
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
View Journal | View Issue
Assessment of ch
aDepartment of Chemical Engineering, Univ

white@rochester.edu
bVial Health Technology, Inc., USA
cDepartment of Chemistry, New York Univer
dSimons Center for Computational Physical
eDepartment of Chemistry, University of Roc

† Electronic supplementary information
tables, and text. Accuracy data are avai
Contexts are available as a markup 

(completions) which were the basis for e
format at https://doi.org/10.528
https://doi.org/10.1039/d2dd00087c

Cite this: Digital Discovery, 2023, 2,
368

Received 17th August 2022
Accepted 19th January 2023

DOI: 10.1039/d2dd00087c

rsc.li/digitaldiscovery

368 | Digital Discovery, 2023, 2, 368
emistry knowledge in large
language models that generate code†

Andrew D. White, *ab Glen M. Hocky, *cd Heta A. Gandhi, a Mehrad Ansari, a

Sam Cox, a Geemi P. Wellawatte, e Subarna Sasmal, c Ziyue Yang, a

Kangxin Liu, c Yuvraj Singh c and Willmor J. Peña Ccoa c

In this work, we investigate the question: do code-generating large language models know chemistry? Our

results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating

chemistry knowledge in these models, through prompting models to solve chemistry problems posed as

coding tasks. To do so, we produce a benchmark set of problems, and evaluate these models based on

correctness of code by automated testing and evaluation by experts. We find that recent LLMs are able

to write correct code across a variety of topics in chemistry and their accuracy can be increased by 30

percentage points via prompt engineering strategies, like putting copyright notices at the top of files.

Our dataset and evaluation tools are open source which can be contributed to or built upon by future

researchers, and will serve as a community resource for evaluating the performance of new models as

they emerge. We also describe some good practices for employing LLMs in chemistry. The general

success of these models demonstrates that their impact on chemistry teaching and research is poised to

be enormous.
I. Introduction

Large language models (LLMs) are multi-billion parameter
transformer neural networks1 that are trained on enormous
collections of documents (a ‘corpus’) without supervision or
labels.2 LLMs can performmultiple tasks like classifying natural
language, translating text, and document search. Perhaps the
most remarkable task of LLMs is to complete an input string of
text; via this mechanism (called causal language modeling),
LLMs can write unit tests, document function, write code from
a doc string, answer questions, and complete stoichiometric
equations.3,4

We previously discussed the outlook of LLMs in chemistry.5

In the few months since then, LLMs have been both developed
for specic chemistry problems6,7 and general LLMs have been
applied in chemistry.8,9 On Nov 30, 2022, OpenAI released an
ersity of Rochester, USA. E-mail: andrew.

sity, USA. E-mail: hockyg@nyu.edu

Chemistry, New York University, USA

hester, USA

(ESI) available: Supporting gures,
lable as comma separated value les.
le. The responses from the model

xpert evaluators are available in HTML
1/zenodo.6800475. See DOI:

–376
interactive interface to an LLM termed ChatGPT (ref. 10) which
substantially increased interest in this area as well as use by
scientists for coding and writing tasks. An open question for
LLMs such as GPT-3,3 T5,11 or GPT-neo (ref. 12) that are trained
on very large and varied textual data is if they can be applied in
domains like chemistry, which have specialized language and
knowledge. In our initial work,5 we found that relationships
between SMILES and natural language is possible with GPT-3.
SMILES is the standard method of representing molecules as
strings.13 It is even possible to loosely edit structures via natural
language (see Fig. 6).14,15 However, the extent to which LLMs can
be directly applied in chemistry in the broad context of research
and teaching is unexplored. The large amount of specic
domain knowledge required to solve chemistry problems may
limit applicability of general LLMs. For example, recent work
has found that knowledge of the periodic table of elements
requires very high parameter counts.4

Recent comparisons of LLMs that generate code can be
found in ref. 16. Here, we focus our study on whether LLMs that
generate code17 can be applied to chemistry tasks of a compu-
tational nature (both computational chemistry problems, and
general tasks which can be expressed as simple computer
programs, such as ranking elements by ionic radius). Most
LLMs that generate computer code are causal decoder-only
models17–19—a user provides a sequence of text (called the
prompt) and it proposes a continuation of the text (the
completion).20 There are LLMs trained on code that can inll or
match encoder/decoder natural language to code like Code-
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d2dd00087c&domain=pdf&date_stamp=2023-08-10
http://orcid.org/0000-0002-6647-3965
http://orcid.org/0000-0002-5637-0698
http://orcid.org/0000-0002-9465-3840
http://orcid.org/0000-0001-5696-9193
http://orcid.org/0000-0002-4441-9327
http://orcid.org/0000-0002-3772-6927
http://orcid.org/0000-0003-1599-7539
http://orcid.org/0000-0002-1658-0260
http://orcid.org/0000-0001-7296-0965
http://orcid.org/0000-0003-3022-6871
http://orcid.org/0000-0002-3162-9309
https://doi.org/10.5281/zenodo.6800475
https://doi.org/10.1039/d2dd00087c
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002002

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
BERT,21 but they are typically used for embedding code for tasks
like classication, document retrieval, or translating code to
natural language. Because it is not reasonable to use encoder–
decoder or encoder-only models to generate code or answer
questions with open-ended length, this paper explores solely
decoder-only causal language models.

