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Graph neural networks (GNNs) have been widely used for predicting molecular properties, especially for

single molecules. However, when treating multi-component systems, GNNs have mostly used simple

data representations (concatenation, averaging, or self-attention on features of individual components)

that might fail to capture molecular interactions and potentially limit prediction accuracy. In this work,

we propose a GNN architecture that captures molecular interactions in an explicit manner by combining

atomic-level (local) graph convolution and molecular-level (global) message passing through

a molecular interaction network. We tested the architecture (which we call SolvGNN) on

a comprehensive phase equilibrium case study that aims to predict activity coefficients for a wide range

of binary and ternary mixtures; we built this large dataset using the COnductor-like Screening MOdel for

Real Solvation (COSMO-RS). We show that SolvGNN can predict composition-dependent activity

coefficients with high accuracy and show that it outperforms a previously-developed GNN used for

predicting only infinite-dilution activity coefficients. We performed counterfactual analysis on the

SolvGNN model that allowed us to explore the impact of functional groups and composition on

equilibrium behavior. We also used the SolvGNN model for the development of a computational

framework that automatically creates phase diagrams for a diverse set of complex mixtures. All scripts

needed to reproduce the results are shared as open-source code.
1 Introduction

Predicting the physicochemical properties of molecules is
crucial for applications such as product and process design. In
the past decade, machine learning (ML) techniques have been
used as data-driven approaches that help accelerate molecule
screening and to reduce experimentation cost, especially when
a large chemical space is involved. These models have also
shown to be versatile and to predict diverse molecular proper-
ties such as water solubility,1–3 toxicity,4–6 and lipophilicity.7,8 A
fundamental step in the use of ML models is the pre-denition
or pre-calculation of molecular descriptors;9–12 such descriptors
are used as input data to develop quantitative structure–prop-
erty relationship models.13 Recently, there has been growing
interest in applyingMLmodels to studymore complex chemical
Engineering, University of Wisconsin–

WI 53706, USA. E-mail: victor.zavala@
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151
systems that might contain multiple components such as
chemical reactions,14,15 alloys,16,17 copolymers,18–20 and gas/
liquid mixtures.21–33 Among the ML techniques explored,
graph neural networks (GNNs)34,35 have gained special popu-
larity because they can directly incorporate molecular repre-
sentations (in the form of graphs), which enable the capturing
of key structural information while potentially avoiding the
need to pre-calculate/pre-dene descriptors using more
advanced but computationally-intensive tools such density
functional theory (DFT) or molecular dynamics (MD) models.

In a typical GNN architecture for prediction of molecular
properties,36 the characteristics of the atoms and of the bonds
are propagated based on the chemical structure of a single
input molecule, followed by featuring embedding via nonlinear
transformation. The embedded features are then fed to fully-
connected layers to construct predictive models. GNNs have
achieved better performance than conventional descriptor-
based approaches in various benchmark datasets.37,38 When
dealing with multiple components, several approaches have
been devised; a typical way to encode multi-molecule informa-
tion is to simply average or concatenate the features of indi-
vidual molecules and to use these as system-level features for
property inference with fully connected or attentive layers.14,15,19

Previous studies have also incorporated weighted sums or
© 2023 The Author(s). Published by the Royal Society of Chemistry
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concatenation to take into account composition information
when needed.19 However, these approaches do not capture
molecular interactions in an explicit manner, which may limit
the predictive power of GNNs for systems in which intermo-
lecular interactions play an important role.

In this work, we present a GNN architecture that explicitly
incorporates molecular interactions via the combination of
atomic-level (local) graph convolution and molecular-level
(global) message passing for property prediction of multi-
component chemical systems. To connect local features with
global features, we construct a molecular interaction network as
an intermediate step. The molecular interaction network is
a complete graph in which each node represents a molecule and
each edge represents a hypothetical intermolecular interaction
(e.g., hydrogen bonding). This representation serves as
a physics-informed topological prior that aids feature extraction
from multi-component systems. The composition information
is also encoded in the architecture as additional node feature
for the molecular interaction network. We hypothesize that,
with this type of data representation and feature propagation
guided by physical intuition, the proposed architecture may
better model mixture properties while taking composition
information into consideration.

We evaluate the proposed GNN architecture through
a comprehensive case study on miscibility calculations for
multi-component systems.We choose activity coefficients as the
target thermodynamic property of interest, which measures the
deviation of a liquid mixture from ideal solution behavior.
Activity coefficients are one of the fundamental properties of
a mixture and therefore can lead to the derivation of equilib-
rium conditions (e.g., phase diagrams), which are important in
physical chemistry and engineering for understanding and
optimizing chemical separations.39 Previous studies have
developed ML-based methods to predict innite-dilution
activity coefficients for binary mixtures, including matrix
completion on the activity coefficient matrix28,40 and multilayer
perceptrons on the system descriptors.41 However, these
methods did not account for molecular structural information
directly, and the latter is limited to systems of water in ionic
liquids. A more recent study by Medina et al.29 used GNN
models to tackle this problem; this approach, however, used
a data representation that involves a simple concatenation of
individual graph features aer local embedding (i.e., the GNN
architecture does not explicitly captures intermolecular inter-
actions). Furthermore, all these previous studies have focused
on predicting innite-dilution coefficients, which do not take
into consideration composition information (this limits their
use in more sophisticated thermodynamic predictions such as
phase diagrams). To the best of our knowledge, GNNs have not
been explored as a method to predict composition-dependent
activity coefficients nor have they been extended to predict
activity coefficients for systems with more than two compo-
nents. The proposed GNN architecture is generalizable to
multiple component systems and captures composition.

