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FEREBUS: a high-performance modern Gaussian
process regression enginey
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FEREBUS is a highly optimised Gaussian process regression (GPR) engine, which provides both model and
optimiser flexibility to produce tailored models designed for domain specific applications. FEREBUS

provides the user with the necessary tools to decide on the trade-off between time and accuracy, in

order to produce adequately accurate machine learnt models. FEREBUS has been designed from the

ground up, for deep integration in the file management pipeline (ICHOR) of the multipolar, machine

learned, polarisable force field FFLUX. As such it can produce accurate atomistic models for molecular
dynamics simulations as efficiently as possible. FEREBUS utilises both OpenMP and OpenAcc
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technologies for parallel execution of optimisation routines and offloading computation to GPU

accelerator devices with high efficiency, reaching parallel efficiency of 99%. The FORTRAN9O program

DOI: 10.1039/d2dd00082b

rsc.li/digitaldiscovery performance in a single package.

1. Introduction

Molecular dynamics (MD) simulations are becoming increas-
ingly prevalent' in the drive to complement experiment both
in biochemistry and materials science. As the applications and
scale of MD simulations increase, so does the demand on the
speed and accuracy of the simulations. Classical MD simula-
tions are fast but the traditional force fields powering them
often lack the accuracy (e.g. ref. 4) required to predict properties
independently from experiment. In contrast, ab initio simula-
tions do not face the ongoing challenge of reliable parameter-
isation but face the different challenge of solving the
Schrodinger equation “on the spot”. This way of working is
severely hampered by computational demands and thus
remains confined to relatively small systems followed over short
trajectories.

Machine learning (ML) has become an invaluable tool*** in
bridging the gap between the accuracy of ab initio simulations
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FEREBUS embodies a modern approach to a high performance GPR engine providing both flexibility and

and the speed of classical MD. Many groups contributed to an
explosion of computer programs and potentials, which typically
fall either into the category of neural networks or kernel
methods. The latter were first introduced® in atomistic poten-
tial design in 2009, while the former**'** became practical* in
solid state modelling in 2007. Although originally called krig-
ing, the ML method'’~>* we use for the construction of our force
field FFLUX is better called Gaussian process regression (GPR)
to be in line with literature practice. GPR predicts the properties
of the topological atoms>*** that are at the basis of FFLUX. Both
the atomic energies and atomic multipole moments (including
charges) originate from the same quantum topological parti-
tioning scheme. This uniformity helps in offering energies that
are consistent at both short and long range while also being
atomistic. With the availability of analytical forces,*® FFLUX
enables geometry optimisation, such as that of a peptide-
capped glycine.”” The parallelised MD program that makes
this possible is called DL_FFLUX,*® which is a local version of
DL_POLY* that we interfaced with the GPR models. The first
MD simulations are now possible, starting with one on liquid
water®*® while FFLUX simulations of molecular crystals are in the
pipeline.

This paper details the implemented features of the in-house
program FEREBUS,*"** which is tasked with generating atom-
istic GPR models. FEREBUS is a highly optimised GPR engine,
designed to produce atomistic models for MD simulations in
FFLUX. Here we report on the recent advancements in FEREBUS,
which has been designed from the ground up for increased
model flexibility, ameliorated optimiser tunability and improved
performance via GPU acceleration. Previous iterations of FER-
EBUS used a predefined mean and covariance function in the
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model definition as well as standard optimiser implementations.
The choice of mean and covariance function will heavily depend
on the application of the model as well as affecting the model
performance. Therefore, rewriting FEREBUS with the design
goals of increased flexibility whilst keeping the performance
requirements was the next logical step.

There exist many implementations of Gaussian process (GP)
regressors across a variety of languages. Some of the major ones
are GPyTorch,* GPy,** GPML,* scikit-learn,*® and libraries such
as GPflow,*” FlowMO? and GAUCHE.* The latter three regress
directly on molecular structures rather than regress in prepa-
ration of atomistic simulations, which is the focus of the
current work. For instance, many off-the-shelf regressors are
tailored towards using gradient descent optimisation. In
contrast, this paper presents a GP regressor implementation
designed from the ground up, with global optimisation through
particle swarm optimisation (PSO).

Although predictive performance is the main objective of
most off-the-shelf solutions, FEREBUS is used within the in-
house ICHOR™ pipeline, which may favour fast production of
models over their predictive performance. ICHOR implements
an active learning workflow requiring dozens of models during
an active learning run, which explains the focus on speed over
accuracy during model creation. FEREBUS provides the flexi-
bility, in both model and optimiser design.

