latent space
comparable to that of a VAE, which in theory should constitute
the minimal explanation of the data. It is also desirable for the
latent space to be ordered in such a way that it is understand-
able or interpretable for a subject-matter expert. This latent
space is used to interpret the model's latent mapping of inputs
from the prior distribution. The latent space also allows for
visualisation of embeddings and feature clustering of proteins.

In what follows, we introduce the VAE models and their
unique differences. Briey the RNN, RNN-Attention and Trans-
VAEmodels all employ the typical VAE bottleneck with mean (m)
and log of the variance (s) network layers while the AAE and
WAE employ unique loss functions which regularize the latent
space to match a set distribution.

We started with three publicly available models modied from
work by Dollar et al.,28 in which the authors compared a recurrent
Digital Discovery, 2023, 2, 441–458 | 443
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neural network (RNN), a RNN with an attention layer and
a Transformer to assess their respective capabilities for gener-
ating SMILES strings describing novel molecular compounds for
drug design. The models all made use of a VAE architecture that
generated smooth latent spaces. The results demonstrated the
benets of including self-attention to deep generative models,
and the authors concluded there is a trade-off between variational
models in terms of their ability to properly reconstruct input data
and their ability to embed complex information about the inputs
into a continuous latent space. We modied these three models
to take as input and output sequences of up to y amino acids
rather than SMILES strings. In addition, we derived two more
models, an adversarial autoencoder (AAE),42 and a Wasserstein
autoencoder (WAE),43 by modifying the latent spaces and archi-
tectures of the original three.

The RNN model (Fig. 1A) is a traditional VAE featuring
a Gated Recurrent Unit (GRU)-based Recurrent Neural Network
Fig. 1 Schematic of the five deep learning model architectures, highli
encoder, a variational latent space and a GRU decoder. The RNN-Atte
convolutional layers as input and output from the variational latent sp
a discriminator network at the latent space. The WAE (D) also feature
discrepancy between Gaussian noise and the encoder generated latent s
with a first self-attention layer then a convolutional layer into the latent sp
self-attention layer.

444 | Digital Discovery, 2023, 2, 441–458
(RNN) as the encoder and as the decoder.44 The RNNmodel rst
embeds the input sequences into xed length vectors of length
128. The embedded vectors are then passed to the GRU, with N
= 3 layers, that generates a hidden layer vector of length 128.
The hidden layer is layer-normalized and sent to two separate
linear layers, the mean layer (m) and the log-variance layer (s).
The linear layers act as the “bottleneck” and changes – where
necessary – the GRU output shape to the appropriate latent
space vector shape – either 32, 64 or 128 dimensions, depending
on which architecture is being trained. The mean and logvar
output are then combined according to the reparametrization
trick and Gaussian noise is added.16 A ReLU unit followed by
a layernorm is then applied to the noisy memories. The
resulting vector is sent to the decoder GRU. The decoder
outputs a 128 dimensional hidden vector that passes through
a layernorm. Finally, this hidden vector is sent through a linear
layer that generates token predictions. All models except the
ghting their similarities and differences. The RNN (A) features a GRU
ntion (B) inserts an attention layer after the encoder GRU and uses
ace. The AAE (C) features a non-variational latent space but inserts
s a non-variational latent space but calculates the maximum mean
pace. The Transformer (E) model implements the generic architecture
ace followed by deconvolution into the masked attention and the final

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Hyperparameter table with batch size, initial and final
annealing values, learning rate and number of training epochs

Hyperparameter Value

Batch size 200
b nal 5 × 10−2

b initial 1 × 10−8

Adam learning rate 3 × 10−4
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Transformer implement a GRU with teacher forcing during
training. Teacher forcing passes the true sequence to the
decoder along with the latent vector and improves training
stability by removing the requirement of learning entire
sequences and instead prohibits the accumulation of errors on
individual tokens.

The Adversarial Autoencoder (AAE) model (Fig. 1B) uses the
same GRU model as the RNN but exchanges the re-
parameterized latent space proposed in Kingma and Welling16

for an adversarial counterpart Makhzani et al.42 As proposed in
ref. 42 this model regularizes the latent space with an attached
neural network, named the discriminator, that matches the
aggregated posterior q(z) to the desired prior p(z), which in this
model is a Gaussian prior. The discriminator is a fully con-
nected network with 256 hidden layers, each with a xed hidden
vector of size 640. The encoder network acts as the embedder for
the decoder and the “generator” for the discriminator. The
decoder learns to reconstruct original data, as in the RNN
model case, and the discriminator discriminates between an
ideal prior, modeled by a vector lled with normally distributed
noise as a proxy for a Gaussian prior, and the current latent
vector. This model is hypothesised to perform well on recon-
struction tasks given the relative success of adversarial models
on the task of image generation.45,46

The WAE model proposed in Tolstikhin et al.43 introduced
a new family of regularized autoencoders under the name
Wasserstein Autoencoders that minimize the optimal transport
Wc(p(x), p

′(x)), where p(x) is the true data distribution and p′(x) is
the generative model data distribution, for a cost function c.
The WAE's regularizer, computed as part of the overall loss
function, forces the continuous mixture qfðzÞ ¼

Ð
qfðzjxÞdpðxÞ

to match the prior p(z) instead of forcing each input to match
the prior as done in the VAE, where qf(zjx = xi) for all input i in
x. The WAE constructed in this work (Fig. 1C), uses the MMD
penalty for prior regularization.47 The WAE implemented uses
the same model as the RNN but exchanges the split latent space
with a single linear layer. The regularization is performed in the
loss function, where the inverse multi-quadratic kernel basis
function is used and the MMD is computed between this latent
vector and a vector with values sampled from a normal
distribution.

