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Raghavendra Selvan*de and Kirsten M. Ø. Jensen *a

Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in

materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple

monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total

scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from

seven different structure types of monometallic nanoparticles, and show that structures can be solved

from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in

the training distribution. We also apply DeepStruc to a system of hcp, fcc and stacking faulted

nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an interpolation between

hcp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our findings

suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.
Introduction

Crystallographic methods, such as single crystal and powder
diffraction, have been foundational in the development of
functional materials over the past century. They yield atomic-
scale structural models for crystalline materials and allow
establishing the links between material structure and proper-
ties that are at the heart of materials development.1,2 However,
other approaches for structure determination are needed for
nanostructured materials that have limited long-range order,
and total scattering methods such as atomic pair distribution
function (PDF) analysis have become increasingly important
tools.3–7 Currently, PDF analysis is mainly done by tting
a known starting model to an experimental PDF, a process
known as structure renement. Recent developments in auto-
mated modelling8–10 have made it possible to extend the
searched structural space, but identifying a model or solving
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a structure de novo from a PDF is still an enormous challenge.
So far, only highly symmetrical nanostructures such as the C60

buckyball have been solved ab initio from a PDF.11–15 Deter-
mining the structure of less symmetrical nanostructures is
limited by the lost information caused by PDF peak overlap,
which challenges the use of PDF for structure solution of more
complicated nanomaterials.

An approach to handle the challenges due to the information
barrier in PDFs is to employ supervised machine learning (ML)
methods that can learn fromwell-known PDF-structure pairs. In
this work, we use deep generative models (DGMs). DGMs are
a class of ML models that can estimate the underlying data
distribution from a reasonably small set of training examples.16

A well-known use case of DGMs is in the generation of synthetic
‘deep-fake’ images17,18 based on large datasets of real images.
We here train our DGM to identify new structure models by
training on known chemical structures. The DGM learns the
relation between PDF and atomic structure, which enables it to
solve monometallic nanoparticle structures, based on PDFs it
has not seen before and its learned chemical knowledge. While
determining a unique structure from a PDF is not always
a solvable problem, as several different structures may give rise
to identical PDFs, ML methods can still learn to capture the
relationship between PDF and structure and thereby push the
boundaries of nanostructure solution from PDF. When there is
not enough information in the PDF to provide a unique struc-
ture solution, ML methods may provide a distribution of start-
ing models which can aid in further structure analysis.

We apply our DGM, which we refer to as ‘DeepStruc’, for
structural analysis of a model system of monometallic
Digital Discovery, 2023, 2, 69–80 | 69
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nanoparticles (MMNPs) with seven different structure types
(Fig. 1a) and demonstrate the method for both simulated and
experimental PDFs. DeepStruc is generative, which means that
it can be used to construct structures that are not in the training
set, i.e., solve a structure from a PDF. We demonstrate this
capability on a dataset of face-centered cubic (fcc), hexagonal
closed packed (hcp) and stacking faulted structures, where
DeepStruc can recognize the stacking faulted structures as an
Fig. 1 Training DeepStruc to determine the structure of MMNPs from PD
with conditional input provided in the form of a PDF. The encoder uses
input. To obtain the structural output a latent space embedding is given a
coordinates. During training of DeepStruc both the blue and green region
during the inference process. (b) Examples of the seven different structu
simulated PDFs used as conditioning in DeepStruc. Each structure type h
and with varying lattice constants. The 3743 structures were split into tr

70 | Digital Discovery, 2023, 2, 69–80
interpolation between fcc and hcp and construct new structural
models based on a PDF.
Methods

In the following sections, we briey explain what a PDF is, how
we obtained the simulated PDFs and their structures, and
nally we elaborate on the CVAE method developed here to
Fs. (a) DeepStruc predicts the xyz-coordinates of the MMNP structure
the structure and its PDF as input while the prior only takes the PDF as
s input to the decoder which produces the corresponding MMNP xyz-
s are used, while only the green region is used for structure prediction
re types which are used as input to DeepStruc together with their (c)
as been included in the training set with varying sizes of 5 to 200 atoms
aining- (60%), validation- (20%), and testing sets (20%).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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analyse PDFs. A more detailed description of the PDF is given
elsewhere.19