2. Results and discussion
2.1 GPR models

GPR® is an interpolation method to produce a fit of an arbitrary
function using a given training set. The training set consists of
a set of input points, denoted as X, and a vector of corre-
sponding outputs denoted y. The GPR model interpolates
between training points using a covariance function, k, often
called a kernel function. Using the kernel function, a covariance
matrix of the training input can be calculated,

k(xl,xl) ) k(xlaxn)
R = k(X,X) = : g : 1)
k(xy, x1) k(xn, x,)

where n is the number of training points. A kernel function
simply describes the relationship between two points in space.
One of the most basic kernels is known as the radial basis
function (RBF) kernel, which is often referred to as the squared
exponential kernel,

(el
kg (xi, %;) = exp *27 (2)

d=1 21d2

where D is the number of dimensions of the input data. The RBF
kernel calculates the covariance between two points x; and x; as
a Gaussian function, the width of which is described by the
hyperparameter vector I, also known as the lengthscale. A kernel
function can have any number of hyperparameter values that
can be optimised to create the best fit of the original function.
The RBF kernel is a good overall choice for regression in
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atomistic simulation while the Matérn family of kernels are
preferred for a wide range of problems because of their capa-
bilities of for modelling rougher functions. Indeed, the RBF is
not necessarily the best choice in all situations. For example, if
a given input dimension is periodic in nature, then the RBF
kernel may struggle to extrapolate beyond the given training set.
Therefore, a kernel is needed that captures the periodicity of the
data such as the exponential sine-squared kernel, which is also
referred to simply as the periodic kernel,

oy (-
keper (xi, x;) = exp *Zlﬁ sin T (3)

d=1td

From eqn (3) it is clear that the periodic kernel has two sets
of hyperparameters: I and p. The lengthscale hyperparameters,
I, dictate how fast the covariance drops off with increasing
Euclidean distance between two (data) points. The hyper-
parameters p describe the periodicity of the system, i.e. how
often covariance should repeat itself.

If a function is known to have a general trend, for example,
a series that increases over time, then these kernels can be
combined with a linear kernel,

D e
ki (x[7 xj) = (Z cdxfx;i) (4)
d=1

where the hyperparameters ¢ and vy describe the slope of the
linear function. The linear kernel shown in eqn (4) is an
example of a non-stationary kernel because the value of the
function depends on the values of x; and x; in space instead of
just the difference between the two points. This situation is
opposed to the stationary kernels shown in eqn (2) and (3),
which rely on the distance between the points only. Therefore,
they will produce the same covariance value no matter where
the points are positioned in space, as long as the difference
remains the same. We also note that the kernel does not contain
a constant prefactor (acting as another hyperparameter), which
is equivalent of having a prefactor set to unity.

The final type of kernel implemented in FEREBUS is the
constant kernel. This is the simplest kernel: no matter what is
inputted, the covariance remains constant,

kconst(xix) = 0 (5)

where the hyperparameter ¢ can be combined with other
kernels, and optimised to make a more complex and flexible
function. The collection of hyperparameters used in each kernel
is collated into a single hyperparameter vector, @, used during
the optimisation procedure. To optimise the hyperparameters,
the log-likelihood (#.%) cost function is maximised, which is
equivalent to minimising —2.%,

1 B 1 n
P9(IX,0) = —5(y —w) 'R (y =) = 5 I|R[ = J In 21 (6)

The limiting factor when optimising GPR models is the
inversion of the covariance matrix, which scales as ¢(n?). As the
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covariance matrix is positive semi-definite, the matrix inversion
may be avoided by solving the linear system via Cholesky
decomposition, which leads to increased numerical accuracy.
The Cholesky decomposition and linear system solving is per-
formed by routines provided by the LAPACK*' library. The log-
likelihood function shown in eqn (6) is known as the
marginal log-likelihood function and is the default likelihood
function in FEREBUS. Note that in our past work we have used
the log-likelihood function instead. FEREBUS implements
a second likelihood function known as the concentrated log-
likelihood, which has been the default likelihood function in
previous work. Further details on the concentrated log-
likelihood may be found in the ESL.}

2.2 Kernel composition

A major advancement of FEREBUS compared to previous
versions of this program is the implementation of dynamic
kernel composition.*” All the kernels shown in the previous
section can be combined to create a new kernel that is designed
specifically for the domain-specific task at hand. There are
several ways to combine kernels implemented in FEREBUS,
which involve taking kernels as inputs to produce a new kernel.
For example, two kernels can be added together to create a new
summed kernel,

ksum(kyiks) = ki + ko. )

Note that the inputs to the kernels &; and k, have been
omitted for clarity. Summing two kernels forms an OR opera-
tion between the kernels. For example, if one of the kernels has
a high covariance and the other has a low covariance then the
output will still have a high covariance because they have been
summed. The result is that given the correct function, the sum
kernel can be used to extrapolate outside of the bounds of each
kernel individually.

The opposite to the OR operation is the AND operation,
which is achieved using the product kernel,

kprop(k1.k2) = ki X ky (8)

Similarly to the sum kernel, if one kernel has a high
covariance and the other has a low covariance, the product
kernel will produce a low covariance. Concomitantly, both
kernels must have a high covariance for the result to be a high
covariance.

Combining kernels using the sum or product operations
produces a new kernel. Therefore, kernels can be complex and
contain nested operations for additional flexibility. By
combining kernels together, domain-specific knowledge can be
used to capture patterns within the data, resulting in fewer data
required to model the same function. For example, if a function
displays a periodic nature whilst also showing a linear trend,
then modelling this behaviour with a single kernel would be
difficult. However, the task becomes trivial by summing a peri-
odic kernel and a linear kernel (Fig. 1).