The RNN-Attention (RNN-Attention) model (Fig. 1D),
attaches a single self-attention head aer the GRU of the RNN
model to leverage the attention mechanism.48 The attention
mechanism allows a model to store sequence wide connection
weights between tokens in a sequence. Each token in the
sequence is made to “attend” and give a weight to all other
tokens in the sequence thus creating an attention map over all
the tokens in the sequence. The single attention layer has been
shown to increase interpretability and improve reconstructions
over longer sequences.28

The VAE-Transformer (Transformer) model (Fig. 1E), inte-
grates a VAE reparameterization into a full Transformer model
as proposed in Vaswani et al.49 and implemented in Dollar
et al.28 Transformers have taken the world of sequence2se-
quence learning by storm and have demonstrated their abilities
© 2023 The Author(s). Published by the Royal Society of Chemistry
to create extended relationships between sequence tokens that
can be readily interpreted through attention head
visualisations.50–52 The Transformer no longer makes use of the
GRU and instead rst sends the inputs to a self attention head
layer that outputs attention weights that are matrix multiplied
onto the output vector. The output is then sent to a convolu-
tional bottleneck that lters over the joined attention weights
and embedded sequence before sending the output to the mean
and log-variance linear bottleneck layers which reduce the
dimensionality of the latent vector to one of 32, 64 or 128
dimensions. Once the VAE section is passed and noise has been
added to the latent vector the result is sent back to a convolu-
tional layer followed by the masked attention and source
attention layers as originally outlined in Vaswani et al.49

All models feature an associated property predictor in the
form of a binary classier that predicts whether the latent
representation of a given peptide is an veried-AMP or not. This
classier is a two layer fully connected neural network trained
with a binary cross-entropy loss that is joined to the KL-
divergence loss and the peptide reconstruction accuracy loss
of each model.

2.3 Model training procedure and hyperparameter
conguration

The different subsets were collated into a total dataset with 304
001 peptides with lengths between 2 and 50 amino acids. This
total dataset was split into a 80–20, train-test split, resulting in
a training set of 243 201 training sequences and a test set of 60
800 sequences. The model hyperparameters were set to be
identical for all 15 models and their three respective latent
dimensions. We xed the parameters to maintain consistency
between the different models and allow authentic comparison
of the fully trained networks. The RNN, RNN-Attn and Trans-
former feature a Kullback–Leibler divergence annealing term
b (see Table 1). b starts small and increases in weight as training
progresses to avoid posterior collapse. Batch Sizes of 200 were
found to be ideal in that they t on the NVIDIA Tesla P100
graphics cards used for training and results in good perfor-
mance. 300 epochs was found to be an appropriate number by
a posteriori inspection of the loss curves.

Model training hyperparameters are outlined in Table 1.

3 Results

We assess and compare the models and their associated latent
spaces in a number of ways. We begin by performing
Epochs 300
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a traditional assessment through model reconstruction accu-
racies on the training and testing datasets. To assess the
generalizability of the models, we benchmark their generative
capacities in terms of the distributions they are capable of
sampling, a process which is becoming more and more
imperative as generative models become more common-
place.19,28 To assess the meaningfulness of associated distance
metrics, we perform a quantitative and qualitative assessment
of the models' ability to cluster the data in a low-dimensional
Fig. 2 The position-based average reconstruction accuracies, Racc
i with c

to the token position along the sequence, running from the first generate
with latent space sizes of 32, 64 or 128 dimensions, respectively. Error b
computed with the assumption of Bernoulli sampling. As expected, mo
cases.

446 | Digital Discovery, 2023, 2, 441–458
space produced by principal components analysis (PCA) and
a detailed analysis of the top ve principal components. To
assess model interpretability and address a longstanding
problem in the eld, we employ metrics from manifold theory
to assess the extent to which PCA distorts the latent space
embedding. Leveraging PCA's enhanced interpretability we
connect latent representations to peptide properties through
bridge variables. Finally, we demonstrate the use of our models
orresponding confidence intervals for the fivemodels. The x-axis refers
d token to the last generated token. Each model features three variants
ars are 95% confidence intervals on the respective index-wise means
del performance decreases with distance along the sequence in most

© 2023 The Author(s). Published by the Royal Society of Chemistry
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in a pipeline. Unless otherwise noted, all analyses are per-
formed on the test set data.
3.1 Verication of model reconstruction accuracy

We verify the basic performance of the ve trained models
through two metrics that demonstrate the ability of the models
to recapitulate the input data as they were trained to do. We
consider the position-based reconstruction accuracy and the
overall sequence reconstruction accuracy.

In Fig. 2, we plot the average position-based reconstruction
accuracy hRacc

i i versus amino acid index for the ve models and
for three different latent space sizes, and, in Fig. 3, we plot the
entire-sequence accuracy. The position-based reconstruction
accuracy measures the model's ability to predict the correct
amino acid at a given index in the sequence and is dened as,

�
Racc

i

� ¼

XN�1

n¼0

dðSni ¼ kÞ

N
(1)

where the sum evaluates whether the correct amino acid, k, was
predicted for the ith index of the nth sequence, Sni, and N = 50 is
the maximum length of the sequence string in the model.

The mean overall sequence accuracy hRacci is a measure of
how many full sequences the model was able to correctly
reconstruct in their entirety,

hRacci ¼

XN

n¼1

ðSn ¼ StrueÞ

N
; (2)

where Sn is the nth reconstructed sequence and Strue is the
original sequence.

Models of 64 dimensions or greater generally display
moderate to high performance on the reconstruction task. They
exhibit an accuracy of at least 60% for tokens up to position
twenty (Fig. 2), of interest because most AMPs have sequence
lengths of under twenty amino acids. The entire-sequence
reconstruction accuracy (Fig. 3), is between 50% and 70% for
the 128-dimensional AAE, RNN, RNN-Attention, and WAE, and
about 97% for the Transformer, although reconstruction accu-
racy diminishes with decreasing latent space dimensionality.
Fig. 3 The entire-sequence reconstruction accuracies, Racc for the fivem
95% confidence intervals on the mean computed with the assumption o
000 sequences.

© 2023 The Author(s). Published by the Royal Society of Chemistry
It is of interest to note that in all models except the 128-
dimensional Transformer, we observe an almost monotonic
decrease in reconstruction accuracy for tokens later in the
sequence. All 32 dimensional models, except the Transformer
approach the accuracy of a random guess (5% for any one of
twenty possible amino acids) near the 50th position. This clear
length-dependent effect on accuracy is expected behavior
arising from the increasing difficulty of the predictive task for
each successive token position: the prediction depends
primarily on the previous tokens in the sequence, leading to
a compounding error effect. The difficulty of this task is also
exacerbated by model training with teacher forcing, which
corrects mistakes earlier in the sequence during training but
not during testing. The 128-dimensional Transformer clearly
has the capacity to represent and retain entire sequences in
a holistic manner, as it was intended to do.