Through our case study, we demonstrate that the proposed
GNN (which we call SolvGNN) outperforms prior architectures
(that lack an explicit graph representation of molecular
© 2023 The Author(s). Published by the Royal Society of Chemistry
interactions) in terms of prediction accuracy. Our study lever-
ages a large dataset that was developed using the COnductor-
like Screening MOdel for Real Solvation (COSMO-RS).
SolvGNN also enables better modeling of mixture composi-
tions due to the incorporation of global message passing on the
molecular interaction network with hydrogen bonding infor-
mation. We also show that SolvGNN can be applied to both
binary and ternary liquid-phase mixtures to predict
composition-dependent activity coefficients. To interpret our
SolvGNN predictions, we perform counterfactual analysis42 to
identify the impact of functional groups on activity coefficients.
To demonstrate the applicability of SolvGNN, we developed
a framework that can automatically predict phase behavior for
complex binary and ternary mixtures. Example outcomes of the
framework, such as binary P–x–y diagrams, can be used to study
solvent miscibility and to help identify azeotrope compositions
to guide the design of targeted mixtures and chemical separa-
tions. We share scripts and datasets as open-source code to
enable the reproduction of the results and to conduct
benchmarks.

2 Materials and methods
2.1 Data set summary

We assembled a list of 700 common solvents,43 covering a wide
spectrum of small molecules such as water, alcohols, esters,
and ethers. We then used random sampling over the solvent
space to generate 40 000 binary mixtures and 40 000 ternary
mixtures. For each binary mixture, we explored ve molar
composition ratios – 10%/90%, 30%/70%, 50%/50%, 70%/30%,
90%/10%; for each ternary mixture, we explored four molar
composition ratios – 15%/15%/70%, 15%/70%/15%, 70%/15%/
15%, and 33.3%/33.3%/33.4%. Overall, we assembled a large
database with 200 000 entries for binary mixtures and 160 000
entries for ternary mixtures. We further augmented the binary
mixture data set with 80 000 innite dilution activity coeffi-
cients (corresponding to molar composition ratios of 0% or
100%) to determine how these points inuence prediction
accuracy at extreme compositions. These data are later
combined with the previous binary mixture data set to enable
a more powerful SolvGNN that can accurately predict activity
coefficients across all concentrations, including the innite
dilution case.

To visualize the coverage of the chemical space, the solvents
were grouped into 22 categories based on a predened list of
functional groups (details are provided in the ESI Section 1†).
The visualization is provided in Fig. 1a. The sampled binary
mixtures are represented by connections between nodes. The
number of solvents in each category and the number of sampled
pairs are reected by node size and edge thickness; this illus-
trates that our randommixture sampling covers a wide range of
solvent pairs in different categories. We also visualized the
chemical space of the solvents by performing a t-distributed
stochastic neighbor embedding (t-SNE)44 dimensionality
reduction technique on theMorgan ngerprints,9 also known as
extended connectivity ngerprints10 in Fig. 1b. The 2D map
from t-SNE shows separation between some solvent categories,
Digital Discovery, 2023, 2, 138–151 | 139
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Fig. 1 Dataset visualization. (a) Solvent categories based on the primary functional group of individual solvents with examples. The categori-
zation method is detailed in ESI.† The size of a node reflects the number of solvents in that category, and the thickness of an edge reflects the
number of sampled pairs between two categories. (b) 2D map obtained by t-SNE dimensionality reduction44 applied to molecular fingerprints.
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such as nitriles and aromatics. However, because some solvents
contain more than one identiable functional group, they may
potentially be grouped into another category. As a result, the
clustering in a few other categories is less clear, but in general
the scattered distribution here suggests the inclusion of diverse
and complex chemical structures.

We categorized the sampled binary and ternary mixtures
based on whether each component in the mixture is polar or
nonpolar (obtained from RDKit45), as summarized in Table 1.
We computed the percentage of each mixture type; this infor-
mation was used for stratied sampling, which creates training/
validation folds by preserving the percentage of samples for
each mixture type (this ensure that the model learns different
types of molecular interactions). Overall, most mixtures contain
at least one polar component, indicating the presence of strong
intermolecular interactions (e.g., dipole–dipole forces).

2.2 Activity coefficient calculations

To overcome the challenge of limited experimental data avail-
ability, we used the COnductor-like Screening MOdel for Real
Solvation (COSMO-RS) to generate ground-truth labels for
supervised ML. COSMO-RS calculations are based on surface
charge densities (s-proles) of mixture components, which are
obtained from DFT calculations coupled with the COSMO
Table 1 Mixture types based on polarity (obtained from RDKit45) of indiv

Mixture type

Binary (280 000) Polar–polar (p–p)
Polar–nonpolar (p–n)
Nonpolar–nonpolar (n–n)

Ternary (160 000) Polar-polar–polar (p–p–p)
Polar–polar–nonpolar (p–p–n)
Polar–nonpolar–nonpolar (p–n–
Nonpolar–nonpolar–nonpolar (n
n–n)

140 | Digital Discovery, 2023, 2, 138–151
continuum solvation model,46 and it can be used to calculate
the activity coefficients for any mixture as long as the chemical
structures are provided and optimized. For each solvent
mixture, we obtained activity coefficients gi for individual
components i from COSMO-RS and constructed large and
structured data sets for model training and evaluation.

COSMOtherm47 (version 2019), a soware that implements
COSMO-RS, was used to obtain composition-dependent activity
coefficients for the individual components of each sampled
mixture. Prior to COSMO-RS calculations, chemical structures
were generated from CirPy (version 1.0.2), a Python library that
serves as the interface for the Chemical Identier Resolver
(CIR);48 this searches the National Institutes of Health (NIH)
database for the chemical structures and provides the opti-
mized coordinates for the atoms. We next conducted DFT
calculations using TURBOMOLE49 (version 7.5) at the BP-TZVP
theory level with the Becke–Perdew (BP) functional and the
resolution of identity approximation under ideal screening
condition (eN, COSMO continuum solvation model). A single-
point calculation was then conducted with the def2-TZVPD
basis set and ne cavity parameter to create the s-proles.
Activity coefficients were then calculated given the s-proles of
individual components, the mixture compositions in the liquid
phase, and temperature (298 K).
idual components

Count Percentage

162 547 58%
101 913 36%
15 540 6%
71 136 45%
66 040 41%

n) 20 848 13%
– 1976 1%

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.3 GNN model architecture

GNNs are a class of neural networks that take graphs as inputs
and perform convolutions based on the graph topology by
aggregating the features of a node and its connected neighbors.
The node features are embedded into a xed-dimension space
where similar nodes are close to each other. Compared with
conventional convolution neural networks that operate on grid
data (e.g., images), GNNs have the advantage of extracting
features from data with more exible topology and different
sizes while keeping locality information, and therefore are
applied widely to chemical data.