Another useful kernel composition is the scaling kernel. This
kernel can be used to scale the output value of a kernel and can
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Fig. 1 Demonstration of the effect of combining a periodic and
a linear kernel in order to better describe the original function (all
plotted with matplotlib).

be thought of as a product between a kernel and a constant
kernel,

kscaLe(k) = o x k. 9)

FEREBUS is designed with high performance in mind.
Because the kernel is one of the hottest parts (i.e. a path where
most of the execution time is spent) of a Gaussian process
regressor's code, the kernel composition is an important
implementation issue. FEREBUS implements several kernels
that can be used on their own or composed into more complex
kernels dynamically at runtime. Because kernels are composed
at runtime, a recursive descent parser combined with a kernel
interpreter is used to construct the composite kernel prior to
optimisation. Full details of the kernel interpreter are found in
the ESL{ Producing a composite kernel prior to optimisation
removes the need to parse and reinterpret the kernel at each
kernel invocation. Instead the kernel is initialised once and
simply called at each optimisation step with new parameters. As
each kernel in a composite kernel can be computed indepen-
dently prior to combining to form the final product, FEREBUS
parallelises over separate kernel tasks. This matter is discussed
in greater detail in Section 2.8.

2.3 Active dimensions

When moving to multiple dimensions, further improvements
can be made towards the flexibility of composite kernels. When
using a kernel in a multidimensional space, the kernel function
often acts over all dimensions as shown in eqn (2)-(4). This
need not be the case because it is possible to specify and thereby
restrict the dimensions upon which a kernel acts. These speci-
fied dimensions are called the kernel's active dimensions.
Defining the active dimensions of a given kernel becomes
valuable when it is known that certain dimensions may have
different characteristics to the other dimensions of the input.
For example, if one dimension is periodic then it is beneficial to
use a periodic kernel on this dimension alone. If the other

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example of a function utilising active dimensions: (A) the true function f(x) = —0.01x;% + sin(x, + EZ + 1, (B) predicted surface using

a GPR model with an RBF kernel in both dimensions, and (C) predicted surface using a GPR model with an R%

kernel in the first dimension and

a periodic kernel in the second dimension. The GPR models for (B) and (C) were created using a training set with a range of x € [—8,8] and a test
set with a range of xi st € [—15,15]. Matplotlib was used to make the plots.
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Fig. 3 The shaded section (grey) represents the region of phase space
in which the PSO parameters will exhibit convergent behaviour.

dimensions of the input are not periodic then it would be
detrimental to use a periodic kernel over all dimensions. In this
case it may be beneficial to define a different kernel for each
dimension.

Fig. 2 shows that the GPR model benefits from using a peri-
odic kernel in the second dimension. Indeed, Fig. 2B shows that
the model produced using the RBF kernel in both dimensions
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performs well in the regions containing training data but breaks
down soon after extrapolating away from the training data. The
RBF kernel therefore requires much more data to model the
periodicity over this larger distance compared to the periodic
kernel.

If certain characteristics of a system are known, such as the
periodicity of the system, then this knowledge can be used
when defining types of kernels and active dimensions. As
discussed previously, FEREBUS is used to create GPR models
for atomistic simulations in FFLUX. Such simulations use the
atomic local frame (ALF) to define the features of a given
geometry. ALF features are split into to two parts: the first
three features refer to features between the atoms defining the
ALF while the rest are spherical polar coordinates of all atoms
outside of the ALF defined using this local frame. Three-
dimensional spherical polar coordinates are used for each
atom (r, 0, ¢), where every third feature (¢) can vary in value
from 7 to —m and as such is cyclic in nature. Such a feature is
a perfect candidate for using a periodic kernel which with
relatively few training points. The remaining features (4 and
of course r) are not cyclic and are better suited to a kernel such
as the RBF kernel. As the periodicity of the cyclic ALF feature
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604 |—— RIPSO
1 |
40
20 / g
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Fig. 4 Results for glucose: (A) the number iterations taken to converge, and (B) the predictive accuracy of the model produced using each
parameter updater using a 2130-point, 51-dimensional training set using the marginal log-likelihood function (note the minus sign on the y-axis

of (A)).
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Fig. 5 The effect on the mean absolute error (MAE) (of the model produced) of (A) the marginal log-likelihood reached, and (B) the number of
optimisation iterations. All models were produced using a 2130-point, 51-dimensional training set (glucose) with 500 validation points.

(¢) is 2m, the periodic kernel shown in eqn (3) can be

simplified to
)) (10

where d is only running over feature of the ¢ type. Removing the
periodicity hyperparameter decreases the amount of time that is
needed to optimise the hyperparameters. The rest of the non-
cyclic ALF features are modelled by the standard RBF kernel.
In general, having fewer hyperparameters to optimise leads to
a lower-dimensional loss landscape for the marginal likelihood,
which is important for active learning and Bayesian optimisa-
tion applications in which the hyperparameters are optimised
per iteration of active learning.

d d

N A
ko (xi; x;) = exp —Zl—z s |
d

d=1

2.4 Mean functions

Alongside the kernel functions, the second factor defining
a GPR model is its mean function. Theoretically any mean
function can be used to create a GPR model and, much like
swapping kernel functions, mean functions allow for the user to
add domain knowledge into the problem and thereby reduce
the reliance on the training data and kernel. For example, if the
training data are quadratic in nature then a quadratic mean
function can be used allowing for better extrapolation from the
training data.