The pair distribution function (PDF)

The PDF is the Fourier transform of total scattering data, which
can be obtained through X-ray, neutron, or electron scattering.
In this work we focus on the usage of X-ray total scattering data.
The scattering vector Q is dened as follows, where l is the
radiation wavelength, and q is the scattering angle:

Q ¼ 4p sinðqÞ
l

The measured scattering intensities are denoted I(Q), which
are corrected for incoherent scattering, uorescence, etc. and
normalized such that the total scattering structure function S(Q)
is obtained.

SðQÞ ¼
IðQÞ �

D
f ðQÞ2

E
þ
D
f ðQÞ

E2

D
f ðQÞ

E2

Here f is the atomic form factor. To obtain the structural real-
space information, the total scattering structure function is
Fourier transformed over the truncated Q-range, hence yielding
the reduced PDF also known as G(r):

GðrÞ ¼ 2=p

ðQmax

Qmin

Q½SðQÞ � 1� sinðQrÞdQ

G(r) can be interpreted as a histogram of real-space inter-
atomic distances and the information is equivalent to that of an
unassigned distance matrix (uDM). All PDF simulation param-
eters can be found in Section G in the ESI.† The PDFs used in
this project are normalised to have max(G(r)) = 1 as illustrated
in Section H in the ESI.†

Simulated and experimental data

To simulate the nanoparticles used in the training process of
DeepStruc, the Python library atomic simulation environment
(ASE) was used.20 The seven different structure types: fcc, bcc, sc,
hcp, icosahedral, decahedral, and octahedral were constructed
with the cluster module in ASE in the samemanner as described
by Banerjee et al.9 and Anker & Kjær et al.21 All MMNPs were
generated in sizes ranging from 5 to 200 atoms. Each MMNP
was then populated with different atoms hence changing the
lattice spacing/bond distances in the MMNP. To ensure that
there were no duplicate MMNPs within the dataset, all MMNPs
were decomposed into a distance list of all atom–atom
distances. The distance lists are a reduced format of the xyz
representation as they are rotation- and translation-invariant in
Euclidean space. All the distance-lists were sorted and duplicate
structures with equivalent distance lists were removed. This
yielded a total of 3742 unique MMNPs, see Section A in the ESI†
for the distribution of the seven structure types. The xyz-
coordinates will be the label that DeepStruc must reconstruct.
Nanoparticles with each of the seven structure types can be seen
© 2023 The Author(s). Published by the Royal Society of Chemistry
in Fig. 1b along with their simulated PDF, Fig. 1a. All the
simulation parameters used can been seen in Section G in the
ESI.†

To further investigate the latent space behaviour of Deep-
Struc, a more chemically simple and intuitive dataset was made
of fcc, hcp, and stacking faulted structures. Fcc and hcp can be
considered layered structures that are only differentiated by the
repetition of layers within the structure. Fcc consists of
a repeated ABCABC layered structure where hcp is an ABABAB
layered structure. A 5 layered stacking fault structure could then
be described as ABCAC, as it does not satisfy either of the fcc or
hcp stacking criteria. A total of 1620 stacking fault structures
were generated.

Data representation

In this work, the structures from ASE are converted into a graph-
based representation in order to capture the interatomic rela-
tionships, as the original representation generated with ASE are
not optimal as input to DeepStruc. Graph representations have
seen increasing success in machine learning applications
related to materials science as the interatomic relations in
graphs are invariant to transformations of the structure such as
solid translations and rotations.22,23 Each structure in graph
representation can be described as G = (X,A), where X ˛ R

N×F is
the node feature matrix which contains F features that can
describe each of the N atoms in the structure. We use F = 3
comprising only the Euclidean coordinates of the atom in a 3-
dimensional space. The interatomic relationships are captured
using the adjacency matrix A ˛ RN×N. In our case, the entries of
the adjacency matrix are the Euclidean distance between each
pair of atoms, resulting in a so adjacency matrix. However, to
make the adjacency matrix sparse, when the distance between
any pair of nodes is larger than the lattice constant the corre-
sponding edge weight is set to zero. When the edge weight is
zero this corresponds to absence of an edge between the pair of
nodes, and in other cases the edges have a weight given by the
interatomic distance. Section I in the ESI† shows a decahedron
consisting of seven atoms alongside the components describing
it in our chosen graph representation.