Evaluating LLMs' knowledge of chemistry should be distin-
guished from capability to reason or understand. LLMs can
make compelling completions, but are incapable of reasoning
and demonstrate supercial understanding.22,23 Our goal is to
evaluate LLMs' ability to correlate natural language, equations,
code, and heuristics of chemistry.
II. Methods

We have compiled a categorized set of chemistry and related
example prompts for benchmarking code-generating LLMs in
a public repository.24 To generate these problems, we rst
decided upon a list of categories of chemistry and chemical
engineering knowledge, listed in Table 1, and set a goal of
having at least 10 examples in each category for our initial
database of problems. Members of our research groups (the
authors of this paper), who we consider to have sufficient
expertise in these areas due to formal schooling, research, and
teaching experience, contributed the prompts and reference
solutions for these categories.

The examples in this table span a range of topics that we
consider common questions across chemistry elds. There is
some representation of computational chemistry research topics
(categories corresponding to performing chemical simulations
(sim), analyzing molecular dynamics simulations (md), chemical
Table 1 The number of prompts by topic and best accuracy achiev-
able in this work. “Expert” is the number within a topic that must be
evaluated by an expert. We used the “copyright” context for incoder-
6B, “authority” for codegen-16B, and “insert” for davinci and T = 0.2
(best for all models). Accuracies are averaged (macro-averaging)
across top-k sampling (we consider correct if valid prompt appeared in
top-k results). Expert accuracies are macro-averaged across topics/
prompts

Topic N Expert Incoder Codegen Davinci Davinci3

Bio 13 2 0% 29% 43% (0%)a 86%
Cheminf 10 0 20% 20% 50% 50%
Genchem 11 0 29% 86% 86% 86%
md 11 3 0% 13% 63% (81%) 88%
Plot 10 10 — — — (57%) —
qm 8 3 20% 60% 100% (59%) 100%
sim 8 5 0% 0% 100% (64%) 100%
spect 11 1 30% 20% 50% (12%) 40%
stats 11 1 40% 80% 70% (88%) 60%
Thermo 10 0 10% 10% 80% 70%
Total 84b 23 17% 35% 72% (57%) 75%

a Expert evaluator scores are in parentheses. b Some prompts appear in
multiple topics. The abbreviations of topics are biochemistry (bio),
cheminformatics (cheminf), general chemistry (genchm), molecular
dynamics & simulation (md), quantum mechanics (qm), methods of
simulation (sim), spectroscopy (spect), statistics (stats), and
thermodynamics (thermo)

© 2023 The Author(s). Published by the Royal Society of Chemistry
informatics (cheminf), and some quantummechanics (qm)), but
this constitutes less than half of the initial prompts created by us.
The rest correspond to typical questions that one might
encounter in general chemistry (genchem), biochemistry (bio),
physical chemistry (thermodynamics, quantum mechanics, and
spectroscopy), and in laboratory classes (plotting and statistics).

Within this set of topics, some examples were labeled as only
expert evaluable, where automated evaluation is infeasible or
insufficient (e.g. plotting). The total number of examples is 84,
of which 25 were expert evaluable, and the accuracy is 75% for
the best performing model.

There is a strong correlation between the model parameter
count and accuracy,25 so we focus only on the largest models
with more than 1B parameters. The architectures of models are
all decoder-only like GPT-3 (ref. 3) with the ability to insert
completions,26 (except when noted). The rst model is a GPT-3
12B ne-tuned on code (Codex) abbreviated as “cushman”. It
is known as code-cushman-001 in the OpenAI API.27 This is
modied from the original one in Austin et al.17 somewhat and
is described as “a stronger, multilingual version of the Codex
12B model.”.28 We also used code-davinci-002, abbreviated as
“davinci”. This model is part of the category of “GPT-3.5”
models that are derived from GPT-3.29 The number of parame-
ters in davinci-class models is not public information, but may
match the 175B parameters of the model described in the GPT-
3.5 paper.30 We also considered the recent text-davinci-003
model which is derived from code-davinci-002 with a reinforce-
ment-learning adaption from human user feedback30 –

although this model became available only aer human evalu-
ation (below) was complete, so our analysis is reported only on
automated evaluations. This model is denoted as ‘davinci3’
here. Finally, from publicly available information we know that
ChatGPT is based on a slightly modied version of GPT-3.5, and
so we expect its performance to be comparable to that of the
model; however, it does not have an API that would allow us to
systematically probe any differences in our study. One example
use of ChatGPT is given in the ESI.†