As shown in Fig. 2, each input mixture is represented as
molecular graphs G ¼ ðV ;E;HÞof individual components with
nodes v ˛ V, edges e ˛ E, and node feature matrix that encodes
atom and bond information such as atom types and degrees.50 A
local graph convolution51 was applied to each of the input
molecular graphs, and the node features were updated through
Fig. 2 GNN architectures studied. All three GNN architectures under
components at a local level. They differ in their way of capturing intermol
mole fraction and locally embedded features; SolvGCN (b) constructs
convolution without explicit edge information; SolvGNN (c) explicitly in
network, which undergoes global message passing for “intermolecular”-
are used for activity coefficient (gi) predictions through fully connected re
computed from COSMO-RS and representative interactions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
H ¼

2
6664
---hTv1 ---

---hTv2 ---

«

3
7775 (1)

H ðtþ1Þ ¼ ReLU

0
@ ~D

�1
2 ~A ~D

�1
2HðtÞWðtÞ

1
A (2)

Here, Ã is the adjacency matrix of graph G with self-loops,
~D ¼ P

j
~Aij is the degree matrix and W (t) is the learnable weight

matrix at time step t. ~D�1
2~A~D

�1
2 is derived from normalized graph

Laplacian that accounts for graph topology and implicitly
imitates molecular interactions. The W(t) values are kept the
same for each component in the mixture. Aer local graph
convolution, node-level features are averaged to generate the

graph-level feature uG ¼ 1
jV j

X
v

hv.
go the same graph convolution for feature embedding of individual
ecular interactions. SolvCAT (a) conducts a simple concatenation of the
an intermediate molecular interaction network followed by global

corporates H-bond information as the edge feature in the interaction
level feature embedding. In each case, the globally embedded features
adout layers. Images at the bottom illustrate screening charge densities

Digital Discovery, 2023, 2, 138–151 | 141
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We compared several approaches to capture molecular
interactions. The rst approach is illustrated in Fig. 2a and
referred to as SolvCAT. In this approach, uG ’s undergo a feature
concatenation with composition x to form a xed-length latent
feature vector. For a ternary system, for example,
umix ¼ x1juG1jx2juG2jx3juG3. The system-level feature vector is
then sent to fully connected neural network layers for activity
coefficient predictions. The second approach is illustrated in
Fig. 2b and referred to as SolvGCN. In this approach, a molec-
ular interaction network was constructed to explicitly simulate
molecular interactions between the components in a system.
The molecular interaction network Gint ¼ ðVmol; Eint;HmolÞ is
a complete graph where each node vmol ˛ Vmol denotes a mole-
cule, each edge eint ˛ Eint denotes the existence of certain
intermolecular interaction, and molecular-level node feature
matrix:

Hmol ¼

2
6664
���hTvmoli

¼ xi

���uTG i
���

���hTvmolj
¼ xj

���uTG j
���

«

3
7775 (3)

A global graph convolution is applied using the same
updating rules as eqn (2); in this case, umix is obtained by
concatenating the latent node features hmol's aer global graph
convolution.

The third approach is illustrated in Fig. 2c and referred to as
SolvGNN. Building on SolvGCN, for this approach we developed
a more informative representation of the molecular interaction
network; we encoded hydrogen-bond (H-bond) information,
one of the strongest form of dipole–dipole interactions, as the
edge feature. For a ternary system, this feature is formulated as:
eint�
vmoli

vmolj

� ¼

8><
>:

min
�
#HBAvmoli

;#HBDvmolj

�
; i ¼ j

min
�
#HBAvmoli

;#HBDvmolj

�
þmin

�
#HBDvmoli

;#HBAvmolj

�
; isj

(4)
where HBA and HBD stands for H-bond acceptor and donor.
Given such edge representation, H-bond information between
like molecules (i = j) and unlike molecules (i s j) are both
captured. In this case, the global graph convolution integrates
edge features and is achieved via message passing35 expressed
by

mðtþ1Þ
vmol

¼
X

vmoli
˛NðvmolÞ

Mt

�
hðtÞvmol

; hðtÞvmoli
; eintðvmolvmoliÞ

�
(5)

and

hðtþ1Þ
vmol

¼ Ut

�
hðtÞvmol

;mðtþ1Þ
vmol

�
; (6)

Here, we used the original message passing formulation,35

where the message function Mt is a fully-connected edge
142 | Digital Discovery, 2023, 2, 138–151
network to compute a message matrix based on graph topology
as well as edge features, and the node update function Ut is
a gated recurrent unit (GRU)52 to aggregate “message” and the
original node feature, which can be viewed as a generalization
of the plain GCN.

In all three cases mentioned above, the embedded features
aer “intermolecular interactions” are sent to the fully con-
nected readout layers for the nal activity coefficient (gi)
prediction.
2.4 GNN training and hyperparameter tuning

SMILES strings were used asmolecule identiers and processed by
RDKit (version 2019.03.2)45 to generate molecular graphs. The
GNN models were constructed using PyTorch (version 1.2.0)53 and
Deep Graph Library (version 0.4.3).54 The major hyperparameters
we varied include the number of graph convolution layers (1,2), the
number of fully connected readout layers (1,2,3), the number of
hidden neurons (128,256), and the learning rate (0.0005,0.001).
Themodel was trained with the averagemean-squared-error (MSE)
loss for the lngi values, the Adam optimizer, a learning rate of
0.001, and a batch size of 100 for 100 epochs. Unlike SolvGCN and
SolvGNN where graph convolutions are conducted at the node-
level and where model predictions are unaffected by the order of
the components, SolvCAT does not naturally preserve permutation
invariance. To address this issue, we performed data augmenta-
tion during training by randomly ipping the order of the
components. For model evaluation, we performed 5-fold cross-
validation (CV) with stratied random sampling to split data for
hyperparameter tuning and model evaluation. Stratication is
based on the type of mixture (e.g., polar–polar, polar–nonpolar, or
nonpolar–nonpolar) to ensure that both the training and valida-
tion sets contain all types of mixtures. Other than stratication on
the type of mixture, we did not enforce any constraints on the
components or the compositions, and therefore the validation sets
contain completely unseen systems and compositions. To further
study the more stringent cases of SolvGNN to generalize to unseen
mixtures (and their interactions) or components, we explored three
alternative data splitting methods; the results and comparison are
discussed in the ESI.† All evaluation metrics are computed using
the compilation of the validation data in each fold to obtain
a realistic estimation of the model performance. More imple-
mentation details about training and validation can also be found
in the ESI.†

