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ntation of interatomic distances as
a similarity measure for crystal structures†

Rui-Zhi Zhang, a Sohan Seth b and James Cumby *a

Determining how similar two materials are in terms of both atomic composition and crystallographic

structure remains a challenge, the solution of which would enable generalised machine learning using

crystal structure data. We demonstrate a new method of describing crystal structures based on

interatomic distances, termed the Grouped Representation of Interatomic Distances (GRID). This fast to

compute descriptor can equally be applied to crystalline or disordered materials, and encodes additional

information beyond pairwise distances, such as coordination environments. Combined with earth

mover's distance as a measure of similarity, we show that GRID is able to quantitatively compare

materials involving both short- and long-range structural variation. Using this new material descriptor,

we show that it can accurately predict bulk moduli using a simple nearest-neighbour model, and that

the resulting similarity shows good generalisability across multiple materials properties.
Introduction

The exponential increase in crystal structures deposited in
databases such as the inorganic crystal structure database
(ICSD1) and Cambridge structural database (CSD2) continually
expands our exploration of a multi-dimensional “structure-
composition” (S-C) space. The arrangement of atoms and their
types dened within this S-C space is intrinsically linked to all
physical properties of a material; if two materials are proximate
in S-C space, their properties are similar. For example, diamond
and cubic boron nitride both adopt a cubic diamond structure,
and carbon atoms are chemically similar to both boron and
nitrogen. As a result, both materials are super-hard.3 In
contrast, diamond and graphite are compositionally identical
but structurally distinct, giving very different properties for
these polymorphs. Although this is a trivial example, the same
approach could be applied to almost any problem. Although
conceptually simple, the challenge of this idea lies in how to
dene S-C space so that proximity correctly reects the physical
property of interest. Indeed, some properties may only depend
on some of the S-C dimensions. For instance, the crystal eld
splitting important for solid state phosphors is strongly
dependent on the local bond lengths, angles and ligand species,
but largely independent of longer-range crystal structure. In
contrast, charge density waves (which are intertwined with
superconductivity) are inherently a long-range effect. Existing
h, Edinburgh, EH9 3FJ, UK. E-mail: james.
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approaches to determine similarity between atomic structure
tend to focus on either long-range similarity or short-range
(local) environments. Long range methods are primarily con-
cerned with comparing crystallographic symmetry and Wyckoff
positions4,5 and/or directly minimising the distance between
periodic point sets through mapping.6–8 In contrast, short-range
approaches typically focus on matching local coordination
environments and quantifying their similarity to different
geometric environments,9 and then combining all environ-
ments to determine overall crystal similarity.10 Additionally,
many of these algorithms neglect overall scale in order to group
materials into structural prototypes, limiting their usefulness
for properties that depend on lattice volume.‡ Although recent
work has begun to address both long- and short-range similarity
on an equal footing (for example ref. 10) it remains a signicant
challenge to quickly and accurately reect the similarity within
S-C space, whilst ensuring that small structure (or composi-
tional) changes do not lead to discontinuous behaviour.

Machine learning (ML) offers a readily available framework
to t models within a multidimensional S-C space, but a de-
nition of this space is still required. For crystalline materials in
particular, this presents a problem. The standard way of rep-
resenting structures based on a unit cell and atomic coordi-
nates is not a suitable construction of S-C space; the innite
possible unit cell denitions for the same material result in
a non-unique representation, and small atomic shis can
result in discontinuous changes in unit cell metric (e.g. by
forming supercells). To overcome this limitation, it is common
‡ Strictly speaking, the degree of similarity between two structures considering
lattice scaling is a measure of mathematical congruence rather than similarity,
however, we use the term similarity throughout this manuscript for simplicity.
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to use crystal descriptors (also known as features) that repre-
sent a crystal structure in a unique way to allow direct
comparisons. A range of descriptors exist for both organic and
inorganic materials, and these typically focus on either the
entire structure or on combining local structural features into
materials' “ngerprints”. A huge range of features are avail-
able (see for example ref. 11 or 12 for reviews) ranging from
single-value metrics such as the Shannon entropy of a struc-
ture13 or variance in bond lengths,14 through vector descrip-
tions such as the “bag of bonds”,15 all the way to multi-
dimensional features based on polynomial expansions of
radial or angular functions.16,17 Features oen focus on atom-
centred functions (such as atomic ngerprints or smooth
overlap of atomic positions, SOAP)18,19 but for extended solids
it is also possible to work with the Fourier-transformed atomic
positions (i.e. diffraction-based).20 Unfortunately, many exist-
ing approaches do not scale to different numbers of atoms in
the unit cell, or the number of terms increases exponentially.
More recently, successful results have been obtained using
descriptions based on the bonding connectivity within mate-
rials, oen incorporating additional atomic features.21–23