Indeed, the Transformer model achieves by far the highest
accuracy (97%, 128 dimensions) but is also most affected by
a diminishing latent dimensionality: the mean accuracy drops
precipitously from 97% to 26% when going from 128 dimen-
sions to 64 dimensions, whereas the AAE and the RNN both
achieve nearly 50% reconstruction accuracy with 64 dimen-
sions. All models display increasing accuracy with increasing
dimensionality. All attention based models display a greater
improvement when increasing from a dimensionality of 64 to
a dimensionality of 128 than when increasing from a dimen-
sionality of 32 to a dimensionality of 64.
3.2 Analysis of top principal components quanties
differences in the latent space

It has been shown that the simultaneous training of a property
predictor on a latent space leads to a desirable “ordering” of
that space visually identied in the top principal components.
Although there are many such dimensionality reduction tech-
niques available, we employ PCA here because it provides an
interpretable and invertible mapping to a visualization-friendly
space and has been previously used in the eld of de novo
molecular generation.18 In this section, we identify ordering in
the top principal components (PCs) in our models and go one
odels and their respective three latent space size variants. Error bars are
f Bernoulli sampling. All error bars are less than 0.5% from sampling 20
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Fig. 4 The maximal Silhouette scores, SS, for the five models with
corresponding three latent sizes. Silhouette scores are shown for the
principal components pairs featuring the largest score of the top five
PCs calculated with PCA (see Fig. S4† for Silhouette scores of all pairs
of top five PCs). The PC combinations from left to right are, AAE: [2,3],
[1,5], [3,4], RNN: [4,5], [1,2], [1,2], RNN-Attention: [3,4], [3,4], [2,3],
Transformer: [1,5], [2,4], [1,3], WAE: [2,5], [2,4], [2,5]. The error bars are
generated by bootstrapped sampling of the latent space and calcu-
lating a 95% confidence interval computed with the assumption of
Bernoulli sampling. The flier points indicate outliers from the inter-
quartile range of the whiskers.
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step further by quantifying the extent of the ordering and the
PCs in which it appears.

We employ a simple binary classier trained to predict
whether or not a given sequence falls within the experimentally
validated AMPs category, or the unvalidated category. Although
such a predictor can be of use in terms of assessing the specic
properties of some given sequence of interest, in this case we
use it rather as a tool to order the space such that we may expect
interpolation between points in the latent space to generate
sequences with desirable properties. In other words, for our
case the property predictor primarily functions to ensure that
the neighboring points of an experimentally-veried AMP in the
latent space will display similar properties. We can consider this
to be a way of enforcing a meaningful distance metric and
quantifying how well we have done so. In Sec. 3.4, we will also
address the question of how meaningful it is for us to identify
this “ordering” in a linear projection rather than in the full
latent space.

Aer model training with the binary classier, we perform
principal components analysis on the associated latent space of
each model (32-dimensional, 64-dimensional, or 128-dimen-
sional, respectively) and project into the top ve highest-
variance components of the PCA decomposition. Based on
previous studies that employed PCA for two-dimensional
projections, we expected to observe latent space ordering–that
is a partitioning of the data points according to the label pre-
dicted by the property predictor – in the top one or two principal
components of each model. To our surprise, this was not the
case (Fig. 5). Further investigation revealed at least some
ordering in one or two of the top ve principal components for
4/5 of the models. The h model, the RNN-Attn, performs so
poorly we do not expect to observe ordering no matter how
many PCs we analyze. This indicates that despite being explic-
itly “instructed” – via the loss function – of the importance of
the veried-AMP/non-veried-AMP labeling, most models do
not “pay attention” to this to the exclusion of other character-
istics of the sequences. We may quantify this idea further by
investigating the fractional variance explained by different PCs
as a proxy for the amount of information contained. When the
extent to which these different components capture the overall
latent space variance is assessed (Fig. S3†), we observe that the
models differ signicantly in how much fractional variance
explained (FVE) is contained within the top ve PCs, ranging
from only about 10% in the Transformer-128 model to over 40%
in the AAE-128 model. The more variance is contained within
the top ve PCs, themore it seems to be concentrated in the rst
PC—AAE, RNN demonstrate a muchmore signicant drop from
PC1 to PC2 compared to the other three models—overall we
observe. Trends are largely independent of latent space
dimensionality. In general, the Transformer and WAE models
of various sizes contain the least FVE in their top ve compo-
nents, whereas the AAE models contain the most. We observe
that in all models other than the Transformer, PC1 is correlated
with molecular weight or length (see Sec. 3.4), with all other
variances being of roughly equivalent magnitudes. Overall, we
may interpret this as telling us that the models place greatest
importance on length, while other descriptive variables, even
448 | Digital Discovery, 2023, 2, 441–458
those we attempt to emphasize a priori, are assigned similar
levels of importance.

We quantitatively assess the extent to which the clusters of
AMPs and non-AMPs are separated from one another in the
model latent spaces and pairs of the top ve principal compo-
nents (Fig. 4). We do so through the use of the Silhouette score53

applied to the known labeling of the dataset peptides, which is
a well-known metric for assessing cluster distinctness.

SS ¼ hrouti � hrini
maxðhrouti; hriniÞ ; (3)

We use the Silhouette score as our metric because its
boundedness gives it a natural interpretation in this context.
Scores that are too close to zero indicate that no clustering has
occurred, whereas scores too close to one indicate a discon-
nected latent space, which might mean the model had failed at
satisfying the Gaussian prior. Ideally, therefore, we would
observe moderate Silhouette scores, and indeed we do. The
silhouette score for each PC pair is calculated by taking
subsamples of PC pair vectors and computing their Silhouette
score relative to the known veried-AMP/non-veried-AMP
properties. Once this has been computed for all pairs of PC's
[1–5] we then nd the pair that has the highest silhouette score.