The simplest and most common mean function used in GPR
models is the zero-mean function (g,ero). The zero-mean func-
tion is a very simple function where the output is always zero.
The zero-mean function is often most useful when using
standardised data, which naturally produces a zero-mean.

1 n=0
2 fort = 1 = Nierations do
3
4
5 if F(pgp®)-f(pgn(t-1) < 6,,, then
F(pgnt-1)
6 n=n+1
7 if n = Ny then
8 stop
9 endif
10 else
11 n=20
12 endif
13 // Update PSO parameters
14 endfor

// Update position of all particles in the swarm
// Update best fitness values of particles and swarm

Scheme 1 Relative change stopping criterion.
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Fig. 7 Parallelisation strategy for the particle swarm optimisation
algorithm in FEREBUS.

Another mean function is the constant mean function (tconst),
which produces a constant value irrespective of the inputs it is
given. The difference between the constant mean and the zero-
mean is that the user is free to select whichever value is returned
from the constant mean function. This value is often the mean

© 2023 The Author(s). Published by the Royal Society of Chemistry

of the training data but it can be optimised alongside the kernel
hyperparameters,

”zero(x) = (Oa 0, ..., 0) (11)

”const(x) = (M, My oeees :u') (12)

Using the zero-mean function and the constant mean func-
tion is also known as simple kriging and ordinary kriging,
respectively. There exists a third form of kriging termed
universal kriging, which makes use of an arbitrary mean func-
tion. An arbitrary mean function allows for great flexibility
whilst designing a GPR model. Some examples of mean func-
tions implemented in FEREBUS are the linear (uj,) and
quadratic (uquaq) mean functions,

,ulin(X*) = (X* - xmin)ﬂ * Ymin (13)

Hauad(X*) = (X* — Xin) B + Vi (14)
where @ is the parameter vector for the polynomial, xp,, is the
vector containing the minimum value of each dimension of the
training set input (X), and y;, is the minimum value of the
training set output (y), often denoted as the y-intercept. The
parameter vector (3 is calculated using simple linear regression
shown in eqn (15)-(19),

Xmin = min(X) (15)
Panin = Min(y) (16)
A= (X~ Xpin)" (17)
B =y — ymin (18)
B=(A"4)'(A"B (19)

where n = 1 or 2 for the linear or quadratic mean function,
respectively.

2.5 Particle swarm optimisation

2.5.1 Background. The likelihood function used to opti-
mise a GPR model is a non-trivial function to optimise because
the likelihood function is a non-convex, multimodal function.

Digital Discovery, 2023, 2,152-164 | 157
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Fig. 9 CPU FEREBUS benchmarks for a 2130-point, 51-dimensional
training set running for 1000 PSO iterations with the ideal scaling
based upon the serial time.

To optimise such a function, a global optimiser is preferred
such that the global optimum is found as opposed to a local
one. The global optimiser implemented in FEREBUS is the
particle swarm optimisation*»** (PSO) optimiser.

PSO is an evolutionary optimiser based on the swarming
behaviour of birds. Traditional gradient descent optimisers are
limited by the exact location of the starting position. Depending
on the starting position, a gradient descent optimiser can
become stuck in a local optimum for a potentially highly
multimodal function such as the likelihood function, which is
a major drawback. This pitfall can of course be mitigated by
restarting the optimiser in different locations but this is a time-
consuming process. On the other hand, PSO samples many
points simultaneously and then employs a communication
method to simultaneously search new areas of the objective
function whilst also moving towards the previously best-known
position. Not requiring any gradient information allows the PSO
algorithm to bypass local minima on the optimisation surface
with ease while also providing a simple implementation and

158 | Digital Discovery, 2023, 2, 152-164

fast evaluation at runtime. A thorough comparison®* between
the analytical method L-BFGS-B, PSO and another stochastic
method called differential evolution nuances the statements
above. Indeed, that systematic work concluded that PSO and
differential evolution are able to come close to the same
maximum of the concentrated log-likelihood. However, they
cannot reach the exact stationary point without refinement
through L-BFGS-B when the log-likelihood presents some long
ridges or different maxima.

