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ework for solubility prediction
across organic solvents†

Antony D. Vassileiou, *a Murray N. Robertson, b Bruce G. Wareham,c

Mithushan Soundaranathan,c Sara Ottoboni,b Alastair J. Florence,b Thoralf Hartwigd

and Blair F. Johnston *abe

We report a single machine learning (ML)-based model to predict the solubility of drug/drug-like

compounds across 49 organic solvents, extensible to more. By adopting a cross-solvent data structure,

we enable the exploitation of valuable relational information between systems. The effect is major, with

even a single experimental measurement of a solute in a different solvent being enough to significantly

improve predictions on it, and successive ones improving them further. Working with a sparse dataset of

only 714 experimental data points spanning 75 solutes and 49 solvents (81% sparsity), a ML-based model

with a prediction RMSE of 0.75 log S (g/100 g) for unseen solutes was produced. This compares

favourably with conductor-like screening model for real solvents (COSMO-RS), an industry-standard

model based on thermodynamic laws, which yielded a prediction RMSE of 0.97 for the same dataset.

The error for our method reduced to a mean RMSE of 0.65 when one instance of the solute (in

a different solvent) was included in the training data; this iteratively reduced further to 0.60, 0.57 and

0.56 when two, three and four instances were available, respectively. This standard of performance not

only meets or exceeds those of alternative ML-based solubility models insofar as they can be compared

but reaches the perceived ceiling for solubility prediction models of this type. In parallel, we assess the

performance of the model with and without the addition of COSMO-RS output as an additional

descriptor. We find that a significant benefit is gained from its addition, indicating that mechanistic

methods can bring insight that simple molecular descriptors cannot and should be incorporated into

a data-driven prediction of molecular properties where possible.
Introduction

The solubility of an active pharmaceutical ingredient (API) in
a given solvent is a fundamental parameter utilized throughout
the pipeline of pharmaceutical research, from drug discovery
through to manufacturing.1–3 In this sector, reliable solubility
prediction is of central importance for directing experimental
work, expediting time to market and reducing material costs.1,4

Furthermore, as multiple solvents are employed across, and
oen within unit operations, it is crucial for any predictive
capability to extend across a wide range of drug/drug-like
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tion (ESI) available. See DOI:

–367
solutes and organic solvents. Within this context, we recom-
mend a unied, cross-solvent structure for data-driven solu-
bility prediction. Adopting it allows for a predictive capability
that rivals and oen outperforms alternative, solvent-specic
models. Through the use of machine learning (ML), the
model can easily be modied/extended to incorporate other
available predictive methods and pool their strengths. Signi-
cantly, this approach requires only a fraction of the number of
experimental data points for any one solvent. This is crucial for
real-world application, given that the solubility of drug-like
molecules across organic solvents is a vast design space with
a wide variety in data availability, quality and consistency. This
approach enables a model to learn from previously known
solubility measurements of a given solute in other solvents: this
is particularly relevant for industrial applications where limited
material is available to expend on screening.

This work refers to mechanistic, data-driven and hybrid
modelling – it is worth noting the meaning of this terminology.
Mechanistic modelling refers to descriptions of phenomena in
a system based on theory and rst principles:5 in the context of
solubility, mechanistic models are generally derived from the
laws of thermodynamics. In contrast, data-driven approaches
© 2023 The Author(s). Published by the Royal Society of Chemistry
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do not innately carry the context of their applied domain,
instead tting a general form to a set of input data to create
a model that can be re-applied: linear regression is one of the
simplest examples, but this also captures ML methods. Hybrid
modelling refers to methods that combine the two approaches.
While there is no hard line between these archetypes, framing
modelling in these general terms helps to retain clarity over the
origins of a model's behaviour.

Much of the recent work in ML-based solubility prediction,
at least for drug-like molecules, has focused on aqueous
solubility.6–12 Comparatively less has captured other common
organic solvents,13,14 in which APIs are typically manufactured.