Unfortunately, these approaches require non-standard ML
architectures which are not suited to all problems. A common
aspect of many existing approaches is that they treat structural
and compositional information together. Separating them
would allow amore exible approach to constructing S-C space
depending on the problem in hand, for instance emphasising
structure over composition.

One of the simplest, least-parameterised features to
describe atomic structure is simply the pairwise interatomic
distances, or radial distribution function (RDF). While fast to
compute, the RDF is an oversimplied crystal representation
for ML as three structural dimensions are compressed to one.
As such, related methods have been developed to include
additional information, such embedding atomic species
information (partial RDF or the Coulomb matrix)24,25 or bond
angles (many-body tensor representation, MBTR).26 Unfortu-
nately, the size of both of these descriptors varies with the
number of atomic species in a material, while established ML
applications require a xed descriptor size. Here we develop
a method of encoding pairwise distance information called the
Grouped Representation of Interatomic Distances (GRID).
GRID encodes more information than RDF, whilst retaining its
computational speed and insensitivity to the number of atoms
present. GRID has been developed independently from
a related approach (average minimum distance) which has
recently been extended to pointwise distance distributions,
and both have been proved to uniquely describe periodic point
sets.27,28 Because each unique distance appears twice in GRID,
the asymmetric unit of a periodic structure can therefore be
reconstructed from its GRID using a process of elimination,
excluding chirality. To demonstrate the applicability of GRID
to materials problems, we present its use in quantifying
similarity between crystal structures as well as its effectiveness
in predicting bulk modulus based on crystallographic
structure.
82 | Digital Discovery, 2023, 2, 81–90
Methods
Code

All data processing was performed using code written in Python
3.8. The most recent version of the code is freely available from
https://github.com/CumbyLab/gridrdf, while a static version
associated with this manuscript is available at DOI 10.5281/
zenodo.7271754. Crystal properties and structural data were
collected and processed using tools within the pymatgen
python package, including calculation of pairwise distances.29

Machine-learning models were dened and optimised using
scikit-learn.30 Earth mover's distance (EMD) and cosine
distance were calculated using scipy.stats.wasserstein_distance
and scipy.spatial.distance.cosine, respectively.
Bulk modulus dataset

Materials with associated bulk modulus (K) calculations were
extracted from the Materials Project (v2020.06) database using
the materials API,31,32 totalling 13 172 materials. Anomalous
entries with K# 0 were removed (12). To facilitate analysis, only
entries with elements up to Bi (atomic number 83) exclusive of
noble gas elements were kept. This means that, specically to
this dataset, entries with elements Ne, Kr and Ac–Pu were
removed (788 materials). GRIDs were calculated to a maximum
distance of 10 Å (see results for algorithm). Extremely low-
density structures with fewer than 100 histogram ‘groups’ at
10 Å (194 materials) were omitted from analysis, leaving 12 178
materials in the analysed data. The distribution of the resulting
bulk moduli range from 0–600 GPa, with most materials below
100 GPa (Fig. S1†).
Machine learning model training

k-Nearest neighbours (kNN) regression models33 were imple-
mented using the KNeighborsRegressor function in scikit-
learn using pre-computed dissimilarity matrices. For simpli-
cation and to facilitate further analysis, k = 1 was used;
considering more than one neighbour (k > 1) provided only
a slight improvement in performance (Fig. S2†). A 5-fold
random cross-validation implemented in scikit-learn was used
to calculate the mean absolute error (MAE) as a function of the
number of training samples. The k closest neighbours of each
structure in the dataset were found using the n-smallest
method implemented in Pandas and the pre-computed
dissimilarity matrix.

Kernel ridge regression (KRR) models were implemented
using the KernelRidge function in scikit-learn. Linear and
radial basis function (RBF) kernels were tested, with 5-fold
cross validation used to optimise the regularization and
kernel width hyper-parameters in the logarithmic ranges 100–
10−3 (4 steps) and 10−2–102 (50 steps), respectively. Minimum
MAE was achieved with a linear kernel and regularization
value of 1.