If we rank the models by maximum Silhouette score in all
pairs of the top ve PCs, the Transformer and AAE perform the
best, reaching a maximum of SS = 0.51 ± 0.02 for the Trans-
former at 128 dimensions, and a maximum of SS = 0.3 ± 0.03
for the AAE at 128 dimensions, in PC's [1,3] and PC's [2,3]
respectively, with both of them demonstrating moderate
maximal clustering ability and an increase in clustering ability
with latent space dimensionality. The WAE demonstrates
poorer performance, displaying a maximum of SS = 0.24 ± 0.02
in PC's [2,4] at 64 dimensions this performance is largely
© 2023 The Author(s). Published by the Royal Society of Chemistry
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independent of latent space dimensionality. The RNN and RNN-
Attention demonstrate the worst abilities as measured by the
Silhouette score, with a maximum of SS = 0.1 ± 0.02 in any of
the top ve PCs for the RNN and SS = 0.02 ± 0.02 for the RNN-
Attention.

To better visualize the latent space, in Fig. 5, we plot the test
set of sequences embedded in the reduced latent representation
for each model and color the scatter points according to
whether they feature veried-AMPs (orange), or non-veried-
AMPs (blue), characteristics. We observe an agreement
between the Silhouette scores previously discussed and the
visual clustering in the scatter plots. The AAE-128 and
Fig. 5 Scatter plot of maximally AMP-separating PCs presented as a visu
into the latent space, perform PCA, and illustrate the PC pair correspondin
follows, AAE: [2,3], [1,5], [3,4], RNN: [4,5], [1,2], [1,2], RNN-Attention: [3,4],
points denote verified-AMP sequences, and blue points denote known n
visible separations in the latent space, though most models demonstrat

© 2023 The Author(s). Published by the Royal Society of Chemistry
Transformer-128 models form more distinct clusters than the
other models, though all clusters still overlap as desired.

In summary, the latent spaces of the models were found to
exhibit ordering. We quantied the ordering with the Silhouette
score. Surprisingly, we found that AMP correlations are not
always present in the rst or second PC pairs and as such it is
important to investigate downstream PCs before ruling out
potential correlations in the model latent space. Once a corre-
lation has been identied, the variance explained per PC can
serve as an approximate weight factor indicating the impor-
tance attributed to this ordering by the model. For the 128-
dimensional AAE, summing the variance of the two top PCs,
alization of the different latent spaces. We embed the test sequences
g to the largest Silhouette score (cf. Fig. 4). The PC combinations are as
[3,4], [2,3], Trans-former: [1,5], [2,4], [1,3], WAE: [2,5], [2,4], [2,5]. Orange
on-verified-AMP sequences. Different models correspond to different
e at least some separation of AMPs and non-AMPs.
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this is about 10%; for the 128-dimensional Transformer, it is
about 4%.
Fig. 6 Traversing the PC's with highest AMP correlation from the
smallest embedded value of each PC (min) to the largest embedded
value (max), scaled to the same axis for comparison. The AMPlify QSAR
48 classifier54 is a binary classifier that returns true or false and an
average AMP probability is taken over the 100 local samples. All 5
models and their respective latent dimension variants are plotted. The
error bars are generated by calculating a 95% confidence interval on
the AMP probabilities computed with the assumption of Bernoulli
sampling.
3.3 Latent space sampling and generative performance
evaluation

Reconstruction accuracy and clustering of test set embeddings
are both useful metrics to ensure that model training is
proceeding as expected; however, a more important question
for a generative model is whether it is capable of accurately
recapitulating the underlying distribution of the data and
whether the resultant overall distribution associated with the
latent space is appropriate for novel data generation. In this
section, we demonstrate the capacity of the model to generate
unique and diverse AMP sequences in localized portions of the
latent space.

In contrast to the previous section, where we focused on PC
pairs, in this section, for ease of calculation and visualization,
we employ only a single variable per model variant. We choose
the principal component (PC) having the largest Silhouette
score with veried-AMP/non-veried-AMP labeling (see Fig. 9A
and further discussion of PC identication in Sec. 3.4). We
identify the “width” of the latent space by calculating the mean
and standard deviation over the embedded sequences. Then we
sample from ten evenly spaced regions that form a “line across”
the latent space, limiting the min and max values of the region
centers to ±4 times the standard deviation. The random
sampling performed in each region follows a normal distribu-
tion with the mean determined by the region center and the
standard deviation set to 20% of the standard deviation of the
latent space. For external validation on a large number of
generated sequences – difficult to perform experimentally – we
assess in each neighborhood the probability of generating
AMPs rAMP (Fig. 6) by employing a previously published QSAR
model. AMPlify is a deep neural network AMP classier that has
been shown to achieve 93.71% accuracy on the task of AMP
classication.54

As in the previous section, where we demonstrated clus-
tering of the test set embedded in the latent space, we expected
to observe partitioning of each PC into areas of low and high
AMP probability, and indeed in most cases we did. Because the
task given to the models by the property predictor was essen-
tially one of partitioning but there was no constraint on the
manner in which to perform the partitioning, a partitioning of
the latent space in any direction is equally expected; that is,
higher probability of AMPs could be localized in various
different areas across the PC.

We observe little or no (rAMP < 0.4 for all tested values) par-
titioning for the 32- and 64-dimensional AAE and RNN-
Attention. We observe a semi-linear partitioning – as the PC is
increased or decreased, an area of zero AMP probability is fol-
lowed by a monotonic, almost linear rise in probability – for all
other models except the 128 dimension RNN-Attention. Inter-
estingly, the 64 dimensional RNN-Attentionmodel shows a non-
linear partitioning of its space with a region of high AMP
probability, even though the PCA visualisation and the silhou-
ette score for this model did not demonstrate a clustering of
450 | Digital Discovery, 2023, 2, 441–458
AMPs in its latent space. Thus, we show that predicting
experimentally-veried antimicrobial properties, even though
many of the non-hits may also be AMP-like in nature, is in many
cases sufficient to partition the space into regions of high and
low antimicrobial peptide probability in general.