Several mechanistic models for solubility prediction have
been well adopted by the pharmaceutical community.15–17

However, this study examined the role of such models in the
overarching strategy for solubility prediction, rather than on
their specic features, and so the scope was limited to one:
Conductor-like screeningmodel for real solvents (COSMO-RS),16

as implemented in the soware package COSMOtherm.18 This
was chosen because it is well known to the pharmaceutical
industry, and is relatively accessible to non-specialists. It has
shown good performance working across solvents and can
model non-ideal behaviour (with some limitations due to the
application of the Born approximation),19 which is essential for
the high concentrations involved in many pharmaceutically
relevant solid–liquid equilibria. On a practical note, COSMO-
therm performs its own built-in molecule parameterization
given only a molecular structure. For solubility prediction, any
further parameters required of the operator are experimental
values. It produces a nal prediction for the vast majority of
systems, irrespective of accuracy; this is helpful for constructing
complete datasets.

It has previously been suggested that the standard deviation
of experimental aqueous solubility values (log S mol L−1) re-
ported in the literature is approximately 0.5–0.7.6,20,21 Palmer
and Mitchell reduced this standard deviation for a subset of
compounds using a highly controlled experimental method, the
purpose being to observe the impact this had on their predictive
models.12 Perhaps surprisingly, when switching to these
ostensibly “better” experimental values, their models showed
little change in performance. This result suggested that exper-
imental data quality was not the limiting factor in prediction
accuracy in this case, leaving data quantity, the descriptor set or
the ML algorithm as potential barriers. A similar phenomenon
was observed later in the results of the second Solubility Chal-
lenge,6 where a “tight” set of aqueous solubility data was made
available (average interlaboratory reproducibility estimated to
be ∼0.17 log units) but the submitted models failed to conclu-
sively improve vs. the “loose” dataset. The authors also conclude
that a larger dataset of at least several thousand points would be
needed to detect signicant improvements in the prediction
methodology and feature selection. While these points are
based on studies of aqueous data only, the conclusions speak to
the limitations of data measurement and subsequent modelling
in general; any study based on diverse experimental data
curated from the literature (such as the present one) is likely to
encounter similar phenomena.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Although no equivalent standard deviation is established for
published experimental values across other organic solvents, it
is sensible to assume both that such a value (a) exists and (b) is
no lower than that of purely aqueous solubility data; indeed, it
is likely higher due the greater diversity of experimental
methods used to collect the data (dataset fully cited in the ESI†).
Regardless of the precise cause, and given that Palmer and
Mitchell used a similar descriptor set and the same ML algo-
rithm (described in the Materials and methods), it is likely that
an equivalent ceiling to model performance also exists for the
work presented here.

An earlier study by Palmer et al. provides a relevant perfor-
mance benchmark for the present work to be considered
against.22 Using a 658-compound training set of aqueous solu-
bility measurements (log S mol L−1) and molecular descriptors,
the authors used random forest (RF) to predict the corre-
sponding solubility measures of a 330-compound external test
set with a RMSE of 0.69. Both their study and the present one
used RF trained on molecular descriptors calculated with
molecular operating environment (MOE). In a similar spirit,
Boobier et al. recently described ML-based solubility prediction
that, notably, did extend beyond water to three common organic
solvents.13 The authors screened a range of ML methods for
performance against an aqueous solubility dataset of compa-
rable size to Palmer et al., as well as ethanol, acetone and
benzene sets. They focused primarily on varying ML algorithms,
as well as making rational modications to their descriptor sets,
though they worked with each of their solvent-specic datasets
in turn, rather than merge them into one.