Visualisations using t-distributed stochastic neighbour
embedding (t-SNE) were generated using scikit-learn, with
a perplexity of 50.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Composition similarity metric

The compositional similarity matrix was determined for 78
elemental pairs (atomic numbers to bismuth, excluding noble
gases elements). Pairwise distances were computed based on
previously reported similarity values (gAB)34 which were them-
selves computed from data-mining of literature crystal structures.
To convert similarities to dissimilarities, we take the reciprocal
logarithm of the original values, diss(A, B) = 1/log10(gAB + 1).
While Hautier et al.34 give similarity measures for multiple
oxidation states for some elements, we have adopted the most
commonly observed oxidation state for each element to avoid
the need to estimate valence. To account for missing AB pairs in
the original publication, we assign pairs containing Pm the
corresponding Sm values, and otherwise set missing values to
an arbitrary large dissimilarity (gAB = 10−5) as a missing pair
would suggest that substitution has not been experimentally
observed. Given the overlap in data between the Materials
Project and ICSD, we do not expect many materials to require
these missing gAB pairs. Fig. S3† shows the resulting composi-
tional distance matrix, with elements arranged according to the
Pettifor scale which places chemically similar elements near to
each other.35 Blocks of similar distance can clearly be observed
for chemically related elements (e.g. rare-earths), as can the
large distances between e.g. anions and cations. Note that
Fig. S3† visualises log(diss(A, B)) to avoid the effect of extremely
large values, whilst our compositional similarity calculations
use diss(A, B). Fig. S4† shows the distributions of EMD values
for composition and structure, respectively. As only small values
are useful in the kNN model, only the smallest EMD values
(Fig. S4a and b†) and the average of 10 smallest EMD values
(Fig. S4c and d†) are shown.
Fig. 1 (a) Crystal structure of a simulated cubic perovskite and (b) the
first eight calculated GRID groups.
Results and discussion
GRID as a distance measure

The procedure to calculate the GRID is as follows: (1) compute
all pairwise distances up to an arbitrary cutoff (here 10 Å)
starting from each symmetry-unique atom (j) within the unit
cell, taking periodic boundary conditions into account; (2) rank
the distances dj = {d1j,., dij,.} in ascending order and then
assign the ith-ranked value to the ith GRID ‘group’; (3) to ach-
ieve a xed-length descriptor, discretize the dij values of the ith
group into a binned histogram, aer smoothing them using
a squared exponential kernel to avoid discontinuous jumps
between bins caused by numerical or experimental error;

FiðnÞ ¼
ðnDd
ðn�1ÞDd

P
je

�ðx�dijÞ2
2s2

a
dx (1)

where Fi(n) is the atom density in bin n (bin width= Dd, here 0.1
Å) normalised by the number of symmetry unique atoms a, dij is
the ith-ranked distance for atom j and s is the standard devia-
tion of the exponential smoothing applied to each distance
(here 0.1 Å). Normalizing the resulting histogram enables
comparison between structures with different numbers of
atoms. The nal GRID descriptor is formed by concatenating
© 2023 The Author(s). Published by the Royal Society of Chemistry
the histograms of the rst 100 groups, enabling numerical
comparison between structures with different average density.
Selecting the rst 100 groups does not strictly enforce the 10 Å
limit initially choosen, instead giving a skewed distribution of
maximum distances peaking around 7.5 Å (Fig. S5†). This is
sufficient to capture the structural features presented here, but
longer distances could be considered at the expense of
computational complexity.

As an illustrative example, Fig. 1 shows a simulated cubic
perovskite ABX3, and the rst 8 groups of the corresponding
GRID. From Fig. 1b, the coordination number of each atom
within the perovskite is readily apparent; as the rst two groups
are identical but different to the 3rd group, one of the atoms (X)
must have a coordination number of two. Similarly, the changes
between 6th and 7th groups suggests a coordination number of
six must be present (B). Whilst this sort of manual analysis
becomes more challenging for complex or low-symmetry
structures, the coordination number and local symmetry is
inherently embedded within the GRID. This reduces the data
loss in converting 3D coordinates into a 1D histogram
compared with the RDF. It is worth noting, however, that
summation of all GRID groups will recover the traditional RDF
distribution.