We next evaluate the local properties of the latent space as we
interpolate across the individual PCs. In addition to demon-
strating generative partitioning in the latent space, we assess
the following quantities in each neighborhood and take a global
average across the neighborhoods to gain a general under-
standing of latent space properties in the vicinity of the AMPs:
(i) sequence similarity rsim, and (ii) Jaccard similarity of 2-mers
(J2) and 3-mers (J3) in the sequence.

We assess the ability of the model to generate sequences that
are dissimilar to one another through the uniqueness,19 hmi,
which we compute as an average probability by generating
a random sample si of 100 sequences and counting the number
that are distinct from one another,

hmi ¼

X

n

�
Sgenn;Sgenmsn

�

Ngen

: (4)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Metrics evaluating the generative capacities of models near
AMPs in the latent space. The average sequence similarity (top), the
Jaccard similarity of the k-mers for k = 2 (middle) and the Jaccard
similarity of the k-mers for k = 3. The error bars are one standard
deviation from themean. Peptides are generated by sampling from the
PC with highest AMP correlation from minimum to maximum value.
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We compute the pairwise similarity between all generated
sequences in the neighborhood using the pairwise2 command
from the Biopython55 package, with the Blosum62 (ref. 56)
substitution matrix as the scoring function. Pairwise similarity
is measured by identifying an optimal sequence alignment from
bioinformatics arguments and then computing the scores of
amino acids that exhibit matching physicochemical classes.

The Jaccard similarity of two sets is dened as follows,

JðA;BÞ ¼ jAXBj
jAWB :j : (5)

We assess the Jaccard similarity between all pairs of peptides
in the local neighborhood by considering the sets of over-
lapping k-mers that describe the sequence, where a k-mer of
a peptide is a subsequence of length k, and the spectrum of k-
mers has previously been demonstrated to contain signicant
information about AMP properties.57 We consider k-mers of
lengths two and three in this analysis. 0 # J(A,B) # 1 by design,
and a Jaccard similarity of zero implies that two sequences
share no subsequences of length k whereas a Jaccard similarity
of one implies that two sequences are composed of identical
subsequences.

The sequence similarity score is a relative evaluation based
on the Blosum62 matrix scores, whereas the Jaccard similarity
score is an absolute measure of the similarity between two
sequences where identical sequences return a score of one. It
should be noted, however, that the number of matches grows
more quickly than the size of the set – i.e. the numerator of the
Jaccard score grows more quickly than the denominator. This
means that a comparatively low Jaccard score can still indicate
a reasonable amount of similarity. Very roughly, for the 2-mers,
a Jaccard score of 0.06 is the expected value for two random
sequences of length 50, and it is signicantly lower than that for
the 3-mers.

The size of the latent space is not seen to have a drastic
impact on the sequence similarity of peptides found in a local
neighbourhood for any of the models. An interesting dynamic is
displayed for the some models, in which as the center of the
latent space is approached the samples become slightly more
diverse. This is seen by the “U” shape seen especially in the
RNN, andWAEmodels. This is likely due to the Gaussian nature
of the space packing more peptides near the center thus
increasing sampling diversity.

The Jaccard similarities for the 2-mers and 3-mers are rather
low, but still signicantly higher than would be predicted by
random chance (Fig. 7). Due to the nature of the Jaccard score,
this indicates a balance between shared and dissimilar frag-
ments, particularly for the Transformer model. The 128
dimensional Transformer has signicantly higher 2-mer and 3-
mer similarity scores, from 0.24 to 0.34 for 2-mer, and 0.11 to
0.26 for 3-mer, than all other models <0.22. This is a good
indication that local points in the space share similar constit-
uent sequence fragments. Interestingly, we observe heightened
similarity for the RNN and WAE models in the region corre-
sponding to heightened AMP probability (i.e. towards the PC
maximum value), whereas for the Transformer-128, the trend is
© 2023 The Author(s). Published by the Royal Society of Chemistry
opposed: there is a region of heightened similarity near the
minimum corresponding to a low probability of AMP-like
sequence generation, and a region of somewhat lower proba-
bility near the maximum corresponding approximately to the
region of heightened probability of AMP-like sequence
generation.

Overall, most models perform similarly when reconstructing
peptides in a local neighbourhood and this applies to both
entire sequences and local k-mer segments. In Sec. 6.1 in the
ESI,† we also show that the models generate disparate peptides
not found in the testing or training sets, as desired.

3.4 Model interpretability through linearity and bridge
variables

A perennial and very difficult problem to solve in deep learning
is the question of how to interpret what the model is learning.
We address this issue in the following manner: by recognizing
that PCA performed on the latent space both creates a lower-
dimensional representation which is more easily visualized
and also creates a ranking of linear superpositions of the latent
dimensions, we argue that a latent space that is less distorted by
a PCA analysis is a more interpretable one, and we assess the
models on this basis. This also addresses the question of how
meaningful the observation of ordering in a linear projection of
the latent space is, which, as far as we are aware, has not
previously been addressed in the literature. Finally, we consider
Digital Discovery, 2023, 2, 441–458 | 451
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Fig. 8 The trustworthiness T , continuity C , steadiness S and cohe-
siveness H projection scores for the five models and three corre-
sponding latent space size variants. The error bars are generated by
bootstrapped sampling of the latent space and calculating a 95%
confidence interval. The flier points indicate outliers from the inter-
quartile range of the whiskers.
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a set of physicochemical variables of interest and identify
potential “bridge variables” associated with different PCs, to aid
in their interpretation.

We measure PCA distortion of the latent space with four
metrics: trustworthiness T , continuity C , steadiness S , and
cohesiveness H .58 Trustworthiness is a measure of the intro-
duction of false neighbors and the loss of true neighbors by
a point k when projected from high to low dimensions,

T ðkÞ ¼ 1� 2

Nkð2N � 3k � 1Þ
XN

i¼1

X

j˛U i

maxð0; rði; jÞ � kÞ; (6)

where N is the number of samples, k is the size of the neigh-
borhood in the reduced space, U i is the set of points that are
not neighbours in the original space but are now neighbors in
the reduced space and r(i,j) is the rank of the sample j according
to its distance from i in the original space.