Qiu et al. demonstrated the impressive capabilities of even
simple heuristic methods for solubility prediction when based
upon the vast BMS solubility dataset.23 While this dataset is not
available to the public, the study is a rare example that strove to
predict solubility across a range of solvents. It also demon-
strated the power of the relational information that is available
in a cross-solvent data structure. Another recent cross-solvent
study by Ye and Ouyang14 used extended-connectivity nger-
prints24 as alternative features to molecular descriptors. They
produced a RMSE in solubility prediction of 0.77 for unseen
solutes – this is an important benchmark for the present study,
which begins by exploring this idea. Further studies have
exploited cross-solvent data in the generation of hybrid models
of other solvent-dependent phenomena.25,26

The foundation for the work presented here was the use of
a single, unied model for ML-driven solubility prediction
across solvents. The challenges and opportunities of working
with this framework were thoroughly explored. The perfor-
mance of RF trained on this dataset to predict solubility on
a cross-solvent basis was evaluated against COSMO-RS, a rela-
tively common mechanistic model for solubility prediction.
Signicantly, the RF-based method was trialled both excluding
and including COSMO-RS in the training data, switching the
model from purely data-driven to a hybrid one. Hybrid model-
ling in this manner by ML has seen success across domains.27–29

RF was selected as the algorithm for the ML portions of this
work due to its relative simplicity, high performance and quick
execution. Compared to many other ML algorithms, its
Digital Discovery, 2023, 2, 356–367 | 357
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hyperparameters are few in number and set with robust
defaults. This limits the effectiveness of hyperparameter
tuning,30,31 and this step is generally not required, at least in
exploratory contexts such as this work. RF also handles extra-
neous features by performing on-the-y feature selection and
has a strong track record of working with datasets based on
molecular descriptors.13,32
Materials and methods

The key requirement for this study was experimental solubility
data. While some were available from historic in-house experi-
ments and industrial partners, the majority were captured from
the literature. This reliance on the literature for sourcing data
forced several concessions, the rst being that no constraint
was placed on the experimental method. Ideally, all solubility
measurements would have been measured by the same tech-
nique; however, this would have reduced the quantity of avail-
able data beyond usable limits for ML.

Second, all collected experimental solubility measurements
were reported at 25 ± 1 °C. The ±1 °C tolerance was applied
primarily to ease the collection of data whose temperatures had
been converted to/from kelvin, e.g. 298 K = 24.85 °C, but also to
slightly boost the size of the dataset. When considered against
other sources of potential noise in experimental data, it was
assumed that this modest temperature tolerance would not
meaningfully exacerbate the issue.

Finally, the use of COSMO-RS to perform solubility predic-
tions required input values for solute melting point (Tmelt) and
enthalpy of fusion (DHfus). These values are fundamentally
necessary for COSMO-RS in order to estimate the free energy of
fusion. While a last-resort heuristic approximation exists that
will bypass this data requirement, it is not recommended.33
Fig. 1 Grid marking the presence of solute/solvent systems in the datase
the ESI†).

358 | Digital Discovery, 2023, 2, 356–367
Hence, solubility measurements were only included if the cor-
responding calorimetry data were also available for the solute.
The quality of these data is a further source of error for COSMO-
RS predictions, though likely a lower one than the use of the
approximation.

The nal dataset amounted to 714 experimental solubility
measures in total, capturing 75 solutes and 49 solvents. Of
these, 20 were obtained from historical in-house experiments
and 81 were provided by GlaxoSmithKline (details on collection
methods given in the ESI†). In terms of solute/solvent combi-
nations, a fully populated grid would amount to 3675 data
points; the sparseness of the dataset was therefore 1− 714/3675
= 81%. All solutes and solvents were numbered on a grid
mapping the systems present in the dataset; this is visualised in
Fig. 1. Solute/solvent IDs match those in the dataset presented
in the ESI.† The most prevalent solvent in the dataset was
ethanol, appearing with 51 solutes, and the most prevalent
solute was naproxen, appearing with 31 solvents.

