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A priori catalyst design guidelines from first principles simulations and reliable data-driven models are
essential for cost efficient catalyst discovery. Nonetheless, acquiring all properties that control catalytic
activity and stability is computationally challenging due to the complex interactions among reactants,
intermediates, and products at the active sites. Therefore, predictions of only the most relevant catalytic
properties, or catalyst descriptors, are often used to guide new catalyst design. In the context of
upgrading biomass materials via deoxygenation reaction to value-added chemicals, the molybdenum
carbides (Mo,C) have been considered among the most active and economically viable catalysts.
Unfortunately, one of the bottlenecks related to longer term stability of Mo,C catalysts is the
susceptibility to surface oxidation, a common problem in heterogeneous catalysis, which requires the
use of excess hydrogen for active site regeneration. By using surface dopants to tune the oxygen affinity
(catalyst descriptor) of Mo,C surfaces, it is possible to design new doped Mo,C catalysts with desired
reactivity and stability. Here, we first employed periodic density functional theory to perform 20 000
high-throughput VASP simulations of oxygen binding energies (BEg) on various pristine and doped Mo,C
surfaces. We computed and developed a binding energy database of 20000 oxygen adsorption
structures consisting of 7 low Miller-index surfaces, 23 d-block elements as single-atom dopants, all
possible surface terminations, dopant locations, and adsorption sites. Utilizing this dataset, we developed
a message passing neural network (MPNN) machine learning model for extremely fast BEg prediction
using only unoptimized local adsorption geometries as inputs. The best model yields a mean absolute
error of 0.176 eV for BEo with respect to computed values from DFT. Our results highlight the use of
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Introduction

Biomass conversion technology has the potential to alleviate
our dependence on fossil fuels and promote a sustainable
energy future.* To produce fuels and chemicals, raw biomass
materials must be first transformed into bio-oils via fast pyrol-
ysis. The high oxygen content in bio-oils is undesirable and
often removed using hydrodeoxygenation (HDO), a catalytic
process in which C-O bond cleavage is carried out in the pres-
ence of H, gas as the reductant.” Transition metal carbides have
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been considered the promising catalyst candidates for HDO
reactions®™ as they are of low cost and, in the case of Mo,C, can
achieve Pt-like catalytic activity.” Furthermore, strategies to
modify Mo,C catalysts with transition metals to enhance HDO
activity has been employed in both experimental and compu-
tational studies.’®** A key challenge remaining with Mo,C as an
HDO catalyst is the surface susceptibility to oxygen poisoning,
which requires excess H, for the regeneration of the catalyst.*
Therefore, attenuating oxygen affinity toward Mo,C surface is
necessary to improve the overall catalytic stability and perfor-
mance. To this end, our previous computational study
demonstrated that, by doping Mo,C surfaces with Ni atoms at
low concentration, it is possible to weaken oxygen atom binding
energy (BEo) strength and subsequently enable the ease of
oxygen removal via water formation and desorption."* Such
evidence also indicates that the computed BEq values on Mo,C-
based catalyst surfaces may be used as descriptors to gauge the
stability against oxidation.
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In recent years, computational screenings of descriptors
have been carried out for various catalytic systems including
bimetallic alloys,"”™® single-atom catalysts,” and transition
metal carbides and nitrides® via density functional theory (DFT)
simulations. Nevertheless, the high cost of DFT calculations
remains the bottleneck of high-throughput descriptor genera-
tion. To circumvent such problem, machine learning (ML)
models utilizing existing DFT-computed datasets have been
developed to accelerate the prediction of catalytic descriptors
such as binding energies,***** adsorption dynamics,** d-band
centers,* and activation energy barriers.***® Notably, graph
neural networks (GNNs) previously employed for property
prediction of molecules®*° have been quickly adopted for
crystalline materials.*~** Perhaps, an attractive feature of GNN
over typical ML approaches is the use of neural graph finger-
print®” that enables the prediction and interpretation of global
properties based on local atomic contributions. To date, GNN
frameworks such as message passing neural network (MPNN),*
crystal graph convolutional neural network (CGCNN),** mate-
rials graph network (MEGNet),* and SchNet*” provide flexible
methods for training ML models to predict properties of various
materials from isolated molecules to bulk crystals to catalytic
surfaces. For an in-depth review of these GNN models and their
performance benchmark, we refer the readers to a recent
publication by Fung et al.*®