As the name suggests, PSO algorithm is based upon indi-
vidual particles that swarm towards an optimum value. A given
particle (7) consists of a position vector p and a velocity vector v
where the velocity updates the position at each timestep ¢,

pt) =p0) + vt + 1) (20)

Three factors enter the calculation of the velocity for the next
iteration: (i) the particle's current velocity, (ii) the distance of the
particle to the particle's previously best-known position, and
(iii) the distance of the particle to the swarm's previously best-
known position. These three factors are known as the parti-
cle's inertia, the cognitive learning factor and the social learning
factor, respectively. Each factor has an accompanying weight to
allow for fine-tuning of how much each one influences the next
iteration's velocity. The social learning factor and the cognitive
learning factor are also multiplied by a random factor to prevent
stagnation,

vilt + 1) = wr(t) + ciri (pi (1) — pAD) + cara(Pen(?) — pi(D)) (21)

where w is the inertia weight, ¢, is the cognitive learning rate, c,
is the social learning rate, r;, and r, are random variables
chosen from a uniform distribution between 0 and 1, Di, is the
personal best known position for particle 7, and pg, is the
globally best known position of the swarm. The values w, ¢; and
¢, are known as the control parameters, the values of which can
heavily influence the performance of the PSO. Analytical studies
have shown that these control parameters must adhere to the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Details of GPU implementation in FEREBUS.
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Fig. 11 CPU versus GPU FEREBUS benchmarks for a 2130-point, 51-
dimensional training set running for 1000 PSO iterations.

following inequality for the PSO in order to exhibit convergent
behaviour,

24(1 — w?)

<
c+ 6 7 30

(22)

Plotting the inequality shown in eqn (22) produces the plot
shown in Fig. 3. Such a plot shows the region of space in which
the chosen PSO parameters will exhibit convergent behaviour.

2.5.2 PSO parameter optimisation. The control parameters
in the classical PSO algorithm are kept constant. Finding the
correct parameters for a given problem is often more of an art
than a science but can heavily affect the performance of the
optimisation algorithm. For this reason, FEREBUS implements
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GPU

| Calculate R Matrix |

several PSO variants, which allow for the automatic selection of
control parameters. Such variants are called self-adaptive PSO**
(SAPSO).

Alongside the constant parameter classical PSO algorithm,
FEREBUS implements four other algorithms: random unified
PSO (RUPSO), random individual PSO (RIPSO), unified adaptive
PSO (UAPSO*) and individual adaptive PSO (IAPSO). The
RUPSO and RIPSO algorithms are the simplest and both choose
all three control parameters at random whilst ensuring the
convergence inequality in eqn (22) is met. The RUPSO and
RIPSO algorithms aim to remove the bias from selecting a single
set of control parameters. At each timestep for each particle in
the swarm, the control parameters are selected using the
following sets of equations,

wer[-1,1] (23)
2
CIER |:0, % :| (24)
2
CrER |:0, % — C1:| (25)

where €, denotes a parameter being chosen at random using
a uniform distribution. RUPSO selects the parameters at
random for the entire swarm, once per iteration, whilst the
RIPSO algorithm selects the parameters at random for each
particle in the swarm.

For both UAPSO and IAPSO, a learning automaton is used to
select the control parameters. A learning automaton is
a machine learning algorithm designed to make a decision and
then learn from the environment (in terms of automaton litera-
ture) to improve the subsequent decision in the next iteration.
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For the purpose of the adaptive PSO algorithms, the goal is to
converge towards an optimum value. Hence, selecting control
parameters that result in moving towards this goal are rewarded
and those that work against this goal are penalised. Rewarding
a parameter results in a higher probability that the parameter
will be chosen in the subsequent iteration. Conversely, penal-
ising a parameter reduces the chance of choosing it in the
subsequent iteration.

Starting with UAPSO, a learning automaton is initialised for
each control parameter: w, ¢; and c,. To initialise a learning
automaton, three variables are required: a minimum parameter
value, a maximum parameter value and the number of param-
eters to generate. For each learning automaton an evenly spaced
set of parameters is created alongside a uniform probability
distribution. In the first iteration there is an equal chance to
choose any of the control parameters in the learning automaton
due to the uniform probability distribution. The probability of
the chosen parameters is then adjusted based on whether the
chosen parameters have improved the log-likelihood values of
the swarm. If the number of particles that improved their log-
likelihood values is greater than a fixed value 7, the parameter
i is deemed a success and rewarded using the following,

if =

Pl = {pj(t) + o, O otherwise (26)

P01 = a),

where p(t) is the probability of choosing parameter j at time ¢
and « is the reward step size. In other words, the index i only
enters eqn (26) to determine how any given parameter p; will be
updated. Conversely, if the number of particles that improved
their fitness is beneath the threshold, the selected parameter i is
penalised using the following,

pi(O)(1 =),

e n - ),

ifi=j

pilt+1) = (27)

otherwise

where £ is the penalty step size and n, is the number of actions
in the automaton. Using eqn (26) and (27), the probabilities of
choosing parameters from the automaton are tuned towards
selecting parameters that improve the fitness value of the
swarm overall. Note that IAPSO differs from UAPSO by creating
a set of learning automata for each particle in the swarm. This
means that there are many more parameter updates and
therefore many more parameter tunings throughout the opti-
misation procedure of IAPSO.