Because the data sets contain a large number of binary or
ternary mixtures at different compositions, it is computation-
ally expensive to generate the corresponding molecular graphs
for every training/validation instance. As a result, we designed
© 2023 The Author(s). Published by the Royal Society of Chemistry
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our data loading and model training algorithm to lower the
training time. Upon data set initiation, we generated and stored
all 700 molecular graphs at once in a dictionary format. When
a training/validation instance was passed to the algorithm, the
molecular graphs were obtained from the dictionary using the
index and only require simple manipulation (e.g., calculation
for intermolecular H-bond) to form the desired mixture data.
Doing so largely reduced redundant calculations and saved time
(from days to a couple of hours).

We trained separate models for binary and ternary mixtures for
simplicity and for a fair comparison between different GNN
architectures. In the cases of SolvGNN and SolvGCN, the model
architectures are the same (with the same number of learnable
parameters) for binary and ternary mixtures given the permutation
invariance nature of graph convolutions that perform node-level
computation. However, in the case of SolvCAT, the model archi-
tectures vary for binary and ternary mixtures as molecule-level
embeddings are concatenated together for the nal inference,
which results in a larger number of learnable parameters for
ternary mixtures. Applying the same read-out layers to each
molecule-level embedding can guarantee permutation invariance
and interchangeability of binary/ternary inputs but worsens the
model performance drastically, so we decided to keep the
concatenation design choice for SolvCAT while augmenting the
data through random permutation of component orders during
training. Potentially, the binary and ternary data sets can be
merged together as one data set with a single model trained to
predict either case easily if we use SolvGCN or SolvGNN, but
requires setting the features of one of the components to zero for
binary mixtures and keeping the ternary architecture if we use
SolvCAT, whichmay result in biased selection of the component to
be masked. Therefore, the integration of binary and ternary
mixtures is beyond the scope of the current project, and we would
like to consider this as future work in the further development of
the tool.
2.5 Counterfactual analysis

To interpret the trained model, we adapted the counterfactual
framework proposed in42 to understand which chemical structures
and functional groups lead to certain activity coefficient predic-
tions. Here, we generated two types of counterfactuals for our
dataset. Counterfactual Type I (eqn (7)) focused on searching for
mixture samples with minimal input differences but maximal
output deviations from a basemixture. Counterfactual Type II (eqn
(8)) focused on the mixture samples with the maximal input
differences andminimal output deviations. The similarity between
mixtures similarity (mixture, mixture′) was obtained via the mean
Tanimoto similarity55 of the pair, and the difference between pre-
dicted activity coefficient predictions was computed with the
absolute differences (MAE) between the ln gi values using the
trained SolvGNN denoted as f̂. The parameter l is a trade-off
parameter that controls the relative importance of mixture
(input) similarity and prediction (outcome) difference. The
parameter l was set to 0.9 to generate Type I counterfactuals with
a similarity value of at least 0.6. The search space was limited to the
© 2023 The Author(s). Published by the Royal Society of Chemistry
700 solvents in our data set to keep the computational cost trac-
table, especially for Type II counterfactuals.

max
mixture

0
lsimilarity

�
mixture; mixture

0�

þ ð1� lÞ
�
MAE

�
f̂ ðmixtureÞ; f̂

�
mixture

0���
(7)

and

min
mixture

0
lsimilarity

�
mixture; mixture

0�

þ ð1� lÞ
�
MAE

�
f̂ ðmixtureÞ; f̂

�
mixture

0���
(8)
2.6 Phase behavior calculations

For an illustration of real-world applications, we set up
a computational framework that can intake the chemical
structures from diverse binary or ternary mixtures and make
activity coefficient predictions with uncertainties by averaging
the predicted values from individually trained SolvGNNs in each
CV fold. For binary mixtures, P–x–y phase diagrams were then
generated from the predicted activity coefficients gi using
modied Raoult's Law P ¼ P

iyi P ¼ P
ixigiPi

sat. When using
modied Raoult's Law, we assume that the vapor phase is an
ideal solution and that the liquid phase is incompressible with
a pressure close to its saturation pressure. We also assume that
the fugacity coefficients of the pure components in the vapor
phase are approximately the same as the fugacity coefficients of
the pure component at the saturation pressure. Such calcula-
tions make no assumptions about the ideality of the liquid
phase.

In this study, the saturation pressure Psati for each
component was obtained using the Antoine Equation

log10pi
sat ¼ Ai � Bi

Ci þ T
with coefficients collected from the

National Institute of Standards and Technology (NIST) via web
scraping.56 We sampled the liquid-phase compositions xi and
calculated the equilibrium pressures P with the specied
compositions at 298 K. For ternary systems, we computed phase
behavior following the same method for the binary systems by
sampling the mixture compositions followed by equilibrium
pressure calculations.
3 Results and discussion
3.1 Model performance on binary mixtures

We compared the three GNN architectures (SolvCAT, SolvGCN,
and SolvGNN) introduced in the previous section in terms of
their ability to predict the composition-dependent activity
coefficients. SolvCAT takes the concatenation of mole fraction
and embedded features aer local graph convolutions on
individual components; SolvGCN constructs a complete inter-
action network aer local convolution without any assumptions
on the edge weights for another layer of graph convolution at
the global level. SolvGNN takes this SolvGCN one step further by
introducing H-bond information as an example prior
Digital Discovery, 2023, 2, 138–151 | 143
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Fig. 3 Model comparison and parity plots for binary and ternary mixtures. (a) Cumulative frequency plots for the average ln gi errors for binary
(black) and ternary (red) mixtures to compare SolvCAT, SolvGCN, and SolvGNN. Additionally, the parity plots for individual ln gi's between the true
(COSMO-RS) and predicted (SolvGNN) values from CV are displayed for binary (b) and ternary (c) mixtures. The points are colored by the type of
mixtures defined in Table 1 based on polarity.
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knowledge on intermolecular interactions for further message
passing.