Applications of GNNs in computational heterogenous catal-
ysis have been demonstrated recently via the prediction of
binding energies of various catalytic surface intermedi-
ates.*>*>%° For clarity and practicality, the following reported
mean absolute errors (MAEs), an accuracy metric of ML-
predicted values relative to DFT values, are for the predictions
on geometries prior to DFT optimization only (i.e., unrelaxed
geometries). With a dataset of ca. 40 000 datapoints,'® Back and
colleagues developed and trained a CGCNN to predict adsorp-
tion energies of CO and H on bimetallic alloys and obtained an
MAE of 0.19 eV for both species.** Gu et al.*® further improved
the accuracy of CGCNN-predicted binding energies of CO and H
(MAEco = 0.128 eV and MAEy = 0.096 eV) using the same
dataset but a different representation for the adsorption sites. In
lieu of atom-based features, Fung and co-workers used the
density of states of the surface atoms to develop a convolutional
neural network for binding energy prediction.*® A diverse set of
monoatomic (H, C, N, O, and S) and hydrogenated species (CH,
CH,, CH3, NH, OH, and SH) on bimetallic alloy surfaces was
employed (~37 000 adsorption geometries). On average, an
MAE value on the order of 0.1 eV was achieved. While these
seminal examples highlight GNNs are useful to predict
adsorption energies of various reaction intermediates quickly
and accurately, the compositional nature of the datasets limits
their applicability to only bimetallic transition metal alloys
during computational catalyst screening.

Similar to bimetallic systems, computational screening of
adsorption energies such as BEg for Mo,C-based catalysts is an
important but challenging task. However, unlike binary alloys,
doped Mo,C structures typically consist of up to three elements
(metal dopant, Mo, and C) and are therefore more complex in
composition. Furthermore, metal carbide surfaces are
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Catalyst Enumeration

DFT Simulations

Scheme 1 High-throughput structure enumeration and data gener-
ation for oxygen adsorption on pristine and doped Mo,C catalyst
surfaces. In these structures, O, C, Mo, and dopant atoms are shown as
red, grey, green, and purple/yellow spheres, respectively.

structurally diverse, yielding multiple terminations per surface
index.** The difficulty in developing accurate GNN models for
catalyst property prediction in similar ternary systems such as
ternary alloys®® and binary oxides® have been addressed
recently. Given a similar size of training data (~10%), the MAE of
GNN-predicted adsorption energies on bimetallic alloys can
reach a value of 0.1 eV, whereas the MAE obtained for a dataset
containing ternary alloys is approximately one order of magni-
tude less accurate at MAE = 1.0 eV.”* Therefore, it is necessary to
further improve the performance of ML models on ternary
catalyst systems by creating more diverse datasets and
improving feature representation. In this work, we aimed to
generate high-fidelity DFT data for ~20 000 catalyst models
(doped Mo,C catalysts) and develop GNN models with suitable
graph representation for accurate oxygen binding energy
predictions. To do so, as shown in Scheme 1, we first enumer-
ated approximately 20 000 adsorption geometries for oxygen on
pristine and doped Mo,C catalyst surfaces and carried out DFT
calculations to evaluate their corresponding BEo values. Then,
we utilized this dataset to develop a message passing neural
network using local coordination graph representation (LCG-
MPNN) for BE,, prediction. Finally, in addition to the develop-
ment of the data-driven deep learning model, we analyzed the
representations learned by our model to better understand the
effect of surface structure and composition on BEo.