FEREBUS tested the five PSO methods on their prediction of
glucose. This is an elaborate and realistic test corresponding to
a 51-dimensional system with 500 validation points. Fig. 4

Vz'ieR[Aaa 6]7
W+ 1) =
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shows the number of iterations required to converge the log-
likelihood, with concomitant S-curves. The latter show which
percentage of the validation set returns a prediction error
smaller than a selected value (read off from the x-axis). Fig. 5
displays how the mean absolute error (MAE) varies with the
marginal log-likelihood and also with the number of iterations,
again for each of the five variants of PSO. From Fig. 4A it is clear
that each swarm updater drastically reduces the number of
iterations it takes for the PSO algorithm to converge to an
optimum. Fig. 4B shows that the quality of the reached
optimum directly affects the predictive accuracy of the models.
In other words, the lower the marginal log-likelihood function
the better the corresponding S-curve. Fig. 5A confirms this
conclusion but by using the MAE as an indicator of predictive
success. However, Fig. 5B shows that the predictive accuracy of
the model is broadly determined by the number of iterations it
takes to reach an optimum. The only exception is the slight
RUPSO/RIPSO anomaly. FEREBUS is used to generate models
during an active learning run. During such a run the training set
is iteratively improved requiring the production of a new
training set for each iteration. Most of the models during an
active learning run are primarily used to find the next point to
add to the training set and not used in a production setting.
Therefore, the ability to produce a relatively accurate model in
significantly less time is a substantial advantage where algo-
rithms such as RIPSO and RUPSO may become very useful. In
summary, trading speed for accuracy is beneficial in this case.
2.5.3 Swarm updater. One issue that may be observed
whilst using PSO is that the swarm may become stuck on
a plateau. This occurs when there is a plateau near an optimum
value. The swarm will then move towards this plateau and the
velocity of the swarm gradually reduces, further preventing the
swarm from moving past the plateau. One technique for pre-
venting becoming stuck is the forced-PSO*” algorithm (f-PSO).
The f-PSO prevents getting stuck on plateaus by forcing the
velocity of each particle, 7, to increase if the partial potential, ¢¢, in
a particular dimension, d, drops below a threshold, ¢. The partial
potential of a particle describes the particle’'s potential to move
towards or away from the global optimum value in one dimension,
¢ = e + DI + [pgo(t) — p(0). (28)
This partial potential is then used in the velocity update to
determine whether to use a forced velocity update of the particle
in a particular dimension or to use the regular update method
shown in eqn (21) (see “otherwise”), such that for each
dimension d we have,

if ¢ <o
(29)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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If the particle is currently close to the global optimum and
the velocity in the next iteration is small then the partial
potential of the particle is low and thus more likely to force
a velocity update (i.e. the partial potential falls below ¢). If the
swarm has reached a plateau and starting to group then the
partial potential for the particles on the plateau will be small,
causing forced velocity updates. This should force the particles
off the plateau. If the particles are grouping at an optimum, as
opposed to at a plateau, the forced velocity updates will not have
any effect and hence not affect the optimum reached.

2.6 Stopping criteria

Without a stopping criterion, the PSO algorithm would run
until a predetermined maximum number of iterations were
reached. This has the potential to be highly inefficient as an
optimum could be reached long before this value, which wastes
likelihood calculations and consequently much computing
time. Creating a reliable stopping criterion for the PSO algo-
rithm is a non-trivial task as each particle is performing
a separate optimisation. Hence, even if it may seem like one
particle has found an optimum, another particle may carry on
for much longer. It is not recommended to stop each particle
separately because each one finds a local optimum. This is
because the other particles that are still moving can influence
those that have currently stagnated. Due to the nature of the
swarm optimum, only updating when a particle reaches a better
optimum is also another difficulty. As a particle hits the global
optimum value, and subsequently moves away from it, it is
possible that the global optimum does not change for several
iterations whilst the swarm carries on searching. FEREBUS
implements a stopping criterion that attempts to provide
a trade-off between (i) stopping too early and producing a poor
model, and (ii) leaving the optimisation run too long and
thereby wasting computing time.

The “relative change” stopping criterion uses the difference
between the current iteration's global best-known value and the
best-known value in the previous iteration, divided by the
previously known best-known value. The relative difference is
important because different functions may have drastically
different absolute values whereas the relative difference allows
for the use a single tolerance value. If the relative difference of
the optimum value is below the tolerance (6,,) value for the
number of stall iterations (Ng.p), then the optimisation is
terminated. Waiting for several stall iterations for the difference
to remain constant (up to a certain precision given by d,)
prevents premature termination of the optimisation. The
relative-change stopping criterion has been used successfully in
previous work and is the default stopping criterion in FEREBUS.
The Scheme 1 below shows some algorithm details.

Optimising the stopping criterion parameters is a trade-off
between speed and accuracy. Fig. 6 shows the effect of the
number of stall iterations and the tolerance of the relative
difference method on three optimisation performance indica-
tors. As can be seen from Fig. 6A, decreasing the number of stall
iterations dramatically decreases the number of iterations it
takes to converge. From Fig. 6B one learns that this decrease in

© 2023 The Author(s). Published by the Royal Society of Chemistry
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optimisation iterations does not negatively impact the likeli-
hood value reached, until an Ny, value of roughly 10-15, which
is also reflected in the MAE of the model produced (shown in
Fig. 6C). Finally, the tolerance has little effect on both the
number of iterations to converge or the MAE, except for very
large values (=0.1). This is because the global best position is
only updated once a better position has been found. Thus the
cost value does not change for several iterations if a particle
briefly moves away from the global best position. Consequently,
the tolerance has little effect because the change in the best-
known position during this period is zero.