As a demonstration of the effectiveness of the GRID in
quantifying structural similarity, we have constructed three test
Digital Discovery, 2023, 2, 81–90 | 83
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examples in order to investigate different aspects of structural
similarity: (1) structures formed by the variable intergrowth of
two sub-units; (2) changes due to atomic displacements such as
at a phase transitions; and (3) the effect of lattice parameter
variations. Between them these examples cover long-range
structure, short-range variations and changes to overall
symmetry, demonstrating the wide applicability of this
descriptor to structural comparisons. While GRID focusses on
the structural aspect of S-C space, we will show later in this
manuscript that it can also be combined with a measure of
compositional similarity.

Whilst the Euclidean distance is widely used to quantify
difference between twomulti-dimensional vectors, it is not well-
suited to discrete distributions such as the GRID because of
insensitivity to redistribution between bins. To illustrate this,
the distribution X = [0, 1, 0, 0, 0] (with X representing the rst
ve bins of an RDF) will have the same Euclidean distance to Y
= [1, 0, 0, 0, 0] and Z = [0, 0, 0, 0, 1], although X and Y are closer
if viewed as a binned distribution. A more appropriate measure
of distance for such distributions is the earth mover's distance
(EMD). This metric (also known as the Wasserstein distance)
can be considered as the minimum amount of ‘work’ needed to
Fig. 2 Pairwise-comparison of EMD distances calculated using GRID and
with varying Ti atomic displacements; (g–i) simulated cubic perovskite w

84 | Digital Discovery, 2023, 2, 81–90
transform one distribution into another, analogous to moving
piles of earth (identical distributions have EMD = 0). Such
a metric has recently been suggested as a way to quantify
compositional similarity in inorganic materials.36 In this work,
we have used EMD to compare between GRID distributions by
computing the 1D pairwise (ith–ith) distances, before nally
computing the mean EMD across all GRID groups. Note,
however, that a different weighting within the mean could be
applied to favour short- or long-range similarity, or alternatively
a 2D EMD could compare across all GRID groups at once, at the
expense of computational time. This approach could be bene-
cial in situations where a property depends more strongly on
short-range or long-range structural features, by biasing the
overall EMD to emphasise short- or long-range similarity.
Composite structures

The rst example is based on the Ruddlesden–Popper (R–P)
series Srn+1TinO3n+1, which can be considered as a composite
structure of variable-width perovskite units (width determined
by n) separated by single rock-salt layers. Here we consider four
structures (optimised using density functional theory, DFT)
RDF for: (a–c) Ruddlesden–Popper phases Srn+1TinO2n+1; (d–f) BaTiO3

ith linearly varying lattice parameters.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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from the Materials Project (Fig. 2a): rock-salt SrO (n = 0, mp-
2472), Sr2TiO4 (n = 1, mp-5532), Sr3Ti2O7 (n = 2, mp-3349)
and perovskite SrTiO3 (n = N, mp-5229). The results of GRID
dissimilarity calculated using EMD (Fig. 2b) show that the
distance from SrO increases with n. This agrees with the
chemical intuition; as n increases the ratio of rock-salt to
perovskite layers reduces. Importantly, SrO (n = 0) and SrTiO3

(n = N) appear most dissimilar, as expected. In contrast, EMD
calculated using the RDF (Fig. 2c) nds SrO and SrTiO3 to be the
most similar pair, against chemical intuition. We have also
tested the commonly used cosine distance (Fig. S6†) and nd
that although the same broad trend is reproduced using the
GRID and RDF, the quantitative discrimination between the
different R–P phases is much reduced.

Atomic displacements

Our second simulated example is based on idealized displace-
ments of the B-site cation within a cubic perovskite, such as those
important for ferroelectricity in BaTiO3.37 The simulated dataset
consists of six structures with varying B-site displacements, whilst
articially maintaining the same cubic unit cell metric to separate
atomic from lattice effects (Table S1†). By applying B-site
displacements of 0.04 Å along the [0, 0, 1], [1, 1, 0] and [1, 1, 1]
crystallographic directions as well as varying themagnitude of the
displacement along [0, 0, 1], we are able to compare the inuence
of B-site displacement on the dissimilarity measure. The results
of pairwise EMD calculated using GRID (Fig. 2e) show that larger
displacements do indeed give larger distance from the parent
structure. We nd that the displacement distance has a stronger
effect than displacement direction on the similarity distance,
which can be understood from the radial nature of GRID. There
are, however, slight differences in EMD between the different
displacement directions, showing that the GRID does encode
some angular information for periodic structures. In comparison,
equivalent EMD results using the RDF (Fig. 2f) show that while
RDF captures the magnitude of atomic displacement, it does not
distinguish displacement in different directions.