Computational methods

Enumeration of adsorption geometries on pristine and doped
Mo,C

The crystal structure of orthorhombic Mo,C (materials project
ID: mp - 1552) was used as bulk to obtain the following opti-
mized lattice parameters: a = 4.743 A,b=5.232 4, and ¢ = 6.058
A. The bulk unit cell was sliced to create 7 low Miller-index
surfaces including (100), (010), (001), (110), (101), (011), and
(111) (see Fig. S17). For each surface index, all possible termi-
nations were considered, and a total of 54 unique surface
terminations were generated for pristine Mo,C. The pristine

© 2023 The Author(s). Published by the Royal Society of Chemistry
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terminations were then doped with 23 different transition metal
elements (see Fig. S21), one at a time, by replacing a surface Mo
atom with a dopant atom. Finally, all possible oxygen adsorp-
tion sites were enumerated on both pristine and doped Mo,C
surfaces via Delaunay triangulation as implemented in the
Catalysis Kit (CatKit) package.** Note that the placement of the
oxygen atom is not required to be in the immediate vicinity of
a dopant atom. A total of 20 177 oxygen adsorption structures
were generated using Atomic Simulation Environment (ASE)*
package and subsequently evaluated for oxygen binding ener-
gies (BEy) using a high-throughput DFT calculation workflow
managed by Balsam.*®

Density functional theory (DFT) calculations

All DFT calculations were carried out using version 5.4.1 of the
Vienna Ab initio Simulation Package (VASP/5.4.1).>”*® The core
and valence electrons were represented by the projector
augmented wave (PAW) method*>® with a kinetic energy cut-off
of 400 eV. Atomic simulation environment (ASE)*® was used as
the Python modelling interface. Exchange and correlation were
described by the generalized gradient approximation Perdew-
Burke-Ernzerhof (GGA-PBE)** functional. While electron
correlation in some transition metal carbides may be resolved
using PBE + U functional, it can become computationally
prohibitive for large-scale screening. Hence, we chose to neglect
both Hubbard U correction and spin polarization in the

View Article Online
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evaluation of BEg to preserve a good trade-off between accuracy
and computational cost. A Gaussian smearing with Fermi
temperature of 0.1 eV was employed and the total energies (E)
were subsequently extrapolated to kg7 = 0.0 e€V.** The energy
convergence criterion for the electronic self-consistent itera-
tions was set to 10~ eV. For geometry optimization, the forces
were converged below 0.05 eV A",

All pure and doped Mo,C catalyst surfaces were modelled as
(1 x 1) unit cell slabs. Each slab is at least 5 A in width and
length and consists of an equivalent of four layers (see Fig. S37).
All slabs were separated with a vacuum of 20 A along the normal
direction to the surface. The Brillouin zone for these systems
was sampled using a 6 x 6 x 1 Monkhorst-Pack k-point grid.*

The binding energies of atomic oxygen (BEo) were calculated
as follows:

BEo = Egabro — Egab — %Eoz (1)
where Egap, Esiab+o, and Eq, are the computed total energy of the
clean slab, the slab with a bound oxygen atom, and the gas-
phase molecular oxygen, respectively.

To automatically detect undesirable structural
formations upon relaxation, i.e., significant reconstruction and
oxygen desorption, we calculated the change in position of all
surface atoms between the initial and final geometries. If
a surface structure contains one or more atoms that move
beyond a certain threshold after optimization, it will be

trans-
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adsorption Local coordination - Coordination number
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Fig.1 Message passing neural network using local coordination graph representation (LCG-MPNN) for predicting oxygen binding energies (BEo)
on Mo,C catalyst surfaces. (a) Inputs in the form of LCGs are generated from O adsorption geometries and encoded with atom features, bond
features, and connectivity matrices. Note that 15 and 2" NN indicate first and second nearest neighbours of oxygen atom, respectively. (b) MPNN
architecture consists of n message passing layers, a read-out layer, three fully connected layers, and an output layer for BEg prediction.
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removed from the dataset. We chose a threshold of 3 A for this
dataset as this is approximately equal to the distance between
two coordinated Mo atoms in the top layer.