We also study two “incoder” models from Fried et al.18

trained on code only. We chose incoder because it is able to
inll code in addition to completing code prompts, which gives
a more direct comparison, and it has generally good perfor-
mance. Lastly, we consider the ‘codegen’ model,31 which is
another decoder-only model trained on a similar dataset to
‘incoder’. It was not trained for inlling, because it was
designed for back-and-forth code synthesis with natural
language. Although it is not exactly analogous to the other
models, it is one of very few competitive models that can
generate working code, and so we include it here for
comparison.31

Recent benchmarks show that davinci is the best or nearly
the best for general programming tasks.16,32 Incoder was used as
implemented in HuggingFace transformers.33 To avoid library
changes since 2021 inuencing the accuracy, our evaluations
are performed using the python version and packages from June
2021. The chosen date was based on the reported training range
from ref. 32 and comes before the training time in ref. 18.
Digital Discovery, 2023, 2, 368–376 | 369

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
When developing example prompts and solutions, the
prompts were tested and modied using davinci. Some prompt
engineering was inevitable through this process.3,34,35 However,
prompts were not designed to get a correct answer and some
prompts (e.g., two atom harmonic oscillator) were never
correctly completed. We do emphasize that the reported accu-
racy is not what one would expect of the rst prompt con-
structed on-the-y for a given problem. Rather, they are
constructed to answer “how much chemistry do these LLMs
know?” These gures should not be construed as upper bounds
either, as recent work on prompt engineering shows that
multiple steps (sometimes known as using “scratchpads”)19 or
eliciting multiple steps can further improve accuracy.29

Following Chen et al.,32 a prompt completion is accurate if
the code functions correctly, not if it matches a reference
implementation. Most examples have both a prompt and unit
tests. The accuracy of expert evaluable prompts for which there
are no unit tests is not reported, unless specied. Five
completions were generated via top-k sampling36 and multiple
temperatures at T= 0.05, 0.2, 0.5 (somax scaling). We explored
nucleus sampling,37 but found it to be no different compared to
adjusting the temperature for balancing the diversity and
correctness of completions. We chose k = 5 for all models,
except for incoder-6B where GPUmemory limitations prevented
sampling more than k = 1. Thus, these results may be slightly
inated since accuracy is reported on only a most likely output.
Error bars in all plots are 95% condence intervals generated
from bootstrap resampling across top-k.

Expert evaluation was performed on k = 3 outputs of davinci
(T = 0.2, “insert” context) and accessed through a web inter-
face.38 Each example contains a link to a custom Google form
which could be used to evaluate that example, with results saved
in a spreadsheet. The multiple choice questions in the form
were: “Is this question: Easy; Medium; Hard”, “Is the solution:
Perfect; Correct but not perfect; Runs and is almost correct;
Fig. 1 Example prompt and code generated for database example ‘mc_h
lower box. The asterisk indicates a line that is faulty. The inset box sho
necessarily optimal. This example is discussed in Sec. III A.

370 | Digital Discovery, 2023, 2, 368–376
Does not run but is almost correct; Is far from correct”. There
was also a box for extra comments. This evaluation did breakout
more detailed information like alignment between the prompt
and completion or hazards of completion, similar to that
recently proposed by Khlaaf.39 The full set of evaluations, with
personally identiable information (student emails) removed,
is available as a comma separated value (CSV) le in the ESI.† To
make a numerical evaluation of this data as shown in Fig. 3, we
assigned scores from 1–5 with 5 being the best (“Perfect”) and 1
being the worst (“Is far from correct”). To compute an overall
accuracy as reported in Table 1, we assigned “Perfect”, and
“Correct but not perfect” a value of 1.0, and all others 0.0, and
then computed the mean score for each prompt separately. It
should be noted that each assessor had a different level of
expertise on each topic, as well as a different level of python
programming experience, although we feel all were sufficiently
expert to evaluate each prompt with sufficient authority.
III. Results
A. Example problems

To illustrate the kinds of tasks and impressive (if not always
correct) results produced by LLMs, we show the output for one
‘sim’ category task in Fig. 1. To standardize our tasks, each task
is phrased as a function to be lled in, as in the top box. This
prompt includes a rst line which loads the numerical python
(numpy40) library, which gives additional ‘context’ (see below).
The rest of the information for the LLM is contained in two
places, the names of the variables given as inputs ‘n_steps’, ‘T’,
‘k’, and a comment string which says what the function does/
should do. In this case, the function should perform Metrop-
olis Monte Carlo for a harmonic potential. Implicit in the
instruction by the creator is that k represents the spring
constant, and so this code should produce samples from the
armonic’. Full output is the prompt with ‘[insert]’ replaced by code in the
ws equivalent lines from two other solutions that are correct, if not