For each solute/solvent system present, solubility calcula-
tions were carried out with COSMOthermX (release 17) using
parameterization BP_TZVPD_FINE_17. Molecular descriptors
(2D only) were calculated for each solute and solvent using
MOE.34 COSMOthermX and MOE each require licences; the
licence type does not affect the output. Apart from removing
descriptors with zero variance, no feature selection was per-
formed (RF handles this on-the-y). All RF models were imple-
mented in R35 using the randomForest36 package. Non-default
settings: ntree = 1000. This was set manually, rather than as
a result of a parameter tuning step. It has been suggested that
a minor performance gain could be made by increasing ntree
from the default for some datasets37,38 – while this is by no
means a generalisation to all datasets, the only downside to this
modest raise of ntree was computation time, which was
t (black = present). Solute/solvent IDs match those in the dataset (see

© 2023 The Author(s). Published by the Royal Society of Chemistry
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manageable for this work. Further external R packages were
utilized to carry out this work: dplyr,39 doParallel,40 and fore-
ach.41 All plots were produced with plotly42 for R.

For comparison to the DrugBank,43 the 2022 dataset was
downloaded and the same MOE descriptors were calculated for
all 9694 drug molecules that were marked as approved, experi-
mental, illicit, investigational, nutraceutical, vet-approved and
withdrawn. Features not in the main solubility set were drop-
ped. Prior to performing principal component analysis (PCA),
all features were scaled to unit variance and zero-centred. For
projecting the solubility dataset into the same space, these
scaling and centering factors, as well as the subsequent matrix
rotation, were extracted and applied to the solubility dataset.

This study examined three different approaches to predict-
ing solubility. The rst was the use of standalone COSMO-RS,
with no supplementary ML elements, serving as a baseline
performance to measure the others against. The second used RF
to predict solubility using molecular descriptors from MOE
alone (termed RF-pure throughout). This represented a purely
data-driven approach, most similar to the efforts of Mitchell
and Palmer.22 This method did not require output from
COSMO-RS, and so did not require calorimetric data. For this
reason, while not equivalent to COSMO-RS, it was the closest to
a “competitive” method within the context of this study. The
nal approach merged the previous two, utilizing COSMO-RS
solubility predictions as a descriptor for RF, as well as the set
of molecular descriptors from MOE (termed RF-hybrid
throughout). In practice, this was a trivial modication to the
model, though it meant a signicant shi from a purely data-
driven alternative to COSMO-RS to a hybrid model. To
simplify comparisons between approaches, calorimetry data
were not included as descriptors in any datasets used for ML;
any differences in performance between RF-pure and RF-hybrid
could thus be ascribed to the presence/absence of COSMO-RS
output. Fig. 2 summarises the data inputs/outputs of each
approach.

Four metrics were used to characterize model performance:
R2, root mean square error (RMSE), and mean absolute error
(MAE), as well as the fraction of cases whose prediction had
Fig. 2 Data inputs and outputs for each prediction method. Notably, RF-
experimental calorimetry measurements for use, while RF-hybrid requir

© 2023 The Author(s). Published by the Royal Society of Chemistry
improved over COSMO-RS, regardless of the magnitude of the
improvement (FI). The latter metric was devised as a simple and
useful measure of model consistency. By disregarding error
magnitude, it contrasted with RMSE, which is by nature
particularly sensitive to larger errors. It was intended to provide
an indication of risk to the end user for deploying this strategy
over simply using COSMO-RS standalone. For example, an FI of
0.5 would mean that as many COSMO-RS predictions were
worsened as improved by the appliedmethod (and thusmay not
be worth applying on an unknown solute), while an FI of 1
would indicate that the method improved all predictions and so
could be applied to unknowns with little risk.

Results and discussion

To rst put the coverage of chemical space into context, the
equivalent molecular descriptors were calculated for the full
DrugBank dataset.43 Principal component analysis (PCA) was
performed on this set, and the solubility dataset curated for this
study was then projected into the same space (details in the
Materials and methods). Both sets are overlaid in the rst two
principal component axes (47% explained variance) in Fig. 3.
This is fairly low, but to be expected when attempting to reduce
the dimensions of this many molecular descriptors, which are
designed to carry non-redundant information. However, the
purpose was merely to give a high-level illustration of the
diversity of chemical structures in the dataset: it can be seen
that the solutes cover the majority of the densely populated
space. The accompanying scree plot is included in the ESI.†