The performance of the three GNN architectures was evalu-
ated on the binary mixture data set by the cumulative frequency
plot, as shown in Fig. 3a. The innite dilution activity coeffi-
cients for these systems were included as extreme concentra-
tions. More specically, we assigned a mole fraction of 0 to the
innitely dilute component and a mole fraction of 1 to the other
component (values were also reversed for each pair as well to
capture both innite dilution activity coefficients). In the
cumulative frequency plot, the absolute errors of the natural
logarithms of the activity coefficients, ln g1 and ln g2, (between
true and predicted values from CV) for each data point were rst
averaged, and the cumulative frequencies for the averaged error
values were then plotted in the ascending order. Among the
three GNN architectures, SolvGNN exhibits the best perfor-
mance; specically, it shows that almost 97% of the data points
are predicted with an error of less than 0.1. SolvCAT performs
slightly worse, with 91% of the data points falling within the 0.1
error range. SolvGCN shows the worst performance, with only
around 45% of the data points predicted with an error less than
0.1. These observations are also supported by the mean abso-
lute errors (MAEs), which are 0.03, 0.05, and 0.31 for SolvGNN,
SolvCAT, and SolvGCN (respectively). We also performed the
same experiments on the binary mixture data set without
innite dilution activity coefficients, and the results are
comparable (R2 = 0.98, MAE = 0.03, RMSE = 0.08; see Fig. S1†).
Additionally, we developed a baseline model using XGBoost (R2

= 0.64, MAE = 0.21, RMSE = 0.50; see Fig. S2†), which was
substantially less accurate than SolvGNN. These results are
detailed in the ESI.†

The above results indicate that the inclusion of the global
interaction network with H-bond information in SolvGNN
provides an effective method for improving the prediction
accuracy for activity coefficients. When H-bond information is
excluded, the pure global graph convolution worsens the model
performance, possibly due to the unbiased “averaging” without
any physics-informed resemblance to intermolecular interac-
tions. Additionally, when setting all the edge features to one in
144 | Digital Discovery, 2023, 2, 138–151
SolvGNN, the CVMAE was increased by 9% and the CVMSE was
increased by 15%, suggesting the signicance of the physics-
informed edge features in the interaction network (more
details in ESI†). The added model complexity of SolvGNN is also
a decisive factor for the performance difference, since message
passing enables and propagates edge features through an edge
neural network. On the other hand, SolvCAT, despite the lack of
explicit global graph convolution that depicts intermolecular
interactions, still exhibits satisfactory predictive power. This is
consistent with an earlier study,19 which has found that aggre-
gation over latent features provides an effective approach to
handle information of mixture composition. However, SolvCAT
is not strictly permutation invariant to the order of the input
components, even though the data were augmented by random
order switching during training.

Fig. 3b shows the parity plot of ln gi's from SolvGNN for
binary mixtures. All the predictions shown are from the vali-
dation process yet still exhibit high accuracy, with average ln gi

MAE being 0.03 and average ln gi RMSE being 0.10. The data
points are colored by the mixture type dened earlier. In
general, the values of ln g for nonpolar–nonpolar interactions
are close to 0 (ideal behavior) and have smaller MAE, while the
values of ln g for mixtures with polar components spread across
the entire data range and have slightly larger MAE. With respect
to composition, mixtures that are rich in one of the components
(10%/90%) exhibit a slightly higher MAE (∼0.032), whereas the
mixtures with equimolar components exhibit a relatively lower
MAE (∼0.025). We also identied a couple of outliers in the
plots; these mixtures contain amines with hydrogen-bonding
solutes or solvents. The extreme ln g values of these mixtures
can be the result of limitations of COSMO-RS, which has been
specically noted to incorrectly simulate the interactions of
secondary and tertiary amines when hydrogen-bond donors or
acceptors are present in the system.57

Besides the regular CV using stratied sampling that relies
on the type of mixture, we also tested the generalizability of the
SolvGNN using an alternative CV method. Here, for each CV
fold, we trained the model on only two of the three mixture
types (polar–polar, polar–nonpolar, or nonpolar–nonpolar; see
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 SolvGNN for prediction of infinite dilution activity coefficients (gN) and a comparison with the previously developed GNN29 on the test
data using the unscaled values

Model MAE SDEP MSE RMSE MAPE R2

Previous GNN29 3.91 26.73 729.69 27.01 22.66 0.82
SolvGNN 3.25 19.52 391.45 19.79 11.40 0.89
% Difference −17% −27% −46% −27% −50% +9%
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Table 1) and validated the rest. Results have shown that,
although the model could achieve similar training losses to the
regular CV, the validation accuracy was reduced accordingly.
For the case where we trained the model with polar–polar and
polar-nonpolar mixtures (94% of the data set) while validating
on nonpolar–nonpolar mixtures, the model demonstrated
suitable transferability by comparable validation losses (MAE =

0.04). However, when we trained the model on only polar–polar
and nonpolar–nonpolar samples (64%) while validating on
polar-nonpolar samples, the validation MAE increased by 0.16,
which indicates the distinct nature of polar–nonpolar interac-
tions and suggests that it is non-trivial and therefore cannot be
omitted during model training. Additionally, we examined the
condition when the model was trained on only polar–nonpolar
and nonpolar–nonpolar mixtures (42%) and validated on polar–
polar mixtures. The convergence plot (Fig. S3†) indicates over-
training with high validation losses; such behavior was ex-
pected because the training size is less than half of the data set,
and the majority of the training samples lack H-bond acceptors
or donors, which are present in most of the validation set. This
result again suggests that polar–polar and polar–nonpolar
mixtures, despite possessing strong intermolecular interactions
such as H-bonding in both cases, are intrinsically different and
therefore are both required in the training process. These
results are in general agreement with chemical intuition.