The conditional deep generative model (DGM)

DGMs such as variational autoencoders (VAEs) are commonly
used to synthesize novel, synthetic data by approximating the
underlying data-generating processes based on the training
data.24 In this work, we are interested in generating structures
based on properties such as the PDF resulting in the conditional
DGM scenario. The specic formulation of the conditional
DGM used in this work is the CVAE, initially proposed for
computer vision tasks25 and more recently it has also been
explored for synthesizing novel drug molecules.26 The CVAE in
this work is trained to solve the unassigned distance geometry
problem27 (uDGP) as it solves the task of converting the
distances within a PDF to a chemical structure. In the uDGP the
problem of taking a starting point of a list of distances and
reconstructing it into a structure is broken down into two
discrete problems. First, is to discover the graph that connects
Digital Discovery, 2023, 2, 69–80 | 71
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pairs of atoms, with the edges labelled by the distances from the
distance list (the assignment problem). Second is to embed this
graph into Euclidian space. An illustration of the CVAE can be
seen in Fig. 1a. Here, the blue area is the training process, and
the green area is the prediction/inference process. During
training of the CVAE, the encoder takes pairs of structures and
their corresponding PDFs as input. The encoder learns to map
the structure-PDF pairs into a low-dimensional, latent Gaussian
distribution, known as the encoder distribution. Each structure-
PDF pair is mapped to certain regions of the latent space. When
trained with large amounts of diverse data, the latent space is
able to capture relationships between different structures and
PDF pairs so that similar structures are closer in this latent
space than very different structures. CVAEs are different from
classical autoencoders in that the latent space is probabilistic,
which makes it possible to sample structures from these latent
encoder distributions. This is achieved during training by
forcing the posterior and prior distributions to align. The prior
distribution is generated with a much simpler network than
that of the posterior and its only input is a PDF. The two
distributions are matched by minimizing the Kullback–Leibler
divergence between the encoder and prior distributions and is
interpreted as the regularization term, Lreg.

The prior NN gets the PDF as input and maps it to the low-
dimensional prior distribution. The low-dimensional latent
vector conditioned on the PDF is then input to the decoder,
which is tasked to predict the xyz-coordinates of the structural
input. During the training process, the mean squared error
(MSE) between the xyz-coordinates of the input and output are
computed to force the decoder to predict xyx-coordinates from
the latent representations. The MSE is dened as the recon-
struction loss, Lrec. The CVAE is trained by jointly optimizing
these two loss components:

LCVAE = Lrec + bLrecg

where b is a scaling factor that controls the relative inuence of
the regularization- and reconstruction-terms. In our training
process, at initialization b is set to 0 which allows the model to
focus on minimizing Lrec. Each time Lrec gets below a certain
threshold b is increased. This helps keep the model from falling
into a local minimum and the process is repeated until
convergence has been reached. Similar strategies for annealing
b in VAEs have been attempted.28,29 At inference (test) time, the
prior NN receives the PDF as input which is then mapped to the
low-dimensional latent space which during training has been
trained to match the encoder distribution. A sufficiently well
trained CVAE is then able to predict structures from the latent
space based on the PDF input. A simplied version of the CVAE
used for this work, DeepStruc, can be seen in Fig. 1a. The CVAE
is presented more formally in our earlier work.21

Graph conditional variational autoencoder (CVAE)