Lattice expansion

A signicant drawback to existing RDF-based descriptors is that
two structures identical apart from isotropic lattice expansion
will give completely different RDFs. To test this, we have
simulated 61 cubic (space group Pm�3m) perovskite structures
with lattice constants ranging from 3 Å to 6 Å (Da = 0.05 Å),
chosen to coincide the range of cubic perovskite lattice constant
found in the Materials Project (3.05 Å–6.12 Å). Fig. 2h shows the
pairwise EMD between structures for each lattice constant, and
reveals a continuous increase with lattice constant difference. It
is intuitive that as a structure expands it becomes less similar to
the starting point, but this is in stark contrast with the RDF
(Fig. 2i) which shows discrete jumps in EMD across the same
range. We attribute this behaviour to the signicant degeneracy
of interatomic distances at large separations in the RDF, and
the different rate at which these change with isotropic expan-
sion. As these distances move into different RDF bins during
expansion, the minimum EMD changes discontinuously due to
© 2023 The Author(s). Published by the Royal Society of Chemistry
a change in EMD ow, as histogram ‘mass’ is preferentially
moved to a different bin. A similar comparison using cosine
distance (Fig. S6e and f†) reveals that cosine distance using
GRID only gives sensible dissimilarities for numerically close
lattice parameters, while cosine distance on the RDF shows
even more discontinuities than EMD.

From these examples, it is clear that the GRID outperforms
the RDF in all cases using either the EMD or cosine distance
metrics, although the EMD gives more chemically intuitive
dissimilarities. For this reason, the remaining results will focus
on EMD as a useful measure of dissimilarity within S-C space.
Predicting bulk modulus

To demonstrate the effectiveness of GRID in quantifying
structural similarity with EMD, the following results demon-
strate its use in predicting bulk modulus (K) from crystal
structures. Bulk modulus is an important parameter related to
many technologically important properties such as lattice
thermal conductivity and mechanical deformation. There are
several existing literature reports of ML-based prediction of K
(Table S2†) using different datasets, input features andmachine
learning algorithms. Comparison between these studies is
challenging due to the different data sets and metrics used and
whether the model is tted on a linear or logarithmic scale, but
the current state of the art methods using data from the
Materials Project achieve a MAE of around 10 GPa (or 0.05 using
log10(K/GPa) as input).38,39

Using DFT-simulated bulk moduli obtained from the mate-
rials project (12 178 entries aer cleaning, see Methods) we have
computed the GRID for each material and determined the EMD
between all structure pairs (the ‘dissimilarity matrix’). Such
a dissimilarity matrix can be used directly to train a number of
ML models; in this case we have used the simplest approach of
interpolating between the values of the k-nearest neighbouring
points (kNN). A kNN approach relies on the similarity matrix
accurately representing proximity within S-C space, and also
that the available data effectively sample this S-C space. For
comparison, we have also trained a kernel ridge regression
(KRR) model using a linear kernel (see Methods); for well-
sampled data these two approaches should replicate each other.

Fig. 3 shows the MAE of bulk modulus prediction as a func-
tion of the training set size using both kNN and KRR. As ex-
pected the MAE decreases with greater sampling of S-C space,
but importantly the kNN and KRR approaches give the same
behaviour, i.e. the training and test data are sufficiently close
that bulk modulus can be successfully predicted by the nearest
neighbour. Notably, kNN actually out-performs KRR in most
models, except when using only composition and training on
fewer than 4000 samples. When using only composition as
a feature, KRR is insensitive to the number of training samples,
likely due to the short elemental vector (size of 78) compared to
the large S-C space.

Based on GRID alone, the model approaches a minimum
MAE of 33 GPa. Given that this model contains no composition
information it is remarkably accurate, but has a fundamental
limit; two materials with the same structure but different
Digital Discovery, 2023, 2, 81–90 | 85
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Fig. 3 Prediction error of bulk modulus as a function of training set
size. The error bars are from 5-fold cross-validation as implemented in
scikit-learn. KRR and kNN results are shown using colour and marker
style, while different line styles correspond to different input features:
composition (dots), GRID only (dash) and composition + GRID (solid).