Continuity is a measure of the introduction of false members
into a group–a cluster of points–or the loss of true members
from a group when projected from high to low dimensions,

C ðkÞ ¼ 1� 2

Nkð2N � 3k � 1Þ
XN

i¼1

X

j˛V i

maxð0; rði; jÞ � kÞ; (7)

where N, k and r(i,j) are as previously dened for Trustworthi-
ness, V i is the set of points that are neighbours in the original
space but are no longer neighbors in the reduced space.

Steadiness is a measure of the loss of existing groups, and
cohesiveness is a measure of the introduction of false groups.
Briey, the steps to calculate the steadiness and cohesiveness
are outlined below. We direct the interested reader to Jeon
et al.58 for further details. First, one computes the shared-
nearest neighbor distance between points in the original
space and in the projected space and constructs a dissimilarity
matrix identifying compression and stretching of point pairs.
Then average partial distortions are computed by randomly
extracting clusters from one space and evaluating their disper-
sion in the opposite space. Once such partial distortions are
known one can aggregate the results into steadiness and
cohesiveness,

S ¼
1�

XnSt

i¼1

wim
compress
i

XnSt

i¼1

wi

; (8)

H ¼
1�

XnCo

i¼1

wim
stretch
i

XnCo

i¼1

wi

; (9)

where wim
compressjstretch
i denote the iterative partial distortion

measurements and their corresponding weights. Steadiness
and Cohesiveness differ from trustworthiness and continuity in
that they evaluate the authentic transformation of clusters of
points in the reduced space as opposed to evaluating neighbor-
by-neighbor values. All scores run from 0 to 1, where 1 indicates
maximum authenticity or minimum spatial distortion.
452 | Digital Discovery, 2023, 2, 441–458
For all models except the Transformer, scores are >0.5 for all
four metrics, and the scores tend to hover around 0.75, with
some exceptions (Fig. 8). While the 128-dimensional Trans-
former performs best according to the steadiness score (∼0.8),
the Transformer model in general performs worse on all other
metrics than the other models, particularly cohesiveness, for
which all three Transformer models perform worse than any
other model, and in particular the 128-dimensional Trans-
former displays an exceedingly poor performance of just over
0.25.

Overall we observe it is possible to construct linear projec-
tions of model latent spaces with comparatively low overall
distortions; however, the model that has thus far performed
particularly highly on other metrics (the 128-dimensional
Transformer) has the greatest distortion, particularly in terms
of cohesiveness, meaning it potentially introduces a signicant
number of false groupings. The Transformer's comparatively
high distortion overall underscores one of the traditional trade-
offs of machine learning: with greater power comes lessened
interpretability.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Now that we have an idea of how condent we may be in the
representation of the PCs for the model latent space, we
investigate the identication of “bridge variables” for further
interpretation of the latent space. Bridge variables are known
quantities of relevance in a scientic problem that show
correlations with unknown variables, allowing heightened
interpretability of many nonlinear problems.59 We consider
a series of physicochemical properties of peptides that are
measurable from sequence alone: aliphatic index, Boman
index, isoelectric point, charge pH = 3, charge pH = 7, charge
pH = 11, hydrophobicity, instability index, and molecular
Fig. 9 Top PC bridge variable correlation scores for all five models and th
(B–J) The Pearson correlation coefficients (r) for the (B) charge pH = 7, (C
point, (G) Boman index, (H) hydrophobicity, (I) molecular weight and (J) c

© 2023 The Author(s). Published by the Royal Society of Chemistry
weight. We measure each of these properties for the test set
sequences using the peptides python package.60 We employ the
Silhouette score in one dimension to measure correlation
between individual PCs and veried-AMP/non-veried-AMP
labeling, and we use the Pearson correlation coefficient (r) to
measure correlation between individual PCs and the contin-
uous physicochemical properties.

The aliphatic index61 is dened as the relative volume
occupied by the aliphatic side chains,

Aliphatic index = X(Ala) + aX(Val) + b(X(Ile) + X(Leu)), (10)
eir three latent sizes. (A) The AMP Spearman correlation coefficients (r).
) instability index, (D) aliphatic index, (E) charge pH = 11, (F) isoelectric
harge pH = 3. Shown in order for latent sizes 32–128 for each model.
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Fig. 10 Schematic of suggested pipeline for generation of sequences
of interest.
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where X(Ala), X(Val), X(Ile), X(Leu) are mole percent of alanine,
valine, isoleucine and leucine. The constants a and b are the
relative volume of aliphatic side chains to that of alanine side
chain where, az 2.9 and bz 3.9. The Boman index62 is equal to
the sum of the solubility values for all residues in a sequence. It
gives an estimate of the peptides' likelihood to bind to
membranes or other receptors. Peptides with Boman index >
2.48 are said to exhibit high binding potential. Isoelectric
point63 is the pH at which the net charge of a protein becomes
zero. The charges at various pH levels63 are determined
according to the known isoelectric points of the amino acids.

The hydrophobicity is a measure of the degree to which the
peptide is hydrophobic, calculated by averaging the hydropho-
bicity values of each residue by using the scale proposed in Kyte
and Doolittle.64 The instability index predicts whether a peptide
will be stable in a test tube as presented in Guruprasad et al.65

The molecular weight66 is the average molecular weight of the
peptide found by summing the individual masses of its amino
acids and is directly correlated with sequence length.

In Fig. 9, we identify the single PC with the highest correla-
tion to each one of the potential bridge variables and illustrate
the value of that maximal correlation. We note that although
there is a comparatively low Silhouette score in one dimension
indicating that the score in two dimensions is a more appro-
priate quantication of ordering in the system, we may use it to
indicate which PC the models consider “most” relevant for
veried-AMP ordering, and thus identify whether those PC's
simultaneously correlate with physicochemical properties. For
example, the 32-dimensional AAE, 64-dimensional WAE, RNN,
Transformer and 128-dimensional AAE and RNN models
employ one of the top 5 PC's most strongly for AMP ordering
(Fig. 9A), and the same PC is also correlated with charge pH = 7
(Fig. 9B) and isoelectric point (Fig. 9F) for this model (Fig. 9H).