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
energy function UðxÞ ¼ 1
2
kðx� x0Þ2, with x0 = 0 since it was not

specied as an input, and also that reduced units are used, such
that Boltzmann's constant kB= 1.0. We can see that—with quite
minimal instruction—the code in the output is correct except
for an error in the line indicated with a ‘*’; in this line, the
position of the particle is completely resampled from scratch on
the range [−1,1). This code would actually be ne if the system
were constrained to be within a box of length 2, and in the limit
of k [1 it will also appear to give correct results. The inset
shows the equivalent line in two other outputs of the model,
both of which are acceptable; one displaces the position by
a Gaussian random number with m = 0 and s2 = 1, and the
second chooses a new position from a Gaussian with the mean
centered at the current position and s2 = 1. Note that neither of
these is optimized for the choice of (k,T), as s2 = 1 may be too
large or too small to be efficient, depending on the spring
constant and temperature. Finally, in one of the other two
outputs for this example (available in the ESI† or on the result
website), k is interpreted as Boltzmann's constant, and the
harmonic system is given a spring constant of 1.0 implicitly;
this is a reasonable inference of the model. It illustrates how the
author must be careful about what is implicit in their prompt
and what is stated explicitly (e.g. here, that T is the temperature).

Fig. 2 shows an additional example to highlight how the
davinci-codex model internally contains knowledge of chem-
istry topics (in this case, general chemistry pertaining to phase
equilibrium). The output shows that the model “knows” the
relevant rearrangement of the Claussius–Clapeyron equation,
and returns the appropriate result, assuming that the heat of
vaporization (‘Hvap’) was given in joules mol−1. One gure in
the ESI† shows that we can use ChatGPT to solve the same
problem, either by asking it to ll in the “[insert]” text with the
correct solution, or by describing the problem conversationally.
When an API for ChatGPT is available, we would expect the
performance in the former mode to be very similar to that of the
underlying GPT-3.5 model.
Fig. 2 Example prompt and code generated for the database example
‘claussius’. Full output is the prompt with ‘[insert]’ replaced by code in
the lower box. Davinci passed our automated check for this example
on three out of five tries.

© 2023 The Author(s). Published by the Royal Society of Chemistry
B. Expert evaluations

Davinci, the best performing model, does have broad knowl-
edge of equations and common calculations across multiple
domains of chemistry. Table 1 gives the overall accuracy across
the topics, models, and expert evaluable topics. Both models
can correctly answer prompts across a range of topics, with
davinci performing the best. About 30 percentage points of
accuracy are from prompt engineering, which is discussed
further below.

On average, the accuracy for human evaluable topics is
lower, reecting their increased difficulty. These prompts
include tasks like writing an input le for NWChem,41 imple-
menting a Monte Carlo simulation of a harmonic oscillator
(Fig. 1), and generating a complex multi-panel plot. Fig. 3 shows
a breakdown of difficulty from the individual evaluations. There
is a balance of easy and hard prompts in the dataset, as judged
by experts. Our primary result here is that the accuracy of the
model is negatively correlated with perceived prompt difficulty,
as might be expected but did not necessarily have to be the case.
We did not perform any randomization or controls; each eval-
uator was able to see all prompts and all outputs, and so we
acknowledge that scores could be biased by factors such as the
order of the prompts on the website, and the order that results
for a given prompt were presented on the website. In the rest of
this article, we focus only on prompts whose correctness can be
evaluated by comparison with an expected solution in an
automated fashion.
C. How to improve performance

There is a large accuracy gain when using basic prompt engi-
neering strategies. Fig. 4 shows the effect of different “contexts”
on accuracy across models. A context here is code prepended
before all prompts, or all prompts within a topic. The contexts
are given both in the ESI† and our accompanying code.
“Custom” includes two pieces: some imports related to the topic
(e.g., rdkit42 for cheminf) and a single example to teach the
model how to indicate the end of a prompt completion. The
Fig. 3 650 evaluations of davinci completions by the nine coauthors
who are postdoctoral scholars or PhD students in chemistry or
chemical engineering. Scoring is described in Sec. II. We find that the
typical result quality (white dot) drops from ‘Perfect,’ to ‘Correct but
not perfect’, to ‘Runs and is almost correct’ as perceived difficulty
increased.

Digital Discovery, 2023, 2, 368–376 | 371

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Fig. 5 Comparison of the context effect across models and temper-
atures. Having a custom context is most important. Note that insert,
copyright, and authority include the “custom” context. Error bars are
95% confidence intervals from bootstrapping across individual
prompts and temperatures, and from multiple completions. Cushman
and codegen cannot perform insertions.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
imports are not just to prevent errors due to failure to include
relevant libraries—they inuence the completions and give
context. For example, a “structure” aer importing rdkit means
a bonded arrangement of atoms; in contrast, a structure aer
importing openmm43 (a molecular dynamics simulation code)
would implicitly mean a 3D arrangement of atoms, e.g. obtained
from a PDB le.

The completion example is a one line statement (e.g.,
printing the version number of an imported package) with
a comment above and #end below. This causes the LLM to end
completions with #end. We tried to ad hoc look for certain
keywords such as new function defs, returns, or comments as
completion ends, but these heuristics were oen violated. The
completion example is signicant for the Cushman model,
which can only perform completions but not insertions. For the
davinci and incoder models, we can replace this with the
“insert” contexts which have the same imports but use a model
capability to inll at a special insert token (as in Fig. 1).
Avoiding our completion example in the context seems to be
insignicant for davincni, but important for incoder.