To further demonstrate the generalizability of the proposed
SolvGNN, we conducted two additional data splitting methods
that enforce all validation data to be unseen systems or
components. sFor both experiments, SolvGNN still outperforms
other architectures and still exhibits strong predictive perfor-
mance based on the parity plots (detailed in the ESI†).
3.2 Scale up to ternary mixtures

We next scaled up the proposed SolvGNN architecture to ternary
mixtures. As shown in Fig. 3a (red), the cumulative frequency of
the average ln g errors demonstrates similar trends as in binary
mixtures. SolvGNN provides the best model performance, fol-
lowed by SolvCAT and SolvGCN. Here, we observed that the gaps
between the curves appear wider, suggesting a more signicant
advantage of SolvGNN over SolvCAT and SolvGCN. For
SolvGNN, more than 94% of the data points were predicted with
an error less than 0.1. SolvCAT was the second-most accurate
model, with around 86% of the data points falling within the 0.1
error range, showing a more notable performance drop (8%)
than the results for binary mixtures (6%). SolvGCN continues to
exhibit the worst performance, and only around 30% of the data
points are predicted with an error less than 0.1. These
© 2023 The Author(s). Published by the Royal Society of Chemistry
observations are supported by MAE values, which are 0.04, 0.06,
and 0.30 for SolvGNN, SolvCAT, and SolvGCN.

For SolvGNN, comparable model accuracy was obtained even
though the number of training/validation samples was reduced
for the ternary mixture data set compared to the binary mixture
data set, as shown in Fig. 3c. The CV R2, MAE, and RMSE are
similar to the results from binary systems, with corresponding
values around 0.99, 0.03, and 0.10. When breaking down the
predicted values based on the mixture type, we found that
samples containing only nonpolar components tend to have
smaller errors and systems containing only polar components
have larger errors. Mixtures with both polar and non–polar
components have MAEs and RMSEs lying somewhere in
between the extremes. When grouping by composition,
mixtures that are rich in one of the components tend to have
slightly higher prediction errors than equimolar mixtures. This
observation is consistent with model performance on binary
mixtures without innite dilution data and could be caused by
the fact that the majority of the training data are not equimolar
systems.

Overall, SolvGNN exhibited satisfactory performance in
making predictions for activity coefficients of binary and
ternary systems, given the advantage of explicitly including H-
bond information (as a representative and primary inter-
molecule force) via global message passing on the molecular
interaction network. To the best of our knowledge, this is the
rst time that such a graph-based architecture (permutation
invariant to the component order) is used to make predictions
for composition-dependent activity coefficients (compared to
models that predict innite-dilution activity coefficients only)
and for ternary systems (compared to binary systems).
3.3 Comparison to previous GNN for innite-dilution
activity coefficients

To compare SolvGNN with a recently developed GNN for innite
dilution activity coefficient (ln gN) prediction by Medina et al.,29

we conducted a benchmark of our model on the same experi-
mental data set used in their study, which contains 2,810 binary
mixtures (with specic solute/solvent assignment) and values of
ln gN for the solute. To conduct a fair comparison, we applied
the same training/validation/testing method described in their
research29 through ensemble learning (bagging), which splits
the training/validation data randomly 30 times and averages the
predictions. We also used the same batch size (32) and epoch
number (200). Although the logarithmic values were used to
train and validate the models, Medina et al.29 calculated the
evaluation metrics on the unscaled gN values. The error score
functions are detailed in ESI.† For an easy comparison, we
Digital Discovery, 2023, 2, 138–151 | 145
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Fig. 4 Counterfactual analysis. Type I (red) shows mixtures with the most similar structures but the most different activity coefficients from the
base mixture whereas Type II (green) shows the opposite. The corresponding solvents are labeled on the 2D t-SNE map introduced in Fig. 1 to
help illustrate similarity.
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applied the same conversion to our data and summarized the
results in Table 2 for a comparison of the test data. We observed
that the performance of SolvGNN is better than the previous
GNN model29 for ln gN prediction. The proposed SolvGNN
shows improvements in all metrics used to evaluate the model
in the original paper, including a signicant decrease in the
mean absolute percent error (MAPE) by 50%.

In general, our results provide evidence that SolvGNN can be
used to predict innite-dilution activity coefficients in a satis-
factory manner, thus illustrating that the architecture is versa-
tile. Comparison of the evaluation metrics indicates that there
is a benet in including intermolecular interactions in the GNN
architecture. These results also provide evidence that the
SolvGNN architecture can be used to learn not only from
simulation data (e.g., COSMO-RS) but also from experimental
data.

3.4 Counterfactual analysis

We derived counterfactuals42 as a way to provide some inter-
pretability to SolvGNN predictions. Here, we investigated two
types of counterfactuals: mixtures with the highest similarity yet
the most different predictions (Type I), and mixtures with the
lowest similarity yet the most similar predictions (Type II). As
illustrated in Fig. 4, we started with a base mixture (50%
benzene and 50% toluene) that exhibits nearly ideal behavior (gi

= 1 for both components). Since input chemical ratios are also
a contributing factor to activity coefficients, we rst identied
the composition with the same two molecular species that leads
to the farthest deviation in activity coefficients, as illustrated by
counterfactual 1. We found that increasing the composition in
benzene to the extreme has the most signicant impact on
activity coefficients, although the deviation from ideal behavior
146 | Digital Discovery, 2023, 2, 138–151
is still small. Next, we xed one of the components and varied
the other to nd the mixture with the highest structural
resemblance yet the most dissimilar activity coefficients, illus-
trated by counterfactual 2 and counterfactual 3. When xing
benzene, counterfactual 2 shows that replacing the methyl
group with a hydroxyl group, coupled with a change in
composition, largely inuences activity coefficients. This can be
explained by the fact that removing the methyl group converts
one of the components from nonpolar to polar, thus resulting in
strong deviations from ideal behavior. Counterfactual 3 shows
a similar tendency. When xing toluene, the other component
in the counterfactual tends to converge to a more polar chem-
ical, such as pyridine which converts one of the carbons on the
benzene ring to nitrogen.

On the other hand, Type II counterfactuals also reveal
interesting trends to identify mixtures with dissimilar chemical
structures but similar gi's. When xing one of the components,
counterfactuals 4 and 5 both acquire an alternative component
that is nonpolar. In both cases, one of the aromatic components
is replaced by a non-aromatic structure as the result of the effort
to minimize similarity, but since the replacement is also
nonpolar, the mixtures exhibit near-ideal behavior as reected
by the activity coefficients. Lastly, when we relaxed the
constraint and allowed both components to vary, counterfactual
6 picks out the mixture from the data set that shows two
nonpolar yet unlike chemical structures with near-ideal
behavior.