As a rst step, 10-fold cross validation (CV) of each of the RF-
based approaches was performed to compare against COSMO-
RS. The predictions of each fold were merged to produce a set
of predictions for the full set and plotted against their associ-
ated experimental values (Fig. 4). From the results, both RF-
based methods showed a signicant improvement over
COSMO-RS by all metrics. RF-hybrid outperformed RF-pure, as
anticipated, indicating that COSMO-RS predictions were
a powerful feature in the dataset. However, due to the compo-
sition of the dataset spanning multiple solutes and solvents, it
pure was independent of COSMO-RS, and so did not ultimately require
ed COSMO-RS predictions as input.

Digital Discovery, 2023, 2, 356–367 | 359
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Fig. 3 PCA of the DrugBank dataset. The solubility dataset used throughout this study is projected into the same space as a visual estimate of
chemical diversity within it. The loadings for molecular weight and log P are displayed to aid in interpretation.
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must be highlighted that these results in isolation can create
a misleading portrayal of model performance, as discussed
below. We retain this conventional train/test splitting method-
ology as a reference for the rest of this study and comparison
with other studies.

In randomly partitioning this (or any) dataset, an assump-
tion is made that all data points within are independent of each
other, and it is therefore insignicant into which partition they
are placed; at least, that is the hypothesis being tested. With this
dataset's structure, where each case is a system composed of
two distinct molecular property sets (solute and solvent), the
assumption is false. If a model has “seen” a solute and/or
solvent many times across different systems in its training set,
it is likely to make a more accurate prediction for a further
system containing it. Equally, for a system of a previously
unseen solute and/or solvent, it is likely to make a less accurate
prediction. With a validation method based on random parti-
tioning of the dataset, it is overwhelmingly likely that most
solvents and solutes spread across both training and testing
sets, even with the sparse representation of any individual
solute or solvent in this dataset. The 10-fold CV remains
a legitimate test, though in this case it models only one scenario
that is relevant to an industrial context: where a number of
solubility points for a given compound is already known, and
the prediction of further points for the same compound is
desired. It certainly does not model another, perhaps more
likely scenario: where a new compound is being investigated,
with zero available solubility data for it.

In order to model the latter scenario, a variant of CV was
performed where, rather than randomly splitting the data into k
equally sized folds, they were split into folds containing all data
points for a single solute only. This could be termed “leave-one-
solute-out” cross-validation (LOSO-CV). By this approach, all
tested data points were treated as previously unseen solutes,
with predictions made based only on the remaining solutes in
the dataset. Of course, this did nothing to control the
360 | Digital Discovery, 2023, 2, 356–367
distribution of solvents across partitions, but this was consid-
ered acceptable given the relatively less likely occurrence of
a new solvent being utilized in an industrial context. The results
of LOSO-CV are presented in Fig. 5.

By LOSO-CV, RF-pure achieved barely better performance
metrics than the original COSMO-RS predictions. With FI < 0.5,
it was actually more likely to return a prediction with higher
error than COSMO-RS. Overall, its performance was not a reli-
able improvement on COSMO-RS. However, a slight improve-
ment over COSMO-RS was seen with RF-hybrid by all metrics,
suggesting that it is theoretically worth applying RF-hybrid to
enhance COSMO-RS predictions, even for “new” solutes, leaving
aside the overhead of setting up this method.

The strong RF performance by 10-fold CV and the subse-
quent drop by LOSO-CV indicate that, for a given solute, at least
some prior knowledge of its solubility in other systems is
signicantly helpful for enhancing COSMO-RS predictions.
While this is not in itself surprising, it is noteworthy that the
relatively simple technique of RF-hybrid was indeed sufficient
to exploit this relational information.