Fig. 4 Predicted bulk modulus vs. DFT-computed value for the whole
dataset using kNN model and combined GRID and composition
dissimilarity matrix.
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composition will necessarily have the same predicted bulk
modulus. It is therefore informative to consider how many
materials within our data possess the same GRID; by comparing
pairs of GRIDs we nd that there are 279 non-unique GRIDs,
shared across 582 materials (i.e. two or three materials have the
same GRID). As an example, ScGaNi2 and PtAlLi2 (Fig. S7†) have
identical GRIDs (EMD= 0) but have bulkmoduli of 130 GPa and
88 GPa, respectively. Thus, structurally identical but composi-
tionally distinct structures represent roughly 5% of the total
dataset. It is worth noting that the number of structures with
the same GRID will decrease with a greater distance cut off and/
or smaller exponential smoothing of distances, at the expense
of larger feature spaces (requiring more computational
resources).

To address the absence of compositional information, we
have therefore combined our GRID EMD with a similar
compositional EMD, in amodied version of that demonstrated
by Hargreaves et al.36 Our method represents the normalised
elemental fractions as a 78-element vector in atomic number
order (considering elements up to Bi, but excluding noble
gases); taking SrTiO3 as a representative example would give
values of 0.6, 0.2 and 0.2 at the 7th, 19th and 34th elements in
this vector, respectively. Rather than ordering this vector by
Pettifor scale and computing EMD directly as in ref. 36, we
instead introduce a pairwise dissimilarity metric (Fig. S3†)
between elements based on the statistical likelihood of species
occurring within the same crystal structure (see Methods).36 The
Table 1 Prediction of bulk modulus using kNN and different dissimila
Statistics are computed using absolute errors (in GPa)

Similarity method MAE Standard

GRID – EMD 32.64 41.46
GRID – cosine 32.65 41.72
Composition – EMD 22.48 35.54
Composition – cosine 101.17 72.02
GRID + composition – EMD 18.39 30.29

86 | Digital Discovery, 2023, 2, 81–90
advantage of this approach is that while the Pettifor scale
assumes a constant distance between adjacent species, the
substitutional (dis)similarity approach gives a more chemically
meaningful metric. For example, the lanthanide series (La–Yb)
covers a range of 14 steps on the Pettifor scale, while the
dissimilarity approach gives a range of 0.4. In contrast, Na and F
are adjacent on the Pettifor scale (one step), but have a dissim-
ilarity of 4.38.

Using the composition information for each of the 12 178
data points, we have computed the pairwise EMD matrix of
compositional distances; Table 1 gives the statistical results of
models trained using composition alone as well as combined
with GRID. Combining compositional and structural informa-
tion gives the optimum bulk modulus prediction, achieving
a minimum MAE of 18 GPa (Fig. 3). This approaches the state-
of-the-art literature value (∼10 GPa), but using a much simpler
nearest neighbour model. Using EMD as a metric gives better
predictions than cosine distance, particularly for composition
comparisons.

The predicted and DFT-calculated values using combined
GRID and composition distances are shown in Fig. 4. From this
and the results in Table 1, it is apparent that while most
rity measures (EMD is used except where cosine distance is stated).

deviation Min Median Max

0 18 555
0 18 555
0 11 545
0 54 573
0 9 545

© 2023 The Author(s). Published by the Royal Society of Chemistry
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predictions are close to the ground truth value, a few signicant
outliers give the resulting large MAEs; indeed, the median
absolute error is only 9 GPa, comparable to the state-of-the-art
model. Similar plots when tting GRID or compositional simi-
larity alone give a much broader spread around x = y (Fig. S8†).
It might be assumed that these most erroneous points arise due
to the small number of points with high bulk modulus,
however, there seems to be little correlation between the
prediction error for a material and the distance to its nearest
neighbour (Fig. S9†). Interrogating this further, the maximum
prediction error occurs for two anti-perovskite materials:
BiAsSr3 (KDFT = 575 GPa, Fig. S10a†) and BiPSr3 (KDFT = 30 GPa,
Fig. S10b†). These two structures are near-identical, and As and
P are chemically very similar; it is unclear why these two
(theoretical) materials should give such different bulk moduli,
especially as the shear moduli are equivalent at 17 GPa and
22 GPa, respectively. This may point to irregularities within the
bulk modulus data used to train the models, or alternatively
suggest that accurate bulk modulus prediction requires infor-
mation beyond structure and composition, such as detailed
knowledge of the electron distribution.
Fig. 5 t-SNE visualisations of structural, composition and combined des
points represents proximity within the high-dimensional space.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Generalisability