In this work, two types of CVAEs were utilized depending on the
type of encoder. In the conventional CVAE, the encoder was
based on multi-layered perceptrons which operate on a tabular
format of the node features, and the adjacency matrix populated
72 | Digital Discovery, 2023, 2, 69–80
with atom–atom distances. For the second type of CVAE – that we
call the graph CVAE – the encoder consists of a graph neural
network (GNN)23,30 and is able to process graph structured data,
taking the neighbourhood information into consideration. GNNs
are generalized message passing methods that can aggregate
information from the neighbourhood of a node by passing
messages along the edges. These messages are learned during
training and can summarize the information present at the node
necessary for the downstream tasks. Further, by making the
encoder deep, i.e. adding additional GNN layers, nodes can get
access to information from nodes that are farther from them. For
instance, in a k-layered GNN each node had access to informa-
tion from nodes that are k-hops away. In our experiments, we
observed that the generative capabilities of the graph CVAE was
better than the conventional CVAE, part E in the ESI.† Further, we
were able to obtain comparable reconstruction quality from the
graph CVAE with only two latent dimensions compared to using
eight dimensions for the conventional CVAE. This indicates that
the graph encoder is able to better compress the information
present in the node and adjacency matrices. A minor technical
detail in our CVAE models is that the predictions from the
decoder do not exactly match the input features. That is, the
decoder does not reconstruct the full input comprising node
features and adjacency matrix but only the node features. The
algorithm we refer to as DeepStruc is a graph based CVAE.

Results and discussion
Training DeepStruc to determine the structure of MMNPs
from PDF data

DeepStruc, illustrated in Fig. 1a and discussed below, is a graph-
based conditional variational autoencoder (graph CVAE).
Autoencoders are a class of deep learning (DL) methods where
high-dimensional inputs, such as chemical structures,21,26 are
reduced in dimensionality. The transformation into 2 or 3
dimensional vectors is achieved using an information bottle-
neck by an encoder neural network (NN),21,31,32 and the resulting
lower-dimensional, compressed feature space is known as the
latent space. A decoder NN can reconstruct the input from these
low-dimensional representations. When the latent space is
regularized (smoothed) using normal distributions instead of
discrete points we obtain a variational autoencoder (VAE). We
have previously demonstrated that VAEs does a better job
interpolating in the latent space compared to deterministic
AEs.21 The VAE can be made to be dependent (conditioned) on
additional information by the prior NN resulting in a CVAE.32

We here use MMNP structures (Fig. 1b) as input, and condi-
tion them on their simulated PDFs (Fig. 1c). The MMNP struc-
tures span seven different structure types computed using
a variety of metals to emulate the variability in bond lengths in
real metallic nanoparticle samples. The structure types are
simple cubic (sc), body-centered cubic (bcc), face-centered cubic
(fcc), hexagonal closed packed (hcp), decahedral, icosahedral, and
octahedral, and all structure types have been constructed in sizes
from 5 to 200 atoms.We used 3743MMNP structures, whichwere
randomly split into training- (60%), validation- (20%) and testing-
sets (20%). Note that the validation and test sets are derived from
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the same underlying data distribution as the training set, and
serve as intermediaries to the actual test set which is based on the
experimental PDF data. A histogram of the distribution of the
seven structure types are provided in Section A in the ESI.†
During the training process (blue + green region Fig. 1a), Deep-
Struc learns to map the conditioning PDFs to their structures in
the latent space. Aer the training process is complete, Deep-
Struc can be used on data that have not been part of the training
set, which is referred to as ‘inference’. Further details about the
DeepStruc network can be found in the Method section.
Mapping of structures in a latent space

We rst evaluate DeepStruc's ability to map the MMNP struc-
tures in a low-dimensional latent space by investigating
Fig. 2 The two-dimensional latent space with structure reconstructio
simulated PDF. Data points from the test set are shown in solid colour and
semi-transparent. The size of the points relates to the size of the emb
increase throughout the latent space. The colour of each point resemblan
(orange), bcc (green), icosahedral (dark blue), hcp (pink), and sc (red). No
inference on PDFs from the test set.