Feature importance analysis was performed using the built-
in method for RF. This operates aer model training is
complete by permuting each feature in turn and re-predicting
all out-of-bag validation data. The % increase in MSE is
tracked: the more the feature was utilised by the model, the
larger this value should be. A dedicated discussion of this
analysis, including its limitations, is provided by Gregorutti
et al.44 and references therein. The results for RF-pure and RF-
hybrid (both retrained using the full dataset) are shown in
Fig. 6. While the results should only be interpreted coarsely and
qualitatively, the analysis yields some useful insights. First,
COSMO-RS appears to be the most important feature by far in
RF-hybrid. To properly quantify the impact of a single feature on
model performance, one would have to retrain an equivalent
model having excluded it from the beginning and compare
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (Upper left) COSMO-RS predictions vs. experimental values; (upper right) the merged 10-fold CV results generated by RF-pure vs. the
same experimental values; (middle left) the merged 10-fold CV results generated by RF-hybrid vs. the same experimental values; (middle right)
cumulative% of predictions vs. prediction error for each model; (lower) summary metrics for each model.
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errors. While this has not been carried out for all features, this
is precisely the difference between RF-pure and RF-hybrid.

COSMO-RS aside, most of the highly ranked features
describe the solute rather than the solvent in both cases. This is
likely due to there being a greater variety of solutes than
solvents (75 vs. 49), and so more variance in solute features. The
features themselves describe a range of molecular properties
one might expect to be important for characterising solubility,
including hydrogen bonding, surface area, partial charges,
© 2023 The Author(s). Published by the Royal Society of Chemistry
molecular size and rotatable bonds. The full feature set is
described in the MOE manual.34 A deeper analysis of the
features' contributions to the models was not entered into here,
since the models were far from perfect and likely to signicantly
change in future as more experimental data are obtained. It was
more relevant to real-world applications to focus on the impact
of additional experimental data. For interested readers, the
highest-error predictions of both COSMO-RS and RF-hybrid are
listed in the ESI.†
Digital Discovery, 2023, 2, 356–367 | 361
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Fig. 5 (Upper left) the initial COSMO-RS predictions vs. experimental values; (upper right) themerged LOSO-CV results generated by RF-pure vs.
the same experimental values; (middle left) themerged LOSO-CV results generated by RF-hybrid vs. the same experimental values; (middle right)
cumulative% of predictions vs. prediction error for each model; (lower) summary metrics for each model.
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Given the observed drop in model performance for unseen
solutes, it was relevant to ask how much prior knowledge of
a solute was needed to bring performance back in line with that
achieved by 10-fold CV, since this appeared to be a signicant
improvement over COSMO-RS.
362 | Digital Discovery, 2023, 2, 356–367
As a test case, one of the solutes provided by GlaxoSmithK-
line was selected, termed gsk-B. This choice was due to there
being experimental solubility data available for a large number
of solvents (20 in total). Four of these – ethanol, acetone, 2-
propanol and heptane – were held aside and selected as arbi-
trary common solvents. The solubility of gsk-B in the remaining
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Feature importance analysis for RF-pure and RF-hybrid (top 16 features shown in both cases).
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16 solvents was predicted by RF-hybrid: (i) given no prior gsk-B
solubility data, (ii) given gsk-B solubility in ethanol, (iii) given
gsk-B solubility in ethanol and acetone, (iv) given gsk-B solu-
bility in ethanol, acetone and 2-propanol, and (v) given gsk-B
solubility in ethanol, acetone, 2-propanol and heptane. This
sequence simulated a scenario where single solubility
measurements would be obtained experimentally and fed back
to the model in order to rene further predictions. The result
(Fig. 7) was a consistent improvement with each successive
point, with the RMSE matching that of the original 10-fold CV
by the third solvent. This was signicant: at least in this one
case, only a small number of experiments were needed to
signicantly improve solubility prediction for the same solute.

Of course, this example investigated (a) only one solute, (b)
only one series of four successive solvents, and (c) only one
specic sequence of addition to the training set, so was insuf-
cient for drawing general conclusions. In fact, the moderate
improvement seen even with no prior solute data suggested that
gsk-B was perhaps a so choice as an example. However, no
Fig. 7 RF-hybrid solubility predictions for gsk-B across 16 solvents, (i) giv
given gsk-B solubility in ethanol and acetone, (iv) given gsk-B solubility
ethanol, acetone, 2-propanol and heptane. These are compared again
achieved by 10-fold CV.