2.7 Ill-conditioned covariance matrices

During the log-likelihood calculation the linear system Ax =
b must be solved for x. Because the covariance matrix of a GPR
model is positive-definite, Cholesky factorisation is employed. If
the covariance matrix is ill-conditioned then the factorisation
will fail, which prevents the computation of the log-likelihood.
The optimisation will fail if, during the PSO, a particle is at
a position in the parameter space that produces an ill-
conditioned matrix. To prevent the failure of the optimisation
due to arriving at an ill-conditioned area of the optimisation
surface, FEREBUS reinitialises the failed particle to a new
random position with the same bounds that were used to ini-
tialise the swarm. The log-likelihood at the new position is then
calculated and, if successful, the optimisation continues;
otherwise, the particle is reinitialised again.

Finally, we note that we add the identity matrix multiplied by
a noise parameter, which is often called a nugget. This appli-
cation of jitter to the diagonal of the covariance matrix was
described in a previous publication.”®* However, for sake of
completeness we repeat here that the applied noise parameter
(which scales the added unity matrix) typically ranges between
10~'° (default unoptimised value) and 10~°. This parameter can
also be optimised. There is not much noise in our data because
poorly integrated atoms are discarded prior to the model
construction.

2.8 Parallelisation

Particle swarm optimisation allows for highly parallel execution
as the function evaluation of each particle during a swarm
update is independent of every other particle. Because the
optimisation of the hyperparameters overwhelmingly takes the
largest portion of FEREBUS's execution time, parallelising over
the particles provides an almost linear speedup given the
number of particles is equal to or greater than the number of
threads.

To ensure that there is no data race during the PSO, it is
necessary that synchronous PSO is used. Synchronous PSO
updates the global best position of the swarm once per swarm
update after all particles have been updated. This is opposed to
asynchronous PSO where after each particle's update, the global
best position is also updated. For obvious reasons the latter is
not suitable for parallelisation hence the necessity of synchro-
nous PSO.
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A second parallelisation strategy is employed at a lower level
whilst using composite kernels. While using composite kernels
to calculate the covariance between two points, two indepen-
dent covariance calculations occur, and the results are
combined. Much like as for the independent particle updates,
the covariance calculations can be executed in parallel and then
combined on a single thread. Take for example the composite
kernel k = (ky + k,) x k3, which is illustrated in Fig. 8. In serial,
each kernel value would be computed sequentially before being
combined. However, in the parallel implementation, all three
kernels will be computed simultaneously before being
combined on a single thread.

As can be seen from Fig. 9, the parallelisation strategy
implemented in FEREBUS provides almost perfect scaling as
the vast majority of FEREBUS's runtime is spent in the PSO
routine. As the current parallelisation implementation uses
OpenMP, the number of cores is limited to a single node. Future
developments will focus on extending the parallelisation to MPI
allowing for multi-node execution. Full details of the hardware
used for the benchmarks can be found in the ESL{

2.9 GPU optimisation

After optimising FEREBUS on the CPU, further optimisation
and parallelisation provide diminishing returns. To further
increase the performance of FEREBUS, parts of the FEREBUS
code were ported to run on the GPU using OpenAcc.

As can be seen from Fig. 10, FEREBUS uses the GPU to
calculate the covariance matrix (R) given a training set (X) and
a set of hyperparameters (6). The covariance matrix calculation
is a highly parallel computation involving many vector differ-
ence and dot product calculations, which is perfect for off-
loading to the GPU. When initialising FEREBUS, the training set
input (X) is copied from the CPU to the GPU asynchronously.
Subsequently, each particle's position is copied over to the GPU
when the covariance matrix is required. The covariance calcu-
lations are then performed on the GPU and the covariance
matrix (R) is then copied back to the CPU. All data copying is
carried out asynchronously allowing for more efficient data
transfer and latency hiding.

The GPU implementation can be combined with the PSO
parallelisation strategy outlined in Section 7 to further improve
performance. Using the parallel PSO implementation outlined
in Fig. 7, during each swarm update, each particle is running on
an independent thread. During a particle update, the covari-
ance matrix for the particle's position in search space must be
computed invoking a call to the GPU. As shown in Fig. 10, this
call involves transferring the hyperparameters to the GPU and
then transferring the covariance matrix back. Using a single
stream for this data transfer would destroy any performance
gain from parallelisation because each particle would have to
wait for the previous particle's data to transfer to and from the
GPU. Instead, multiple streams are utilised so that each thread
can transfer data independently of the other threads.