LLMs seem to be very susceptible to conditioning contexts,
like adding the word “very” many times to improve a comple-
tion44 or stating that the code “has no bugs”. We explored this in
our benchmarks in two ways. We tried inserting copyright
notices and found, as shown in Fig. 4 and 5 that it does
signicantly improve accuracy at higher temperatures. This
makes intuitive sense; lowering the temperature makes the LLM
choose more likely completions and a copyright notice would
more oen be included with standard/quality code, thus giving
a similar effect to lowering the temperature. The best per-
forming model/temperature combination was not improved
because it already had a low temperature. We also tried
inserting the statement “This is written by an expert Python
programmer” as suggested by Austin,45 and saw slightly less
improvement. A similar recent work has found context or
specic phrases (e.g., “let's think step by step”) that elicit chain-
of-thought outputs which can give large accuracy improve-
ments.29,46 Fried et al.18 and Wei et al.35 have recently explored
using metadata, including popularity of code, as a mechanism
to condition completions, so that we do not need to use ad hoc
prompt engineering. Interestingly, the results from davinci3
Fig. 4 A comparison of accuracy of the LLMs compared in this study acro
comments/imports – generally improves accuracy across topics and mo
individual prompts and temperatures, and from multiple completions.

372 | Digital Discovery, 2023, 2, 368–376
show that the improvements to the NLP model through human
feedback removed some of the observed sensitivity30 to prompt
engineering on our examples.

Aside from contexts, there are a few strategies to ensure that
a prompt aligns the intent of a user with the completion. If the
prompt contains programming mistakes or spelling mistakes,
then the completion will be of similar quality. So a correctly
spelled and intelligible prompt is necessary.

The LLM tries to agree with each word in the prompt. If
a prompt is a function declaration and uses the phrase
“compute the moment”, the model will probably not return the
value. Thus, the word “return” should be used. If a package is
imported in the prompt, the model will try to make use of it.
This can lead to problems if many packages are imported – it
can be unexpected as to which packages the model will use, or if
the model thinks it must use all of them.

Amajor source of the errors in some of the categories such as
‘md’ is the improper use of functions from a package such as
mdtraj, in particular, improper knowledge of how many and
what type of values are returned by that function; this could be
a simple error or due to training on an earlier version of the
ss different contexts, broken down by category. Adding context– short
dels. Error bars are 95% confidence intervals from bootstrapping across

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
module; these results may be able to be improved in the future
by ‘ne tuning’ the LLM on examples from a particular package
that is frequently used in one's work, or by adding additional
context.
D. Molecular structures

Our goal is to evaluate how much chemistry LLMs know.
Besides evaluating tasks that can be expressed as programs, we
also explored whether LLMs can connect natural language
directly with molecular structures. We tested both
InstructGPT30 and davinci in these examples, but found
InstructGPT to work better. Neither could convert from molec-
ular SMILES to the name of the molecule, as demonstrated with
0% accuracy on 100 random molecules from pubchem47 when
we tried a SMILES length of less than 60 characters (relatively
small/simple molecules). The attempt from InstructGPT is
shown in the ESI.† InstructGPT was able to convert a sentence
describing a molecule into SMILES, as shown with examples in
Fig. 6. InstructGPT is able to connect functional groups from
SMILES to natural language. The molecules are not exact
matches, but there is some correlation (e.g., oxygen near a ring
for phenol and amine). It is also able to correlate molecular
properties like lipophilicity with SMILES. InstructGPT rarely
generates invalid SMILES; only the rst molecule in Fig. 6 had
a single invalid character (see the ESI† for SMILES). It appears
that InstructGPT or other LLMs could be trained/ne-tuned on
the connection between natural language and chemical struc-
tures. Recently, specic models that can translate between
Fig. 6 Generating molecules with InstructGPT (text-davinci-002).
Prompts are shown in annotations. The strongly lipophilic molecule is
C505, a polystyrene that is indeed strongly lipophilic. Most examples
contain mistakes, but were mostly valid. The top-left example had an
ambiguous ring indicator index which was removed prior to drawing.
All structures do not match the prompt exactly (indicated by
a crossed-icon), but do have details correlated with the prompt.

© 2023 The Author(s). Published by the Royal Society of Chemistry
molecular structure and natural language have also been
trained from scratch.48
E. Discussion

Davinci seems to not reason well about computational chem-
istry. If we prompt davinci to use a “highly accurate single-
point” quantum calculation in pyscf,49 it will frequently use
relativistic Hartree–Fock regardless of the property being
computed because it has memorized that “relativistic” is asso-
ciated with accurate. Another example is in the “force constant”
prompt which is meant to compute the force constant for a two-
atom harmonic oscillator with different masses given a wave-
length. Perhaps because this is an unusual variant of a common
question (converting between the force constant and wave-
length), davinci always fails on this question and is unable to
rearrange the equation to take a harmonic mean of masses.