© 2023 The Author(s). Published by the Royal Society of Chemistry
structural trends and clustering. Fig. 2 shows a visualization of
the two-dimensional latent space with selected MMNP recon-
structions indicated. The colour of the points indicates the
structure type, and the relative point size indicates the size of
the MMNP cluster. We observe that DeepStruc learns to map the
chemical structures in the latent space by size and symmetry. It
maps the cubic structure types (sc, bcc, and fcc) together, and it
learns that the octahedral MMNPs are closely related to the fcc
structure type. Interestingly, DeepStruc also allocates the dec-
ahedral structures to be in between the fcc and hcp structures.
This can be rationalized by considering that decahedral struc-
tures are constructed from ve tetrahedrally shaped fcc crystals
which are separated by {111} twin boundaries that resemble
stacking faults.9,33,34 The twin boundaries will resemble stacking
ns. The points in the latent space correspond to a structure and its
outlined. The points from the training and validation sets are shown as

edded MMNP, and the orange background indicates the general size
ces its structure type, fcc (light blue), octahedral (dark grey), decahedral
te that the structures shown here are predicted by DeepStruc during

Digital Discovery, 2023, 2, 69–80 | 73
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faulted regions of fcc justifying that they exist in the latent space
between fcc and hcp.
DeepStruc for structure determination from PDF

We now move on to identify structures directly from a PDF. The
results of using DeepStruc on seven simulated PDFs of MMNPs
not used in the training process are illustrated in Fig. 3. Here,
we show the structure that the input PDF was calculated from
Fig. 3 Structure determination from PDFs. Simulated PDFs (grey) from
the original structures of the seven different structure types (left) are
used during inference for structure prediction (right). The middle
column shows the fitted PDFs of the predicted structures to the
simulated PDFs of the original structures. Only the scale-factor,
contraction/expansion-factor, and ADP are refined, see Section B in
the ESI.†

74 | Digital Discovery, 2023, 2, 69–80
(le), the reconstructed structure (right), and its agreement with
the input PDF aer structure renement (middle, discussed
below). In all seven cases, the structures are correctly recon-
structed from the PDF input. Before structure renement, the
mean absolute error (MAE) of the atom positions is 0.128 ±

0.073 Å as described in Section B in the ESI.†However, the MAE
is articially high due to a common aberration by DeepStruc,
where it predicts the right geometric atomic arrangement, but
isotropically contracted or expanded compared to the original
structure. We do not yet understand why DeepStruc has this
aberration, but it is easily solvable by rening an expansion/
contraction variable as a post processing step to DeepStruc.
Aer rening the structure to the PDF35 by tting a contraction/
expansion factor, a scale factor and an isotropic atomic
displacement parameter (ADP), as described in Section B in the
ESI,† the MAE of the atom positions is reduced to 0.093 ± 0.058
Å. The inference is thus robust against moderate changes in
lattice parameter between a provided PDF and the structures
that DeepStruc were trained on. The reconstructed structures
exhibit some articial positional atomic disorder that broadens
the PDF peaks. The tted ADP values (Section B in the ESI†) are
thus lower than the ADP values of the conditioning PDFs.

Having established that DeepStruc works for structures
highly resembling those in the training set, we now consider
more challenging cases and explore the capabilities of Deep-
Struc on an actual test set which is far from the training
distribution. As described above, the largest structures in the
training set contained only 200 atoms.

We now evaluate it on a test set of simulated MMNPs with 5
to 1000 atoms, i.e., containing much larger particles. The latent
space obtained from this new test set is plotted using diamond
markers in Fig. 4, where the latent space from the training
process is shown with semi-transparent markers. We observe
that the trends in the training area are comparable for the
training set and the test set of larger MMNPs. Notably, the
trends of both the size and the structure types continue beyond
the training area to structures containing about 400 atoms.
Beyond 400 atoms, all structure types collapse onto a line,
however, DeepStruc still provides a size estimate of the struc-
ture. Of course, DeepStruc could be retrained on a larger
training set if reconstructions are desired on clusters larger
than 200 atoms. However, this experiment shows that Deep-
Struc can extrapolate signicantly in the latent space. It can
thereby give useful information about PDFs from structures not
represented in the training set and is generative in ameaningful
way. This can be compared to, for example, a tree-based ML-
classier, which is limited to a predened structural database
and cannot extrapolate. The capability of DeepStruc to extrap-
olate arises from each structure in the latent space being pre-
dicted as a normal distribution instead of a discrete point.