Message passing neural network using local coordination
graph representation (LCG-MPNN)

To represent an input adsorption geometry of the catalyst in the
deep learning models, we constructed a local coordination
graph (LCG) consisting of the adsorbate and its neighbouring
atoms as nodes and their connections to one another as edges,
which is shown in Fig. 1. In Fig. 1a, up to two nearest-neighbour
coordination shells surrounding the adsorbed O atom are
accounted for in our implementation as they have been previ-
ously shown to contribute significantly to the binding energy of
small adsorbates.*® To determine whether there is a bond/edge
to be included between two atoms/nodes in an LCG represen-
tation, we employ the following distance criterion:

dy — (R;+ R) <D (2)

where d; is the distance between the centres of atom i and atom
J, Ri and R; are the covalent radii of atom 7 and atom j, respec-
tively. Thus, a bonded interaction between two atoms is
considered if their skin-to-skin distance is smaller than D. For
the O/Mo,C catalyst models, D is chosen to be 0.25 A, as this
value provides a stable count for the number of nearest neigh-
bours to the adsorbed oxygen atom on optimized catalyst
surfaces (see Fig. S47).

In each LCG, nodes and edges are initially encoded with atom
and bond features. Specifically, element type, coordination
number, atom type (adsorbate, 1%, or 2™ nearest neighbour),
and list of neighbour atoms are used as atom features. For
bonds, each is distinguished by type, distance, and the atom pair
that it connects. Two types of bonds are considered: adsorption
bonds between O and a catalyst surface atom or lattice bonds
between different catalyst surface atoms. The connectivity
matrix, atom, and bond features form the inputs for the machine
learning model. The inputs are stored as undirected graphs in
“.graphml” file format and can be fed directly to the ML model
for a faster pre-processing step (see GitHub page).

The general architecture of our ML model is based on the
MPNN framework first introduced by Gilmer et al.** and later
applied by St John and co-workers for polymer screening.*® We
chose MPNN model as it has been shown to provide the best
accuracy for adsorption energy predictions for alloy catalysts
compared to other graph neural networks including CGCNN,
SchNet, MEGNet, and GCN in a recent benchmarking study.*®
Here, we modified the Python code developed by St John to
operate on the LCG representation for catalyst slabs. A sche-
matic of the neural network is shown in Fig. 1b. In the input
graph layer, atom and bond classes are embedded into trainable
feature vectors of 32 dimensions. The message passing layer
passes information (m) among neighbouring atoms using
matrix multiplication as follows:

> ALK, 3)

weN(v)

m =
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where v is the atom index, N(v) is the neighbouring atom indices
of atom v, A, is the feature matrix consisting of edge/bond
feature vectors between neighbouring atoms (e,,,), and k., is
the feature vector of atom w at time step ¢. A gated recurrent unit
(GRU) block® is then used to update atom feature vector from
stepttot+1:

K" = GRU(h,, ). (4)

As shown in Fig. 1b, the embedded feature matrix (hJ) is
passed through n message passing and GRU blocks before the
output graph layer. The output graph layer was implemented as
a read-out function that takes the final GRU outputs to produce
the whole graph/graph-level features (y). Four read-out func-
tions were tested including the ‘sum’, ‘max’, and ‘min’ of the
nth node state, and the set2set model from Vinyals et al.®
Finally, three fully connected neural network layers with ReLU
activation functions were used to produce the final output,
which is the predicted BEo.

Results and discussions

Analysis of BE, on Mo,C surfaces

The distribution of 20 000 DFT-computed BEg on pristine and
doped Mo, C surfaces is shown in Fig. 2. The mean and standard
deviation of BE are —3.64 eV and 0.95 eV, respectively. From
Fig. 2, overall, doped Mo,C surfaces (blue histograms) possess
a noticeably wider range of BE, ([—6.18 eV, —0.04 eV]) compared
to their pristine (red histograms) Mo,C counterparts ([—5.15 eV,
—0.35 eV]). Additionally, the distribution tails in Fig. 2 suggest
that, with respect to pristine Mo,C surfaces, there are more
doped surfaces with stronger (more negative) BE, than those
with weaker (less negative) BEo.