In general, the counterfactual analysis has shown coherent
physical insights regarding how compositions and structural
features may lead to variations in activity coefficient, and these
ndings in turn agree with our chemical understanding of
mixture behavior. Such interpretation, especially Type II
© 2023 The Author(s). Published by the Royal Society of Chemistry
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counterfactuals, can be used to apply SolvGNN to procedures
such as the selection of a candidate good solvent for a desired
solute. For example, counterfactuals could be used to identify
an antisolvent given a known good solvent for a specic polymer
for polymer recycling applications.58,59 The antisolvent is ex-
pected to be miscible with the solvent while immiscible with the
polymer, and therefore counterfactual Type I may be identied
as the candidate antisolvent.
3.5 From activity coefficients to phase behavior

We next sought to utilize the activity coefficients obtained from
SolvGNN to predict relevant phase behavior (e.g., azeotrope
compositions). Therefore, we further developed a framework to
generate phase diagrams directly from chemical structures
using the trained SolvGNN. These results aim to show the
potential use of SolvGNN in industrially-relevant applications or
experimental studies (e.g., miscibility or separation of target
components). The framework uniformly samples the composi-
tions of the input mixtures and predicts the corresponding
activity coefficients using SolvGNN, which are then used for
calculating equilibrium bubble and dew pressures via modied
Raoult's Law. Fig. 5 showcases several P–x–y phase diagrams
generated from the framework for binary mixtures. We would
like to point out that most of the shown mixtures (all except for
water–methanol) are not in our training or validation data, so
they can be viewed as additional test instances, in spite of the
Fig. 5 Example phase diagrams generated from SolvGNN. (a–c) P–x–y d
mixture (polar–polar, nonpolar–nonpolar, and polar–nonpolar). The eq
predicted activity coefficients from SolvGNN. The phase diagrams are c
including COSMOtherm that implements COSMO-RS57 and Aspen Plus
vapor compositions (yi) are represented as circles and liquid composition
individual components at different compositions from SolvGNN, COSMO
all phase diagram calculations, the ln gi's are obtained by averaging the
deviations are visualized as the error bars.

© 2023 The Author(s). Published by the Royal Society of Chemistry
fact that they are commonly used as mixture examples with
contrasting equilibrium behavior.

Fig. 5a–c includes representative example phase diagrams of
polar–polar, nonpolar–nonpolar, and polar–nonpolar binary
mixtures. At 298 K, a water–methanol mixture deviates posi-
tively from ideal solution behavior and shows higher equilib-
rium bubble pressure as a result of unfavorable unlike-molecule
interactions. By contrast, a benzene–toluene mixture exhibits
near-ideal behavior, as indicated by a bubble line that is almost
linear, which suggests a homogeneous solution where molec-
ular interactions between like and unlike components are
viewed the same. Additionally, we showcase a cyclohexane-
ethanol mixture that forms an azeotrope, which was success-
fully identied by SolvGNN, and the predicted azeotrope
composition (xcyclohexane ∼0.65) is consistent with the estimates
from COSMOtherm (COSMO-RS) and Aspen Plus (UNIFAC). In
all three cases, the predicted phase diagrams obtained by
SolvGNN are consistent with the phase diagrams generated
using COSMOtherm (COSMO-RS) or Aspen Plus (UNIFAC), and
the MAE values in the equilibrium pressure range from 0.001 to
0.004 bar. We also observed that, compared to Aspen Plus
(UNIFAC), SolvGNN tends to underestimate equilibrium pres-
sure values, whereas COSMOtherm tends to overestimate these
values. Upon inspecting the activity coefficients for the sample
mixtures (Fig. 5d–f), we found that, although the activity coef-
cients were trained only on four compositions plus innite
dilution, SolvGNN was able to make relatively accurate
iagrams of three binary mixtures, each representing a different type of
uilibrium pressure is computed with modified Raoult's Law using the
ompared with those generated from two other state-of-the-art tools,
that implements UNIFAC60 (as well as other activity models61–65). The
s (xi) are represented as squares. (d–f) Predicted activity coefficients for
therm, and Aspen. “x” denotes activity coefficients at infinite dilution. In
predictions of SolvGNN trained from each CV fold, and the standard

Digital Discovery, 2023, 2, 138–151 | 147

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00045h


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

0/
17

/2
02

5 
12

:0
3:

24
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
predictions for compositions in a continuous space. We also
compared experimental equilibrium data66 for cyclohexane-
ethanol at similar temperatures for which data are available
(293 K and 303 K) and found similar behavior and a similar
azeotrope composition; these data as well as a few additional
phase diagram examples along with their activity coefficient
predictions are shown in ESI.†

Next, we computed vapor-liquid equilibrium (VLE) data for
a ternary mixture of water–acetone–methyl isobutyl ketone
(MIBK). Similar to the phase diagram calculations for binary
systems, we sampled different liquid compositions and calcu-
lated the equilibrium pressures using modied Raoult's Law.
For simplicity, we picked two pressures and computed corre-
sponding liquid and vapor compositions; numerical compari-
sons between SolvGNN and COSMOtherm (COSMO-RS) are
summarized in Table S4.† For the selected pressures, the pre-
dicted vapor-phase compositions (yi) have an MAE around 0.02
when comparing SolvGNN predictions to COSMOtherm data.

In summary, we were able to create binary phase diagrams
(at 298 K) with a full range of compositions using SolvGNN that
was only trained on a few sampled input ratios. The provided
framework has shown great potential for high-throughput
screening of mixtures for use cases including azeotrope iden-
tication and non-ideal behavior investigation for liquid
mixtures. Incorporating SolvGNN into such phase equilibrium
calculations bypasses the need to identify functional groups
with human expertise and obtain interaction parameters (as
needed in UNIFAC) or to conduct DFT calculations (as needed
in COSMO-RS), especially when the chemicals in a mixture are
relatively uncommon. Moreover, this framework could be used
in conjunction with open-source process models (e.g., Bio-
Steam67) as an addition to the existing computational models
(e.g., UNIFAC) for generating thermodynamic data.