In practice, DeepStruc must be able to yield valid recon-
structed structures from experimental data that contain noise
and other aberrations. We therefore use DeepStruc to infer
structures from previously published experimental PDFs from
MMNPs. Fig. 5a shows the latent space with the predicted
location of structures from three experimental PDFs. Here, the
location in the latent space is represented as distributions
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 DeepStruc applied on PDFs of structures up to 1000 atoms. Each point is coloured after its structure type, i.e. fcc (light blue), octahedral
(dark grey), decahedral (orange), bcc (green), icosahedral (dark blue), hcp (pink), and sc (red). Each point in the latent space corresponds to
a structure based on its simulated PDF. Test PDFs from structures up to 1000 atoms are plotted as diamond markers on top of the training and
validation data which are made semi-transparent. Note that the training set latent space is identical to that plotted in Fig. 2. DeepStruc has only
been trained on structures up to 200 atoms. Three experimental PDFs (shown in Section C in the ESI†) obtained from differently sized fcc
nanocrystals estimated to contain 203 (cross marker 1), 371 (cross marker 2), and 1368 (cross marker 3) atoms are illustrated as purple cross
markers in the latent space.
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rather than as discrete points, and multiple structures are
sampled from each distribution and compared to the experi-
mental PDF to select the best candidate. The mean of the
experimental PDF distributions is represented as a black dia-
mond with three ellipsoids indicating different condence
intervals with s: 3, 5 and 7, where s is the standard deviation of
the normal distribution.

The rst experimental dataset that we evaluate was pub-
lished by Jensen et al.,36who identied a decahedral structure as
the core motif of Au144(p-MBA)60 nanoparticles. DeepStruc
locates the Au144(p-MBA)60 PDF (Fig. 5b) in a decahedral region
(orange distributions in Fig. 5a) in the latent space. Given the
generative capabilities of DeepStruc, in theory, we can sample
an unlimited number of structures for a given PDF. As described
in Section D of the ESI,† we here sampled up to 1000 structures
from the three normal distributions (s: 3, 5, and 7), and
compared their t to the experimental PDF. Fig. 5b shows the t
of the best structural prediction, which was among the struc-
tures sampled from the s: 3 distributions. DeepStruc predicts
a decahedral structure, which agrees well with the literature.36

Other structures sampled from the three distributions are
shown in Section E of the ESI,† where we also compare the
DeepStruc analysis to baseline methods. We rst consider
a brute-force structure-mining method inspired by Banerjee
et al.,37 but also compare the DeepStruc results to two simpler
ML-algorithms, namely a tree-based ML classier and a regular
CVAE without a graph-based input.

The second dataset that we evaluate, published by Quinson
et al.,38 are from 1.8 nm Pt nanoparticles with the fcc structure
(described further in Section C in the ESI†). This size
© 2023 The Author(s). Published by the Royal Society of Chemistry
corresponds to ca. 203 atoms, i.e. the number of atoms in the
particle goes slightly beyond the fcc structures in the training set
that contain only 165 atoms.38 The location of the predicted
mean is again shown as a black diamond in Fig. 5a, enclosed by
three blue ellipsoids illustrating different magnitudes of stan-
dard deviation. The mean of the predicted structure is placed
near the largest sc structures. If DeepStruc only favoured
symmetry it would be placed directly on the fcc structures.
Interestingly, DeepStruc does not purely favour size either, as it
does not position the PDF near the largest structures which are
hcp structures of 200 atoms. Instead, we observe that DeepStruc
takes both symmetry and size into account by placing the mean
predicted structure adjacent to the largest sc structures con-
taining 185 atoms. To identify the structure from the experi-
mental PDF, we again sample 1000 structures from the s: 3, 5
and 7 distributions. When tting these sampled structures to
the dataset, we obtain the best t from an fcc structure of 146
atoms that is visualized in Fig. 5c and which agrees with the
baseline models (Section E in the ESI†). DeepStruc thus iden-
ties an fcc structure even though the size of the MMNP is
outside the training set distribution.