The BE, of all doped surfaces based on dopant category are
shown in Fig. 3. As a reference, the oxygen binding energy data
for pristine Mo,C is shown on top and labelled as “Mo”. The

1400

1 Doped Mo,C

0=095¢ [ Pristine Mo,C

12004

1000+

800+

Count

600+

400+

200

2.0

40 30
BEo (eV)

Fig. 2 Distribution of oxygen binding energies (BEg) on 20 000 pris-
tine (red) and doped (blue) Mo,C surfaces. The solid black vertical line
indicates the mean BEg of —3.64 eV. The standard deviation is 0.95 eV,
denoted as o.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Distribution of 20k computed O binding energies (BEo) on all
considered Mo,C surfaces with respect to dopant element and its
vicinity to O. Different bar colours correspond to different dopant
elements. The dopant may be present in the 1% (a) or 2™ (b) nearest
neighbour (NN) of adsorbed O. Mo dopant indicates the pristine Mo,C
surfaces. Red circles represent BEo on doped Mo,C(100) facets only.
Note: binding energy of O on Mo,C(100) doped with Au atom in 1°
nearest neighbour (NN) could not be obtained due to surface recon-
struction upon O adsorption and geometry relaxation. In these box
plots, the box length indicates the interquartile range (middle 50% of
BEo) wherein the inner vertical black line shows the median value. The
outliers are shown as black diamonds.

presence of outliers is largely due to the rearrangement of
catalyst surface atoms upon oxygen adsorption or the formation
of surface carbon monoxide. The effects of dopants on BEg can
be differentiated by their vicinity to the adsorbed oxygen atom,
e.g., whether the dopant atom is in the first (Fig. 3a) or second
(Fig. 3b) coordination shell. For the latter, as the dopant atom is
further away from the adsorbed oxygen, negligible differences
compared to pristine Mo,C are observed (Fig. 3b). In contrast,
the presence of a dopant atom in the first coordination shell can
strongly influence the magnitude of BE, (Fig. 3a). Furthermore,
we observed that the presence of Zn, Cu, or Ni dopants weakens
the binding strength of oxygen atom on the catalytic facets,
whereas Cr, V, and Ti dopants strengthen the binding strength
of oxygen atoms. In addition, a trend in BEg with respect to the
position of dopant element in the periodic table is observed. In
general, from left to right, ie., group IV to XII, and top to
bottom, i.e., period 4 to 6, across the transition metals, the
magnitude of BE decreases gradually. For example, the median
|BEo| of Ti-doped, Fe-doped, and Zn-doped Mo,C surfaces are
4.91, 3.94, and 3.80 eV, respectively. Similarly, the median |BEg)|
decreases from 3.73 to 3.22 eV for Mo,C surfaces doped with Cu
and Au. Since dopant electronegativity also increases in the
same directions, it may have an inversely proportional effect on
BEo. We have also identified that the computed difference in
BEo distribution is negligible among the 7 considered low
Miller-index surfaces (Fig. S51).

To gauge the BEo trend on a specific catalyst surface, we
chose M0,C(100) as an example, as it is the closest-packed and

© 2023 The Author(s). Published by the Royal Society of Chemistry
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hence most widely studied surface for modelling orthorhombic
Mo,C catalysts.®®*” The BE, on doped Mo,C(100) is shown as
the red circles in Fig. 3. Based on the computed BEy, several
observations can be made for BE, on doped Mo,C(100)
compared to all doped surfaces. First, the effect of the 1°* NN
dopants on BE, (Fig. 3a) is much stronger than that of the 2™
NN counterparts (Fig. 3b). Second, the trend in BE, with respect
to dopant element position in the periodic table is identical
between M0,C(100) and all facets. These results indicate that
the Mo,C(100) is a reasonable model facet for a qualitative
assessment of dopant effects on oxygen adsorption in Mo,C
catalysts.