4 Conclusions and future outlook

We developed a GNN architecture (SolvGNN) that incorporates
both local (intramolecular) and global (intermolecular) convo-
lutions on graph representations and used this for predicting
activity coefficients of solvent mixtures. SolvGNN explicitly
integrates intermolecular interactions through the construction
of the molecular interaction network that encodes H-bonding
information. We found that with such feature embedding,
SolvGNN can successfully estimate the activity coefficients that
vary with chemical compositions for binary as well as ternary
mixtures, which has not been explored much under the hood of
ML, especially in the context of activity coefficients.

Compared to the current state-of-the-art approach for
general activity coefficient estimations (e.g., UNIFAC and
COSMO-RS), SolvGNN achieves comparable model performance
and is easy to use without any additional calculations for
missing parameters or DFT. We also benchmarked SolvGNN on
the same experimental dataset that was used in an earlier study
for developing a GNN that predicts only the innite-dilution
activity coefficients of binary mixtures;29 SolvGNN outperforms
the previously developed GNN in almost all evaluation metrics,
proving the importance to use prior knowledge (in this case
148 | Digital Discovery, 2023, 2, 138–151
explicit topological prior pertinent to intermolecular interac-
tions) when designing GNN architectures. These ndings
demonstrate the ability of SolvGNN to learn from simulation
(e.g., COSMO-RS) and experimental data.

Moreover, we provided an open-source computational tool
for creating phase diagrams (P–x–y) using SolvGNN as an
example to show its potential for real-world applications. The
generated phase diagrams were consistent with those obtained
from COSMOtherm and Aspen Plus (with the selection of UNI-
FAC as the thermodynamic method), which further illustrated
the generalization ability of SolvGNN that was only trained on
a minimal subset of composition cases. Besides phase
diagrams, we provided algorithms to obtain counterfactuals to
aid model interpretation, which may help extract physical
insights that are less known and help design solvent mixtures.

The architecture and study can be expanded in a number of
ways. For example, so far we have only obtained activity coeffi-
cients at room temperature, and thus SolvGNN does not have
temperature dependence. However, obtaining temperature-
dependent activity coefficients from COSMO-RS and re-
training SolvGNN with an additional temperature variable
would be a relatively trivial, given that the computational
framework is in place. Another limitation for phase equilibrium
predictions is related to the availability of Antoine coefficients;
in circumstances where Antoine coefficients are missing e.g., no
measurements for the substance or outside of the temperature
range, we cannot compute the corresponding phase diagrams.
A potential solution could be to develop another GNN archi-
tecture for Antoine coefficient predictions or expand the output
dimension of our current SolvGNN to make these predictions.
Additionally, since the model weights that are related to
concentrations are not constrained, unphysical activity coeffi-
cient trend may be present from the current SolvGNN predic-
tions. This issue may be addressed in future studies through
conditioning constraints on the model weights or theory-
infused network architecture. Furthermore, the presented
counterfactual analysis only searches the chemical space within
the data set, and therefore to obtain more meaningful results,
we will adapt some of the more established chemical search
algorithms42,68 that have been designed for single chemicals to
the case of mixtures. Future studies will also explore the use of
SolvGNN for other mixture properties and investigate different
possible representations of intermolecular interactions (e.g.,
Lennard-Jones potentials as additional edge features or
replacing edge features by molecular-level node features). We
are also interested in using these types of architectures to
design solvents that can selectively solubilize target molecules
in combination with generative models.69–71
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gemischen, Z. Phys. Chem., 1910, 72(1), 723–751.

63 G. M. Wilson, Vapor-liquid equilibrium. XI. A new
expression for the excess free energy of mixing, J. Am.
Chem. Soc., 1964, 86(2), 127–130.

64 H. Renon and J. Prausnitz, Estimation of parameters for the
NRTL equation for excess Gibbs energies of strongly
nonideal liquid mixtures, Ind. Eng. Chem. Process Des. Dev.,
1969, 8(3), 413–419.

65 D. S. Abrams and J. M. Prausnitz, Statistical
thermodynamics of liquid mixtures: a new expression for
the excess Gibbs energy of partly or completely miscible
systems, AIChE J., 1975, 21(1), 116–128.

66 Dortmund Data Bank, Dortmund Data Bank, 2022, https://
www.ddbst.com.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://arxiv.org/abs/2209.04135
https://cactus.nci.nih.gov/chemical/structure
https://cactus.nci.nih.gov/chemical/structure
https://github.com/oscarcontrerasnavas/NIST-web-book-scraping
https://github.com/oscarcontrerasnavas/NIST-web-book-scraping
https://www.ddbst.com
https://www.ddbst.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00045h


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

0/
17

/2
02

5 
12

:0
3:

24
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
67 Y. Cortes-Peña, D. Kumar, V. Singh and J. S. Guest,
BioSTEAM: a fast and exible platform for the design,
simulation, and techno-economic analysis of bioreneries
under uncertainty, ACS Sustainable Chem. Eng., 2020, 8(8),
3302–3310.

68 A. Nigam, R. Pollice, M. Krenn, G. dos Passos Gomes and
A. Aspuru-Guzik, Beyond generative models: superfast
traversal, optimization, novelty, exploration and discovery
(STONED) algorithm for molecules using SELFIES, Chem.
Sci., 2021, 12(20), 7079–7090.
© 2023 The Author(s). Published by the Royal Society of Chemistry
69 T. Shen. Semi-Supervised Junction Tree Variational
Autoencoder for Molecular Property Prediction, 2022,
preprint, arXiv:220805119.

70 E. Bengio, M. Jain, M. Korablyov, D. Precup and Y. Bengio,
Flow network based generative models for non-iterative
diverse candidate generation, Adv. Neural Inf. Process Syst,
2021, 34, 27381–27394.

71 W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational
autoencoder for molecular graph generation, In,
International conference on machine learning. PMLR, 2018,
pp. 2323–2332.
Digital Discovery, 2023, 2, 138–151 | 151

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00045h

	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h

	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h

	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h
	Capturing molecular interactions in graph neural networks: a case study in multi-component phase equilibriumElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00045h