Davinci may also hallucinate functions that do not exist. If
a difficult prompt is given, for example “return the residual
dipole couplings given a SMILES string,” the model will simply
try to use a non-existent method MolToRDC. As reported
previously,22 LLMs are not able to perform chemical reasoning
when completing prompts.

We would like to anecdotally note that the LLMs could
perform many of the benchmark problems if the natural
language was in Chinese, German, or Spanish. We did not
explore this in depth, but a few example prompts written in
Mandarin can be found in the ESI.† The use of LLMs with
prompts that are not in English may be a valuable tool for
lowering the barrier for employing computational tools for
those who are not native English speakers, and who therefore
may have a harder time interpreting documentation and
programming forums.
IV. Conclusions

LLMs are now easily available via tools like tabnine,50 copilot,51

or ChatGPT.52 We have found high accuracy on chemistry
questions, and it is inevitable that students and researchers will
begin using these tools. From our results, high accuracy should
be expected with reasonable prompts. We emphasize that our
results only give lower bounds on the chemistry knowledge in
these models, since they cover only the specic topics so far
included in our database, and further prompt engineering or
other strategies for evaluating this knowledge besides python
function writing could elicit even better results.

Tricks like inserting copyright notices at the top of a source
le seems to be another way to improve accuracy, although ne-
tuning with human feedback mitigates this effect,30 as seen in
davinci3. We found that humans are able to gauge accuracy for
easy to medium prompts, but care should be taken if using
completions of difficult prompts. The seeming ability to always
generate syntactically valid code means LLMs oen produce
something, but it is up to the user to assess it. We also found
somewhat unexpected capabilities like generating molecules
from natural language and accurate completions with non-
English prompts. For a broader discussion of what impact
Digital Discovery, 2023, 2, 368–376 | 373

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
this will have on education, we refer interested readers to our
earlier perspective article.5

Data availability

Accuracy data is available as comma separated value les in the
ESI.† Contexts are available as a markup le included in the
ESI.† The responses from the model (completions) which were
the basis for expert evaluators are available in HTML format at
https://doi.org/10.5281/zenodo.6800475. Code used to create
completions with contexts is available at https://github.com/
whitead/nlcc. Incoder model is available at https://
github.com/dpfried/incoder/blob/main/README.md. OpenAI
Codex requires an access key to use and its model and
analysis are discussed in https://arxiv.org/abs/2107.03374.

Author contributions

A. D. W. and G. M. H. wrote NLCC soware and designed the
nlcc-database, website, and human evaluation form. They
contributed examples to the nlcc-data repository, performed
data analysis, and draed the manuscript. All other authors
contributed examples to the nlcc-data repository, participated
in the expert evaluation, and assisted in writing the manuscript.

Conflicts of interest

Aer submission of this manuscript, A. D. W. worked as a paid
consultant for OpenAI, the developers of some of the models
presented in this work.

Acknowledgements

Research reported in this work was supported by the National
Institute of General Medical Sciences of the National Institutes of
Health under award number R35GM137966 (to A. D. W.) and
R35GM138312 (to G. M. H.). HAG was supported by NSF award
1751471. MA, SC, and Z. Y. were supported by NIH award
R35GM137966. G. P. W. was supported by NSF award 1764415. S.
S. and Y. S. were partially supported by NIH award R35GM138312,
WJPC by R35GM138312-02S1, and K. L. partially by Department
of Energy award DESC0020464. S. S. and K. L. were also partially
supported by the Simons Foundation Grant No. 839534. We
thank Drs Sanjib Paul, David Gomez, and Navneeth Gokul who
also contributed some examples to the repository.

References

1 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you
need, Adv. Neural Inf. Process. Syst., 2017, vol. 30.

2 J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: pre-
training of deep bidirectional transformers for language
understanding, arXiv, 2018, preprint, arXiv:1810.04805,
DOI: 10.48550/arXiv.1810.04805.

3 T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
374 | Digital Discovery, 2023, 2, 368–376
et al., Language models are few-shot learners, Adv. Neural
Inf. Process. Syst., 2020, 33, 1877.

4 A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid,
A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-
Alonso, et al., Beyond the imitation game: quantifying and
extrapolating the capabilities of language models, arXiv,
2022, preprint, arXiv:2206.04615, DOI: 10.48550/
arXiv.2206.04615.

5 G. M. Hocky and A. D. White, Natural language processing
models that automate programming will transform
chemistry research and teaching, Digit. Discovery, 2022, 1, 79.

6 S. Wang, Y. Guo, Y. Wang, H. Sun and J. Huang, Smiles-bert:
large scale unsupervised pre-training for molecular property
prediction, in Proceedings of the 10th ACM international
conference on bioinformatics, computational biology and
health informatics, 2019, pp. 429–436.