Machine learning prediction of BE, on Mo,C surfaces

A useful ML model for predicting BEg on Mo,C catalyst surfaces
should only require unoptimized adsorption geometries inputs
since geometry optimization of a catalyst facet with adsorbate is
computationally demanding. Therefore, we developed our LCG-
MPNN model using unoptimized adsorption geometries as the
inputs and the computed BEq of optimized geometries as the
prediction outputs. To validate our model, we reserved 20% of
the data (~4000 randomly selected datapoints) for testing and
used the remaining data for hyperparameter optimization and
cross-validation. Hyperparameter tuning was performed using
Bayesian optimization (BO) via the Tree Parzen Estimator
method.®® A total of 100 BO cycles were carried out, and the
results are presented in Table S1.7 We identified the best model
architecture with nine message passing layers, a set2set read-
out function, and three fully connected layers of 256, 32, and
256 dimensions (Table S11). With this architecture, we per-
formed 4-fold cross-validation and obtained an average MAE of
0.175 eV. Finally, we applied the most accurate model to the
holdout test set and achieved an MAE of 0.176 eV (Fig. 4a). Close
inspection on the model performance with respect to various
ranges of the computed BE, indicates a strong dependence on
the availability of the training data as shown in the inset of
Fig. 4a. Specifically, at the upper/right tail of the computed BEy
distribution where BEg > —1.0 eV, the scarcity of training data/
optimized surface geometries (Fig. 2) lead to a high local MAE of
0.680 eV. In Fig. 4b, we show that the size of the dataset strongly
influences the performance (MAE) of the ML model. As the MAE
decreases with increasing data size, it reaches a reasonable
accuracy of ca. 0.20 eV when 15k catalyst surfaces of pristine and
doped Mo,C are utilized by the model. Besides data availability,
the model performance on the test set is also found to vary with
respect to the 7 considered surface indices, with the MAE
ranging from 0.086 eV for (001) surfaces to 0.338 eV for (111)
surfaces (see Fig. S6T).

To validate our choice of input representations and features,
we modified several important parameters of the model and re-
examined its performance, as shown in Table 1. For example,
expanding the coordination shell to account for 3™ NN atoms
gives a marginal accuracy improvement of 9 meV (entry ii) from
the default model (entry i), but increases the number of training
parameters by 50k. In addition, employing an entirely different
atom feature set* that focuses on elemental properties such as

Digital Discovery, 2023, 2, 59-68 | 63
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Fig. 4 (a) Parity plot of oxygen binding energies predicted by LCG-MPNN (BEX') and computed by DFT (BEo) on the test set. The inset shows
mean absolute errors, MAEs, of the model prediction with respect to various ranges of BEg (b) mean absolute error (MAE) of BEX' relative to BEo
of the test set as a function of data size. All subsets (of less than 20k datapoints) were selected randomly from the 20k dataset.

Table 1 Performance of LCG-MPNN model with the default and
modified parameters

MAE
Entry Parameter modification (eV)
(i)  Current model 0.176
(i) Number of NN shells: 3 (default value = 2) 0.167
(iii) Using a different atom feature set*! 0.189
(iv) Excluding distances between O,4s and 1** NN surface  0.188

atoms

(v)  Excluding pairwise distances between surface atoms  0.211

atomic volume and covalent radius did not improve the model
(entry iii). Since the LCG-GNN model uses unrelaxed adsorption
structures as inputs, we also tested the model sensitivity on how
these structures are generated. While the relative position of an
adsorbed oxygen atom (O,qs) With respect to those of surface
atoms (e.g., top, bridge, or 3-fold) is determined via geometric
methods, their distances are not required to achieve reasonable
prediction accuracy. Indeed, excluding distance values between
O.gs and its nearest neighboring surface atoms only (entry iv)
leads to a small decrease in the model performance (AMAE = 12
meV). In contrast, we noted the importance of pairwise
distances among surface atoms of the catalyst, as their absence
as input features (entry v) has a detrimental effect on the model
accuracy (AMAE = 35 meV). These observations indicate that
whereas the input adsorption structures are insensitive to the
exact placement of O,qs, it is necessary to employ optimized
lattice constants during structure generation to maximize the
performance of the ML model.