For all models but the Transformer, the rst principal
component is highly correlated with molecular weight (Fig. 9I),
which makes sense for the RNN, AAE, and WAE, as all are
length-dependent models. That the RNN-Attention model also
exhibits this behavior demonstrates the need to commit fully to
a Transformer model to avoid a signicant component of the
model's variance being devoted to sequence length. The
comparative performance of the AAE with the Transformer
shows, however, that it is not necessary to remove the length
dependence to enforce ordering capability in the model, as long
as more than the rst and second PC are considered. In a more
general sense, any model with a high-variance component built
in as part of the architecture will likely demonstrate this
behavior.

In these plots we nd that the models will distribute the
correlation across all of the rst 5 PC's. Generally the trans-
formermodel is observed tomake use of the rst PCmore oen,
and this is expected to be because it does not feature a length
based correlation in the rst PC.

Using these correlation coefficients it is possible to further
characterise the ordering of the latent space and dene direc-
tions along which interpolation should occur such that desir-
able characteristics will emerge from generated peptides. Each
PC can be interpreted as a linear combination of the respective
454 | Digital Discovery, 2023, 2, 441–458
model's latent dimensions (32, 64 or 128). From this interpre-
tation it is possible to construct a direct relation between the
latent dimensions of the model and the physicochemical
properties investigated through the PCA mapping; we have
made the PCA mappings themselves available on the project
Github repository, https://github.com/bcgsc/AMPlify
4 Case study: pipeline for de novo
AMP discovery using PCA components

Our pipeline consists of three of the best performing models. We
employ the simultaneous exploration of the Transformer-128
(high reconstruction accuracy, good clustering separation in
two dimensions, linear generated sequence partitioning and low
interpretability), AAE-128 (moderate reconstruction accuracy,
good clustering separation in two dimensions, non-distorted PCA
space linear generated sequence partitioning, moderate linearity,
medium interpretability–bridge variables identied for AMP
PCs), and WAE-128 models (moderate reconstruction accuracy,
moderate clustering separation in two dimensions, moderate
distortion in PCA space, linear generated sequence partitioning,
moderate linearity, high interpretability).

The pipeline takes an AMP of interest as input. The AMP is
passed through the encoders of the different models and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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transformed into a model-specic latent representation. The
AMP latent vector is appended to the embedded training data
and is transformed into linear representations with PCA
(Fig. 10).

We then proceed to choose variables of interest to hold
constant in the latent space and perturb the others. This will
allow us to nd new peptides with the properties of interest
maintained. We choose to maintain the veried-AMP-correlated
PC and the hydrophobicity-correlated PC, to produce the
sequences likelier to share experimental AMP-likeness and
hydrophobicity – an important AMP property – with a chosen
sequence not in the training set. We note that this procedure
could be done with any identied property near any input point
of interest. We study a synthetic b-sheet forming peptide called
GL13K.67 We use the previously mentioned correlation coeffi-
cients (Sect. 3.4), to nd the veried-AMP correlating PC and the
top hydrophobicity correlating PC. Having kept track of the PCA
vector for our AMP of interest, we perform sampling by keeping
our two PC's of interest, AMP and hydrophobicity correlated,
xed and adding Gaussian noise to all other PC's. The added
noise variance must be tuned individually for each model as the
latent space organization is different for each model. The vari-
ance tuning is performed by identifying the mean and standard
deviation of all training dataset points in PCA space and then
sampling Gaussian noise centered at the mean with 1/5 the
standard deviation. This noise vector is then summed with the
PCA vector of our AMP of interest, thus shiing the sampling
location to be near the AMP of interest. Once we have the noisy
nearby PCA samples we perform an inverse PCA transformation
returning to our latent space vector representation, demon-
strating one particular valuable property of the PCA approach.
We then pass the noisy latent samples to the decoder which will
generate the desired candidate peptide sequences.

We demonstrate the use of the pipeline on GL13K. For each
model, we generate ve different sequences and display their
properties (Fig. S6–S8†). In the ideal case we should observe
little change in Hydrophobicity of the samples while the other
physicochemical properties should vary and in general this is
what we observe. We observe that certain properties of random
sequences generated in the neighborhoods tend to remain
more constant irrespective of model (aliphatic index, charge at
pH = 3, molecular weight, isoelectric point) and certain prop-
erties tend to be more variable (Boman index, charge at pH =

11, instability index), while certain properties are more depen-
dent on the model. Hydrophobicity varies the most in the AAE
model, and the least in the WAE model. One benet of
employing multiple models is the ability to sample different
local neighborhoods of the input point, with potentially
different properties; another benet is including both more
interpretable and more high-performing models to generate
samples.

The results from the pipeline for the AAE-128, Transformer-
128 and WAE-128 presented in the ESI gures (Fig. S6–S8†)
show that by locking PC's of interest and sampling nearby
points along other PC's we can generate novel peptides that
have similar properties to the original GL13K. While some
generated samples feature drastic changes in certain properties
© 2023 The Author(s). Published by the Royal Society of Chemistry
such as the fourth peptide from the AAE-128 with a charge of 1
at pH 11 or both generated peptides with −1 charges at pH 11
for the Transformer-128 and WAE-128 models, most properties
fall near the original GL13K sequence properties.

This general pipeline can be extended to any peptide func-
tion by identifying the top PC's correlating with the desired
function and keeping those xed as noise is added to the
remaining PCA vectors in order to sample in the functional
neighbourhood it could be employed for.

5 Discussion and conclusions

We have trained ve deep learning models with VAE-like latent
spaces on a library of sequences of short proteins and assessed
the characteristics of the resultant models, including a careful
examination of the properties of the latent spaces associated
with them. We show that the models have the capability to
create smooth, continuous latent spaces that can be sampled
for de novo AMP generation and optimization. The inclusion of
a simultaneously-trained property prediction network disen-
tangles veried-AMP and non-veried-AMP sequences;
however, to our surprise we nd that, unlike in previous studies,
this is not always apparent in the rst two principal components
derived by PCA. Different models associate different informa-
tion with highly-varying PCs, and different models vary drasti-
cally in the ways in which they encode variance, and, hence,
information. It is important to note that this presents a chal-
lenge for the incorporation of domain knowledge, since we see
that the model does not necessarily place greater emphasis on
user-provided information. Furthermore, it sounds a note of
caution in the interpretation of latent space orderings, since
observed orderings may occupy only a small fraction of the
informational content in the model latent space. We have also
addressed the question of how meaningful the use of PCA is as
a tool for indicating properties of VAE-like latent spaces and
argued that the less distortion imposed by PCA upon the
different neighborhoods and interactions between points in the
manifold, the more clearly interpretable the latent space is. The
analysis that we present here may be applied to other short
peptides of interest, such as anti-cancer peptides. Based on our
results, we would suggest retraining our Transformer, AAE, and
WAE models in conjunction with a new predictor that relates to
the property of interest. One could then employ a similar
analysis and pipeline to assess the quality of the resultant latent
spaces and generate sequences of interest.