Fig. 11 shows that, on average, the GPU code is 4.2 times
faster than the CPU implementation, which is comparable to
a realistic speedup® using a GPU. GPU speedup compared to
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CPU code is limited by two factors: (i) the performance of the
GPU code, and (ii) the time it takes to transfer data to and from
the GPU. From Fig. 10 it is clear that there are many more
opportunities to transfer computation to the GPU. For example,
porting the log-likelihood calculation to the GPU would remove
the requirement of transferring the covariance matrix from the
GPU and replace this transfer with the transfer of a scalar value.
The GPU benchmarks were run on a V100 compute node with
the CPU specs matching the CPU benchmarks where each GPU
is limited to 8 cores. Full details of the hardware used for the
CPU and GPU benchmarks can be found in the ESL}

2.10 Future work

For the high-dimensional problems considered here we will
consider high-dimensional modelling strategies as sources for
future work. Such strategies include TuRBO,*® which uses trust
region optimisation and has been found to operate well in GP-
based surrogate Bayesian optimisation loops (the performance
of which will likely carry over to active learning). Additionally,
projection-based methods such as variational autoencoders™
may offer strategies for mitigating against the high-
dimensionality of the input space.

In general, FEREBUS has been written as a library, which
explains the separation of the code into an ‘app’ and a ‘src’
directory where the ‘app’ uses the ‘src’ library to perform GPR. The
kernels implemented in FEREBUS can be algebraically combined,
statically in code (for example using ‘k = k; + k, x k3’) or read from
a configuration file and generated dynamically at runtime using
the ‘KernelInterpreter’ and ‘KernelConfigList’ (for example, ‘k =
kernel_interpreter%interpret(“k1+k2*k3”, kernel_config list)),
which serves both use cases. Therefore, the kernel can be updated
dynamically at runtime and the model retrained at runtime when
new data becomes available. What FEREBUS currently lacks for an
MD code such as FLARE is a prediction subroutine as FEREBUS
has been designed for training only but an inference feature
would not be a significant addition.

3. Conclusions

GPR models are at the centre of the FFLUX pipeline. The
accuracy of the model produced by the FORTRAN90 program
FEREBUS directly affects the accuracy of the simulations carried
out. FEREBUS must keep up with the latest advancements in
GPR research and optimisation procedures to get the most out
of FFLUX. Advancements in kernel composition and active
dimensions are proving their worth, universal mean functions
can open the door to more robust models for simulations and
performance improvements allow for much larger models to be
trained within a reasonable amount of time.

The time taken to train a model is made even more impor-
tant whilst using FEREBUS inside an active learning workflow
as a model must be retrained for each active learning iteration.
Using the self-adaptive Particle Swarm Optimisation (PSO)
algorithms implemented in FEREBUS, allows the user to
determine a time versus accuracy trade-off that makes sense for
the specific application. Less accurate models may be produced
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much quicker to reduce the iteration time of the active learning
method whilst allowing for a final optimisation with constant
parameters to produce a high accuracy production model.

OpenAcc was demonstrated as the initial GPU implementa-
tion for FEREBUS in order to accelerate the computation of the
covariance matrix. Further developments may move more of the
computation over to the GPU such as the log-likelihood calcu-
lation. This will reduce the time spent waiting for data transfer
between the host and device leading to further performance
gains.

OpenMP was used effectively both as a CPU only and GPU
implementation to provide almost perfect scaling with the
number of cores. The CPU-only code provides an average
parallel efficiency of 96% due to the inherent parallelisability of
the PSO algorithm, which allows highly concurrent computa-
tion of various positions on the cost function surface. The
OpenMP implementation was also effectively integrated with
the GPU implementation to open multiple streams to the GPU
allowing for efficient asynchronous data transfer. The OpenAcc-
OpenMP GPU implementation provides an average parallel
efficiency of 88% and an average speedup factor of 4.2 over the
CPU implementation.

FEREBUS has been consistently demonstrated to produce
accurate GPR models using training sets with input features
defined by an Atomic Local Frame (ALF). However, other types
of features (as described in work of other research groups) can
be used in conjunction with FEREBUS because its architecture
is independent of the feature type (or output type). Due to both
its CPU and GPU parallelisation, FEREBUS is placed as a high-
performance alternative to commonly used Python packages,
such as GPy and scikit-learn, whilst maintaining the flexibility
that Python packages offer. Unlike previous versions, FER-
EBUS7 is not restricted to a single mean and kernel function.
Instead FEREBUS7 can produce GPR models for a wide variety
of problem spaces, not only limited to chemistry. In fact, the
free availability of FEREBUS7 makes it possible to add one's
own kernel to it. A further remarkable attribute of FEREBUS is
its incorporation of PSO. A particle is re-initialised when an ill-
conditioned covariance matrix appears, which adds to the
robustness of FEREBUS. Finally, we note that FEREBUS always
optimises its hyperparameters thereby ensuring the best
predictive performance of the models it generates.

FEREBUS provides the tools for generating tailored GPR
models in an efficient manner. Due to the specific requirements
of the FFLUX pipeline, it is not always necessarily advantageous
to invest the time in producing the most accurate model as
intermediate models within an active learning run are not likely
to be used in a FFLUX simulation. Providing the user with the
tools to determine the time-accuracy trade-off is an invaluable
asset. Packaging the functionality into a highly optimised and
GPU accelerated codebase is key to producing accurate, high-
dimensional GPR models with many thousands of training
points.

Software information

Project Name: FEREBU-v7
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Project

FEREBUS-v7
Operating System: Linux
Programming Language: Fortran90
License: MIT

home page: https://github.com/popelier-group/
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