Analysis of BE trends based on learned graph fingerprints

The ability of the LCG-MPNN to learn structure and composi-
tion representations of Mo,C surfaces was investigated by the t-
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distributed Stochastic Neighbouring Embedding (t-SNE)
method to map the relationships between the learned graph-
level features (from the read-out layer) and BEo. This analysis
is shown in Fig. 5. Since the graph-level feature of each
adsorption geometry is represented by a 32-dimensional data
point, we used t-SNE to determine a human-interpretable, 2-
dimensional (2D) version of these representations that still
reflects how points are similar in the original 32-dimensional
space, as shown in Fig. 5a. The distinct coloured regions
observed in Fig. 5a indicate the effectiveness of the learned
graph features in capturing various magnitudes of BEq. For
example, going diagonally from the bottom left to the top right
of the t-SNE plot, O binding energies transition from strong
binding (dark blue, BE; < —5.0 eV) to intermediate binding
(white, BEg ~ —3.0 eV) to weak binding (dark red, BE, > —1.0
eV) areas.

Further analysis of the selected strong (blue rectangle),
intermediate (black rectangle), and weak (red rectangle) O
binding regions of the t-SNE plot is shown in Fig. 5b-d,
respectively. In these figures, the distribution of surface indices
and O coordination numbers is explored to provide some
understanding on the nature of the learned graph representa-
tion. For the strong binding region (Fig. 5b), most catalyst
surfaces possess a O coordination number of 2, which corre-
sponds to a ‘bridge’ adsorption site. In contrast, we found that
O adsorption at ‘3-fold’ (O coordination number = 3) and ‘4-
fold’ (O coordination number = 4) sites to have the largest
fraction in the weak binding region as shown in Fig. 5d. For the
intermediate binding region (Fig. 5c), the dominating fraction
of surfaces is of (101) index with atomic oxygen at 3-fold binding
sites. From these observations, we believe that both the surface
index, which relates to the arrangement of surface atoms, and O
coordination number should play an important role in the
overall learned graph feature representation. Such conclusion
remains true when different areas of strong, intermediate, and

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(a) 2D t-distributed stochastic neighbour embedding (t-SNE) plot of graph-level features from the readout layer. Each point represents an

adsorption geometry from the training set, of which colour was mapped to the computed oxygen binding energy (BEg). The oxygen coordi-
nation number distribution of adsorption geometries in the regions enclosed by blue, black, and red rectangles are shown in (b), (c), and (d),

respectively.

weak BEg were selected (see Fig. S77). Finally, we note that in all
three considered O binding regions in Fig. 5, no single element
yields a significant contribution to any of the dominating
surface populations (see Fig. S87).

Elucidating feature importance from neural network
gradients

The t-SNE plot in Fig. 5 provides a useful visual correlation
between the learned graph features and the DFT-computed BEo,
however, it does not show the contribution of each input feature
to the final prediction output, the binding energy of oxygen to
the catalyst site (BEo). Such contribution can be evaluated using
the gradient values obtained from the differential operation of
ML-predicted BE outputs with respect to the embedding atom
feature inputs, i.e., saliency maps.*>* A higher magnitude of the
gradient indicates a larger impact of the atom feature on the
prediction. In Fig. 6, normalized gradient values of surface
atoms are shown for three representative catalyst surfaces,
namely Ta-Mo,C(100), Mo,C(101), and Co-Mo,C(010), of the
strong, intermediate, and weak O binding regions of the t-SNE
map (Fig. 5a), respectively. First, the atoms in closer prox-
imity, i.e., 1% nearest neighbour (1% NN), to the bound oxygen
possess higher gradients or stronger influences on the pre-
dicted output. Second, within the same coordination shell,
atom contributions vary with respect to the element identity

© 2023 The Author(s). Published by the Royal Society of Chemistry

and its surroundings (i.e., nearby Mo or C atom). As seen in the
left panel of Fig. 6, the Ta atom provides a larger contribution,
compared to the other bridging Mo atom, to the prediction of
strong O adsorption on Ta-Mo0,C(100) surface. On pristine
Mo,C(101) surface (Fig. 6, middle panel), three Mo atoms in the
‘3-fold’ configuration are observed to have higher impact on the
predicted output compared to the rest of the surface atoms.