7 N. Frey, R. Soklaski, S. Axelrod, S. Samsi, R. Gomez-
Bombarelli, C. Coley and V. Gadepally, Neural scaling of
deep chemical models, ChemRxiv, 2022, preprint, DOI:
10.26434/chemrxiv-2022-3s512.

8 D. Flam-Shepherd, K. Zhu and A. Aspuru-Guzik, Language
models can learn complex molecular distributions, Nat.
Commun., 2022, 13, 1.

9 J. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi,
Y. Mroueh and P. Das, Do large scale molecular language
representations capture important structural information?,
arXiv, 2021, preprint, arXiv:2106.09553, DOI: 10.48550/
arXiv.2106.09553.

10 https://openai.com/blog/chatgpt/.
11 C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, P. J. Liu, et al., Exploring the
limits of transfer learning with a unied text-to-text
transformer, J. Mach. Learn. Res., 2020, 21, 1.

12 L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe,
C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima, et al.,
The pile: An 800 gb dataset of diverse text for language
modeling, arXiv, 2020, preprint, arXiv:2101.00027, DOI:
10.48550/arXiv.2101.00027.

13 D. Weininger, Smiles, a chemical language and information
system. 1. introduction to methodology and encoding rules,
J. Chem. Inf. Comput. Sci., 1988, 28, 31.

14 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g., want prettier #dalle
creations? ”just ask” by adding ”[very]^n beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i’m an expert python programmer. the new anthropic
paper did something similar, prexing the model’s
response with i’ve tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.5281/zenodo.6800475
https://github.com/whitead/nlcc
https://github.com/whitead/nlcc
https://github.com/dpfried/incoder/blob/main/README.md
https://github.com/dpfried/incoder/blob/main/README.md
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.26434/chemrxiv-2022-3s512
https://doi.org/10.48550/arXiv.2106.09553
https://doi.org/10.48550/arXiv.2106.09553
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/arXiv.2101.00027
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
15 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g., want prettier #dalle
creations? ”just ask” by adding ”[very]^n beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i’m an expert python programmer. the new anthropic
paper did something similar, prexing the model’s
response with i’ve tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

16 F. F. Xu, U. Alon, G. Neubig and V. J. Hellendoorn, A
systematic evaluation of large language models of code, in
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, 2022, pp. 1–10.

17 J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski,
D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, et al., Program
synthesis with large language models, arXiv, 2021,
preprint, arXiv:2108.07732, DOI: 10.1145/3520312.3534862.

18 D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W.-t. Yih, L. Zettlemoyer and M. Lewis, Incoder:
a generative model for code inlling and synthesis, arXiv,
2022, preprint, arXiv:2204.05999, DOI: 10.48550/
arXiv.2204.05999.

19 E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese and C. Xiong, A conversational paradigm for
program synthesis, arXiv, 2022, preprint, arXiv:2203.13474,
DOI: 10.48550/arXiv.2203.13474.

20 A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
et al., Language models are unsupervised multitask learners,
OpenAI blog, 2019, vol. 1, p. 9.

21 Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, et al., Codebert: A pre-
trained model for programming and natural languages,
arXiv, 2020, preprint, arXiv:2002.08155, DOI: 10.48550/
arXiv.2002.08155.

22 E. M. Bender and A. Koller, Climbing towards nlu: on
meaning, form, and understanding in the age of data, in
Proceedings of the 58th annual meeting of the association for
computational linguistics, 2020, pp. 5185–5198.

23 E. M. Bender, T. Gebru, A. McMillan-Major and
S. Shmitchell, On the dangers of stochastic parrots: Can
language models be too big?, in Proceedings of the 2021
ACM Conference on Fairness, Accountability, and
Transparency, 2021, pp. 610–623.

24 https://github.com/ur-whitelab/nlcc-data.
25 P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu,

M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Kumar,
et al., Holistic evaluation of language models, arXiv, 2022,
preprint, arXiv:2211.09110, DOI: 10.48550/arXiv.2211.09110.

26 M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. McLeavey,
J. Tworek and M. Chen, Efficient training of language
© 2023 The Author(s). Published by the Royal Society of Chemistry
models to ll in the middle, arXiv, 2022, preprint,
arXiv:2207.14255, DOI: 10.48550/arXiv.2207.14255.

27 https://Openai.com.
28 https://beta.openai.com/docs/model-index-for-researchers.
29 T. Kojima, S. S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa, Large

language models are zero-shot reasoners, arXiv, 2022,
preprint, arXiv:2205.11916, DOI: 10.48550/arXiv.2205.11916.

30 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.,
Training language models to follow instructions with
human feedback, arXiv, 2022, preprint, arXiv:2203.02155,
DOI: 10.48550/arXiv.2203.02155.

31 E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese and C. Xiong, A conversational paradigm for
program synthesis, arXiv, 2022, preprint, arXiv:2203.13474,
DOI: 10.48550/arXiv.2203.13474.

32 M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman,
et al., Evaluating large language models trained on code,
arXiv, 2021, preprint, arXiv:2107.03374, DOI: 10.48550/
arXiv.2107.03374.