Used alone, composition information results in more accurate
predictions of bulkmodulus than structural information (GRID),
but in both cases there are a signicant number of materials
where considering only one aspect of S-C space results in zero
EMD but signicant difference in bulk modulus (Fig. S7†). Both
structure and composition are therefore critical to predict bulk
modulus. Fig. 5 shows a two-dimensional representation of the
high-dimensional feature space for each of the similarity
measures described, using t-distributed stochastic network
embedding (t-SNE). While these plots are a dramatic simpli-
cation of the high dimensional data, proximity within the 2D
plane indicates proximity within S-C space (although the reverse
is not necessarily true). Examining the bulk modulus data it is
clear that clusters with similar bulkmoduli appear for both GRID
and composition features, and the combined descriptor shows
particularly strong clustering of the low-K materials.

The same t-SNE distributions can also be visualised with
different material properties; in this case we have extracted
shear moduli, formation energies and band gaps (Fig. 5). In all
cases there is clustering of points with similar properties,
criptors, with points coloured by their physical properties. Clustering of

Digital Discovery, 2023, 2, 81–90 | 87
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although the clusters occur in different points of the t-SNE
plane and with different amounts of spread. This ability of
GRID and compositional similarity to place materials with
similar properties in close proximity shows that they are an
accurate representation of the underlying S-C space. Using
a similar kNN (k = 1) model on each of these properties with no
further optimisation yields predictions with a MAE (median AE
in brackets) of: 15 (7) GPa for shear modulus prediction, 0.26
(0.12) eV for formation energy and 0.45 (0.0) eV for band gap. In
all cases the median AE is lower than the mean, indicating that
outlying data points are enlarging the MAE (note that the
median AE of 0 eV for band gap prediction arises due to the
signicant number of metallic materials present in the data).

While GRID does not match the accuracy of graph-based
neural networks when predicting properties from structure
and composition, it is notable that it can achieve similar accu-
racy to other “traditional”machine learning algorithms (such as
support-vector regression or random forests) using a model as
simple as kNN (see Table S2† for details). We suggest that this
reects the way that GRID accurately reects the underlying
structural similarity, rather than relying on a high-dimensional
model to recover that similarity. As such, we expect that the
performance of GRID-based methods could be further
improved, for example by weighting the contributions of
different shells to the EMD, or by allowing comparisons
between GRID shells (e.g. using two-dimensional EMD).

Unlike other existing representations of materials, GRID can
not only be applied to periodic systems, but also those exhib-
iting disorder. This could include almost-periodic models such
as structures with disordered occupations, but could equally be
extended to truly amorphous materials as long as GRID shells
could be calculated for each unique atom. The rst challenge in
this approach is nding a suitable structural model that could
be used to generate a GRID representations, but this could be
recovered from, for example, molecular dynamics simulations
or reverse Monte Carlo ts to experimental data. The second
challenge in applying this approach would be nding suitable
datasets of disordered materials and their associated proper-
ties, such that a ML model could be trained. It is an open
problem, but GRID gives the opportunity of comparing ordered
and disordered materials using the same model.

Conclusions

We have introduced the GRID as a more information-dense
structure representation than the traditional RDF, but retain-
ing its speed and relative simplicity. Combined with EMD as
a distance measure between distributions, we nd that we can
quantify structural similarity in a range of materials-relevant
problems in agreement with chemical intuition. We also
introduce a modied approach to quantifying compositional
similarity using EMD which gives a more accurate metric
between different elements. Combining these two measures of
similarity with bulk modulus data and an extremely simple kNN
regression model results in prediction MAEs of 18 GPa,
approaching the state of the art literature results; in fact the
median AE of 9 GPa is directly comparable to recent studies.
88 | Digital Discovery, 2023, 2, 81–90
More importantly, we nd that the GRID/composition method
described generalises well to other material properties,
providing an accurate representation of the underlying
structure-composition space that dictates observable behav-
iour. By extending these descriptors to more advanced, non-
linear models, we expect that a wide range of physical proper-
ties could be modelled using a similar architecture.
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