We also attempted to input PDFs from even larger fcc
nanoparticles, estimated to have diameters of 2.2 and 3.4 nm,
corresponding to 371 and 1368 atoms, respectively (Section C in
the ESI†).38 Their positions in the latent space are shown in
Fig. 4 along with the 1.8 nm fcc nanoparticles using cross
markers labelled 1, 2, and 3 for increasing size. We observe that
they follow the trend of the simulated fcc structures discussed
above: while it is possible to estimate both size and symmetry
for the 2.2 nm particles through extrapolation, DeepStruc can
Digital Discovery, 2023, 2, 69–80 | 75
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Fig. 5 Fitting experimental PDFs with structures obtained by DeepStruc. (a) The DeepStruc latent space showing predicted latent space positions
for structures from three experimental PDFs. The predicted means are shown as diamondmarkers, which are enclosed by three rings, indicating
the sampling regions for s: 3, 5, and 7. (b) PDF fit of the reconstructed structure from the Au144(p-MBA)60 PDF36 (c) PDF fit of the reconstructed
structure from the 1.8 nm Pt nanoparticle PDF from Quinson et al.,38 (d) PDF fit of the reconstructed structure from the Au144(PET)60 PDF36 using
a hcp structure. (e) PDF fit of the reconstructed structure from the Au144(PET)60 PDF36 using an icosahedral structure. Note that the test set
structures shown here are the predicted structures from DeepStruc obtained during inference on experimental PDFs.
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only estimate size for the 3.4 nm particle. We note that the size
can be read from a PDF directly without any modelling.
However, the ability of DeepStruc to predict structures on
experimental data beyond those in the training set is promising
for future structure solution from PDF.

While DeepStruc only has been trained on simple MMNPs, we
nally evaluate it on a PDF from Au144(PET)60 nanoparticles,
consisting of an icosahedral core of 54 atoms surrounded by
a rhombicosidodecahedron shell of 60 atoms (Fig. 5d and e).36,39

We show the predicted mean position of the structure with
a black diamond enclosed by pink ellipsoids. DeepStruc positions
the PDF in the hcp region of the latent space, and when sampling
1000 structures from the distribution with s: 7, the best tting
structures is an hcp structure with 40 atoms for the Au144(PET)60
nanoparticle (Fig. 5d). Similar structures are found when
sampling from the s: 3 and s: 5 distributions. However, the PDF
t reveals that the reconstructed structure does not capture all
peaks in the experimental PDF. When considering further the
latent space, icosahedral structures are strongly underrepre-
sented in our dataset (Section A in the ESI†) which results in an
inconsistency when placing icosahedral structures in the latent
76 | Digital Discovery, 2023, 2, 69–80
space. DeepStruc is thus challenged when solving the icosahedral
core structure of the nanoparticle. However, we observe that one
of the test icosahedral structures is placed near the experimental
PDF in latent space within the s: 5 distribution. Therefore, we
again try to sample 1000 structures by moving the mean of the s:
3 distribution to the nearest cluster of icosahedral structures in
the latent space, which are located right outside the s: 7 distri-
bution. The best tting structure (Fig. 5e) captures all main peaks
of the experimental PDF. Strategies for sampling of underrepre-
sented structures is discussed further in Section D in the ESI.†
Structure determination from PDF: fcc, hcp, and stacking
faulted nanoparticles

To obtain a deeper understanding of the latent space's behav-
iour, we investigate a dataset only containing fcc, hcp, and
stacking faulted structures. Fcc and hcp structures are distin-
guished by the stacking sequence of closed packed layers in
their structures: while fcc structures can be described by
ABCABC stacking, hcp structures have ABABAB stacking.
Structures with other sequences are stacking faulted structures.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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We hypothesize that stacking faulted structures can be
considered an ‘interpolation’ in the discrete space between the
fcc and hcp structure type.40
Fig. 6 Latent space and reconstructions of stacking faulted nanoparticl
stacking sequence. The structures are shown in two dimensions, and the
semi-transparent dots in the latent space represent the training and valid
plotted in blue, hcp in pink, and the stacking faulted structures in purp
reconstructed structures from the test PDF from a fcc (ABCABC stackin
original conditioning PDFs are shown in grey, while the PDFs of the gen
difference curves are shown in green. The latent space is two-dimensio
structures shown here are the predicted structures obtained from Deep