We have investigated the use of the principal components
with the highest clustering of veried AMP properties for de
novo AMP generation and showed that our models generate
highly diverse and unique sequences, with comparatively low
sequence similarity in local neighborhoods. Despite the low
similarity and the use of a predictor trained on experimentally-
veried AMP properties rather than direct knowledge of AMP-
like-ness, all models but the 32 and 128-dimensional RNN-
Attention and 64-dimensional AAE are capable of successfully
partitioning a single coordinate in the latent space into regions
that generate AMP-like sequences with high probability and
regions that generate non-AMP-like sequences with high
Digital Discovery, 2023, 2, 441–458 | 455
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probability. We observe that the capacity of the model to
reconstruct input sequences is not clearly linked to its ability to
partition the space, and we add our voices to a number of
cautions against the over-use of reconstruction accuracy as
a metric for generative models.

We have evaluated the extent to which models order their
latent spaces according to standard peptide physicochemical
properties that they are not trained on and identify the principal
components most strongly correlated to given properties. We
nd that the models will order any of the rst ve principal
components investigated according to physicochemical prop-
erties but when a model needs to assign a larger proportion of
the variance to learning peptide length the rst component is
usually correlated with length/molecular weight. Indeed, only
the 128-dimensional Transformer eschews length as a consid-
eration almost entirely (no length dependence observed in the
reconstruction accuracy, small correlation between any top ve
PC and molecular weight). The Transformer in general clearly
has the capacity to function independent of the length but
demonstrates a more rapid drop in performance as the latent
space dimensionality is decreased than the RNN, WAE, or AAE.
We speculate that this is due to the nature of the task:
discriminating between lengths can actually discourage models
from overtting; that is, from simply “memorizing” the
answers, and may encourage a more meaningful lower-
dimensional representation, although we also note that the
128-dimensional Transformer shows by far the most height-
ened local fragment-based similarity in its veried-AMP-
relevant PC. This could suggest a model relying on fundamen-
tally different information from the others.

In terms of other relevant physicochemical variables, we
observe moderate correlations (0.35 ( rPearson ( 0.65) between
at least one PC and isoelectric point/charge at pH 7 in the AAE-
64, RNN-32, RNN-64, Transformer-64 and all WAE models and
moderate correlation between at least one PC and hydropho-
bicity in all but the RNN-Attention-32. As these are traditional
hallmarks employed for AMP design, this is desirable behavior,
and in particular aids in the interpretability of the models
through a linear mapping of the latent space variables to
straightforward “bridge variables” for most models. It also
shows that the models are capable of identifying relevant
properties from sequences alone, despite being trained only
with a binary property predictor.

We may further employ the bridge variables in conjunction
with the probability of AMP generation in a single PC (Fig. 6) to
aid in the interpretability of the models. In our case models
demonstrating a monotonic linear increase in probability,
especially those reaching a prediction probability of >0.6 (128-
dimensional AAE, 64-dimensional RNN, 64-dimensional RNN-
Attention, 64 and 128-dimensional Transformer and 32 and
64-dimensional WAE models) are arguably the easiest to inter-
pret, since we now essentially have a single linear mapping from
the latent space to AMP probability, which for the RNNs and
WAEs are comparatively non-distorted from the original space
(cf. Sec. 3.4).

We demonstrate a trade-off between model complexity and
model interpretability under this paradigm and suggest that for
456 | Digital Discovery, 2023, 2, 441–458
optimized design of AMPs in a continuous latent space, it may
be appropriate to perform the optimization in multiple
different latent spaces, using a similar philosophy to that of
ensemble voting. We do a short case study to show one way this
might be implemented, and indeed, in future work we plan to
use this as a starting point for an active learning procedure to
traverse these spaces and perform multi-scale molecular
dynamics simulations upon relevant points.

In the future, we plan to investigate a phenomenon termed
selective latent memories due to Kullback–Leibler divergence
constraints. This effect is observed during training and causes
a drop in the entropy of certain latent dimensions when the
KLD is minimized. In addition, we will generalize from a binary
AMP/non-AMP classier to a multi-class predictor capable of
grouping sequences by expected mechanism of action. Finally,
as a prelude to the previously mentioned active learning
traversal of the space, we plan to investigate the incorporation
of structural data into themodels, perhaps leveraging the recent
success of AlphaFold2 (ref. 14) and similar structural prediction
algorithms.

The models developed in this research used deep learning to
discover embeddings for sequences of amino acids, but future
work should investigate other peptide representations, such as
protein structure distance graphs which can embed structural
information and the SMILES strings used in the world of small
drug design. SMILES strings encode chemical information into
a sequence of characters, thus allowing the models to learn
chemical distinctions between the amino acids.

Overall, we have performed a thorough qualitative and
quantitative analysis of the latent spaces of ve different
generative models for AMP design, identifying strengths and
weaknesses of each, as well as developing a suite of analysis
methods for latent space design and sampling in the context of
generative deep learning of AMP sequences. We provide
a much-needed set of benchmarking protocols in this nascent
area of research.
Data availability

The code for the 5 deep learning models and specic datasets
curated are made available on Github: https://github.com/
Mansbach-Lab/latent-spaces-amps. The QSAR deep learning
AMP classier used to evaluate the model predictions can be
found at https://github.com/bcgsc/AMPlify. The datasets were
created using Uniprot and the Starpep databases found at
https://www.uniprot.org/ and http://mobiosd-hub.com/
starpep/.
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