33 T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al.,
Huggingface's transformers: state-of-the-art natural
language processing, arXiv, 2019, preprint,
arXiv:1910.03771, DOI: 10.48550/arXiv.1910.03771.

34 S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel,
N. V. Nayak, A. Sharma, T. Kim, M. S. Bari, T. Fevry, et al.,
Promptsource: an integrated development environment
and repository for natural language prompts, arXiv, 2022,
preprint, arXiv:2202.01279, DOI: 10.48550/arXiv.2202.01279.

35 J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le and
D. Zhou, Chain of thought prompting elicits reasoning in
large language models, arXiv, 2022, preprint,
arXiv:2201.11903, DOI: 10.48550/arXiv.2201.11903.

36 A. Fan, M. Lewis and Y. Dauphin, Hierarchical neural story
generation, arXiv, 2018, preprint, arXiv:1805.04833, DOI:
10.48550/arXiv.1805.04833.

37 A. Holtzman, J. Buys, L. Du, M. Forbes and Y. Choi, The
curious case of neural text degeneration, arXiv, 2019,
preprint, arXiv:1904.09751, DOI: 10.48550/arXiv.1904.09751.

38 https://ur-whitelab.github.io/nlcc-data/.
39 H. Khlaaf, A hazard analysis framework for code synthesis

large language models, arXiv, 2022, preprint,
arXiv:2207.14157, DOI: 10.48550/arXiv.2207.14157.

40 C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, et al., Array programming with numpy, Nature,
2020, 585, 357.

41 M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski,
T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha,
E. Aprà, T. L. Windus, et al., Nwchem: a comprehensive
and scalable open-source solution for large scale molecular
simulations, Comput. Phys. Commun., 2010, 181, 1477.

42 G. Landrum, et al., Rdkit: A Soware Suite for
Cheminformatics, Computational Chemistry, and Predictive
Modeling, Greg Landrum, 2013.
Digital Discovery, 2023, 2, 368–376 | 375

https://doi.org/10.1145/3520312.3534862
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2002.08155
https://github.com/ur-whitelab/nlcc-data
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2207.14255
https://Openai.com
https://beta.openai.com/docs/model-index-for-researchers
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2202.01279
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.1805.04833
https://doi.org/10.48550/arXiv.1904.09751
https://ur-whitelab.github.io/nlcc-data/
https://doi.org/10.48550/arXiv.2207.14157
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
Ja

nu
ar

y
20

23
. D

ow
nl

oa
de

d
on

 1
0/

31
/2

02
5

2:
45

:0
7

A
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
43 P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon,
Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett,
M. P. Harrigan, C. D. Stern, et al., Openmm 7: rapid
development of high performance algorithms for
molecular dynamics, PLoS Comput. Biol., 2017, 13, e1005659.

44 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g., want prettier #dalle
creations? ”just ask” by adding ”[very]^n beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i’m an expert python programmer. the new anthropic
paper did something similar, prexing the model’s
response with i’ve tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

45 C. Nantasenamat, “would be cool to have gpt-3 generate new
chemical structures in smiles notation?”, Twitter,
1516794237391863810, 2022 A. D. White, “as suggested by
@thedataprof, gpt-3 can actually generate molecules. very
clever idea! prompt was ”the smiles for this drug-like
molecular are:”, Twitter, 1516795519284228106, 2022 P.
Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
376 | Digital Discovery, 2023, 2, 368–376
a desired level of “reward”. e.g., want prettier #dalle
creations? ”just ask” by adding ”[very]^n beautiful”:”,
Twitter, 1532189616106881027, 2022 J. Austin, “we found
that code models get better when you prompt them with
i’m an expert python programmer. the new anthropic
paper did something similar, prexing the model’s
response with i’ve tested this function myself so i know
that it’s correct:, Twitter, 1515063524258627586, 2022.

46 Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan, et al., Training
a helpful and harmless assistant with reinforcement
learning from human feedback, arXiv, 2022, preprint,
arXiv:2204.05862, DOI: 10.48550/arXiv.2204.05862.

47 S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li,
B. A. Shoemaker, P. A. Thiessen, B. Yu, et al., Pubchem
2019 update: improved access to chemical data, Nucleic
Acids Res., 2019, 47, D1102.

48 C. Edwards, T. Lai, K. Ros, G. Honke and H. Ji, Translation
between molecules and natural language, arXiv, 2022,
preprint, arXiv:2204.11817, DOI: 10.48550/arXiv.2204.11817.

49 Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma,
et al., Pyscf: the python-based simulations of chemistry
framework, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018,
8, e1340.

50 https://www.tabnine.com/.
51 https://github.com/features/copilot.
52 https://openai.com/blog/chatgpt/.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.11817
https://www.tabnine.com/
https://github.com/features/copilot
https://openai.com/blog/chatgpt/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00087c

	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...

	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...
	Assessment of chemistry knowledge in large language models that generate codeElectronic supplementary information (ESI) available: Supporting figures,...