© 2023 The Author(s). Published by the Royal Society of Chemistry
Examples of reconstructed fcc (blue), hcp (pink), and different
stacking faulted structures (purple) and their position in the new
latent space are illustrated in Fig. 6a. The MMNPs cluster in size,
es. (a) The latent space and reconstructed structures shown with their
size (number of atoms) in the third dimension is given as ‘depth’. The

ation data, and the solid dots represent the test data. Fcc structures are
le. The marker size represents the size of the structures. (b) Fits from
g), a hcp (ABABAB stacking), and two stacking faulted structures. The
erated structures are coloured according to their structure type. The
nal, hence allowing it to be directly visualized. Note that the test set
Struc during inference.
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whilst we also observe that fcc and hcp structures separate in the
latent space. It is evident that the stacking faulted structures are
located in between the fcc and hcp structures in the latent space
as hypothesized. It is chemically reasonable that they are posi-
tioned in this exact order based on their similarity to fcc and hcp.
For example, the structure with ABCABA layers, shown in Fig. 6
with a purple star is structurally close fcc. We see that it is also
located closer to the fcc structures in the latent space. On the
other hand, the structure with ABCBCB layers (marked as
a purple diamond in Fig. 6) can be considered structurally more
closely related to hcp than fcc. DeepStruc places this structure
adjacent to hcp structures of the same size in the latent space.
DeepStruc can thus insert stacking faulted structures between fcc
and hcp into the latent space in a chemically meaningful way.

Fig. 6b illustrates the ts of the reconstructed structures to
the PDF data. The difference curves indicate that the predicted
and true structures are very close to being identical, which is
supported by the MAE of the atomic positions on 0.030 ± 0.019
Å (Section F in the ESI†). While disorder causes a broadening of
the peaks, the disorder in the generated structures is minor and
structures with distinct difference between the layers and in the
correct sequence can be reconstructed to a satisfying degree.
This is a promising result, showing that a graph-based CVAE
can be used as a tool to determine the structure of stacking
faulted nanoparticles from PDFs,41,42 which is a topic of signif-
icant current interest.43–47

Conclusions

We have shown the potential of using a DGM for structure
determination from simulated and experimental PDFs. Our
graph-based CVAE algorithm, DeepStruc, provides valuable
information through its latent space, as the MMNP structures
cluster based on symmetry and size in agreement with their
structural chemistry. Using experimental data, the Au144(p-MBA)60
nanoparticle was determined to be decahedral, Pt nanoparticles
were determined to be fcc and the Au144(PET)60 was determined to
have an icosahedral core structure, all in agreement with previous
literature. While these systems are relatively simple MMNPs, we
recognise that there are more complex materials where the
measured PDF would not contain sufficient information to solve
the structure. DeepStruc would then provide a distribution of
starting models which can aid in the further structure analysis.

Our approach is only restricted by the distribution of the
structural training set. When DeepStruc is trained on fcc, hcp,
and stacking faulted structures, it will locate the stacking faul-
ted structures in between the fcc and hcp structures. This
suggests a strategy for training DeepStruc models on different
chemical systems that also ‘interpolate’ from one to another
when this can be identied. DeepStruc does not yet provide
a completely general structure solution approach, but gives
critical insight into how DGMs can interact with structural and
diffraction information to yield candidate structures and ulti-
mately structure solutions.

We plan to implement DeepStruc as part of PDF-in-the-cloud
(PDFitc.org),48 where the training data can gradually be
expanded over time. So far, the structures investigated are fairly
78 | Digital Discovery, 2023, 2, 69–80
ordered and contain some symmetry, but in the future, we plan
to expand DeepStruc to chemical systems with more atoms and
higher complexity such as metal oxide nanoparticles and alloys.
Combining the PDF conditioning with data from
complimentary techniques could prove important for structure
determination of more complex systems. Such studies would
both enable structure determination from a combined
modelling perspective, but it would also reveal fundamental
aspects of the information content of the different datasets for
solving structure problems.
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