Norm. g radient

0.0 0.2 0.4 0.6 0.8 1.0

G@ >

5 0

Ta-Mo,C(100) Mo,C(101) Co-Mo,C(010)
BEy" =-5.58 eV BEy =-3.33 eV BEp'=-1.41eV
(BEo =-5.66 eV) (BEo =-3.37 &V) (BEo =-1.42 V)

Fig. 6 Graphical illustration of atom contribution to the prediction of
oxygen binding energy (BEXY for selected geometries from the strong
binding (blue rectangle), intermediate binding (black rectangle), and
weak binding (red rectangle) regions of the t-SNE plot in Fig. 5a.
BEM' and BEo denote the ML-predicted and DFT-computed oxygen
adsorption energies, respectively.
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However, one Mo atom (immediately below the bound O atom)
exhibits the strongest effect among the three. Such difference
may be attributed to the atom's different coordinating envi-
ronment compared to the other two (i.e., geometry of the
crystal). As shown in Fig. 6, for the doped Co-Mo0,C(010) surface
(right panel), all four 1% NN atoms including three Mo and one
Co are observed to contribute relatively evenly to the prediction
of a weak O binding energy (BE, = —1.41 eV). Overall, our
gradient analysis derived from the LCG-MPNN model provides
a useful and intuitive tool for evaluating the importance of
individual surface atom at the local O adsorption site.

Conclusions

In this contribution, to accelerate the estimation of crucial
descriptors for catalyst properties, we have enumerated ca. 20
000 oxygen adsorption geometries on pristine and transition
metal doped Mo,C catalyst surfaces. Periodic DFT calculations
have been used to build a dataset containing optimized
adsorption structures and their corresponding oxygen binding
energies (BEo). From the computed data, the BE, distribution
indicates a strong dependence on the element of the dopant
atom in the first nearest neighbour with respect to the adsorbed
oxygen. Furthermore, the results from high-throughput DFT
calculations indicate that Zn, Ni, and Cu dopants decrease the
BEo on Mo,C surfaces and could be used to improve surface
stability against oxidation during HDO reactions. It is noted that
surface oxidation of Mo,C is a dynamic and complex process in
which other factors besides BEy such as atomic rearrangement,
dopant diffusion, coverage effects, phase stability, and reduc-
ibility are also important and should be investigated with further
computational and experimental studies. The high-fidelity DFT
dataset was utilized to develop and train a message passing
neural network using local coordination graph (LCG-MPNN) to
predict BEo from a graph representation of the unoptimized
geometry. The deep learning model achieves a mean absolute
error of 0.176 eV for BEg on a test set of unoptimized adsorption
structures. Upon studying the learned graph representation of
oxygen adsorption on Mo,C, we identified that the local
arrangement of surface atoms plays an important role in deter-
mining BE and the data-driven model can be used for a fast and
accurate estimation of binding energies. Furthermore, the
gradient calculation from atom feature inputs allows for recog-
nizing feature importance with atomic precision at the oxygen
binding site. Our results highlight the use of LCG-MPNN as an
accurate and broadly applicable machine learning approach for
adsorption energy prediction for accelerated discovery of cata-
lysts for hydrodeoxygenation and beyond. Future work will focus
on improving feature representation, generating adsorption
energy data for other important surface intermediates (e.g., H,
OH and H,0), and utilizing transfer learning to increase the
prediction accuracy and generalizability of this approach.

Data availability

The codes and data used in this paper can be found on
GitHub at https://github.com/MolecularMaterials/nfp. All
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optimized adsorption geometries and their energies
obtained from VASP calculations are publicly available”
(see ESIt) at the Materials Data Facility.”"”> Data containing
~ 20000 geometry optimizations using VASP were saved as
Atomic Simulation Environment databases and can be
downloaded from the Materials Data Facility using the
following link: https://acdc.alcf.anl.gov/mdf/detail/
doan_datasets_accelerating representations_v1.1/, all
relevant Python codes and instructions for running our
LCG-MPNN models are provided on Github at https://
github.com/MolecularMaterials/nfp.
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