© 2023 The Author(s). Published by the Royal Society of Chemistry
single example could ultimately suffice: the logical progression
was to investigate all possible combinations – every solute, every
set of solvents, and every sequence of addition of that set – and
aggregate the results.

This was achieved by deploying a comprehensive, brute-force
cross-validation, drip-feeding all possible combinations of data
points of a given solute to training sets, retraining and retesting
each time. The procedure, hereaer referred to as “drip-
feeding” CV, is described in further detail in the ESI.† Through
manual consideration of both the dataset composition and the
computational cost required to process exponentially
increasing numbers of models, it was decided to perform the
drip-feeding CV only on solutes of 5 of more instances in the
dataset (57 out of 75). Solutes with fewer instances were
omitted, though were retained in training sets. This totalled
169 830 individual RF models.

As a result of this sweep of training/testing combinations, it
was possible to aggregate the predictions. For a given value r,
where r= the number of times the model had seen solute i in its
en no prior gsk-B solubility data, (ii) given gsk-B solubility in ethanol, (iii)
in ethanol, acetone and 2-propanol and (v) given gsk-B solubility in
st the initial COSMO-RS predictions, as well as the RF-hybrid result

Digital Discovery, 2023, 2, 356–367 | 363
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training set, the results were averaged for each solute/solvent
system. This allowed for the production of analogous results
to those shown for gsk-B in Fig. 7 for all solutes, all solvent
choices and all sequences: the aggregated results are presented
in Fig. 8, with a clear trend. When r = 0, the train/test data split
resulted in an equivalent test to LOSO-CV, and indeed proved
near-identical by all metrics. On increasing to r = 1, where
a single solubility measure of the test solute in a different
solvent was added to the training set, a signicant jump in
performance was observed by all metrics. Further increases of r,
corresponding to further solubility measures of the test solute
present in the training set, resulted in a steady performance
enhancement. When r = 4 the model closely matched increases
of r, corresponding to further solubility measures of the test
solute present in the training set, resulting in a steady perfor-
mance enhancement. When r = 4 the model closely matched
the initial strong performance seen by the 10-fold CV. This
nding revealed the merit of an iterative approach to solubility
prediction: coordinating with experimentalists and carrying out
a small number of targeted measurements could vastly improve
modelling capabilities on the remainder.

A small number of outlier points are visible in Fig. 8 that did
not improve as more solute data are made available. These were
Fig. 8 The results of drip-feeding CV for RF-hybrid, for r values of 0 to 4
from all possible training set combinations. Predictions were only ma
comparable (658 of 714 instances). COSMO-RS prediction errors were r

364 | Digital Discovery, 2023, 2, 356–367
checked for transcription errors, but have not been further
investigated here. However, this approach could possibly be
exploited in other applications as an outlier detection technique
by tracking prediction errors against the number of training
data points.

For reference, drip-feeding CV was also performed for RF-
pure, with the expected outcome: a similar overall trend to the
above, but with a greater overall error by all metrics. This is
presented in the ESI.†

True like-for-like performance comparisons with other ML-
based solubility models are challenging, given the ability of
this approach to exploit data relationships across solvents,
including further ones of a tested solute, and differing input
requirements (e.g. utilizing COSMO-RS requires calorimetry
data). However, the “headline” error rates can at least be
broadly compared with those of some recent alternative ML-
based approaches (Table 1). The cross-solvent study by Ye and
Ouyang14 ought to be considered here as well, which reports
a RMSE of 0.77 for unseen solutes; however, their dataset could
not be retrieved for comparison at the time of writing. Certainly,
it is clear that the approach described here extends the level of
solubility prediction typical of exclusively aqueous (or other
single solvent) models to a vast range of organic solvents while
. Each point represents the mean prediction error for the given system
de for solutes appearing in the dataset 5+ times to keep the plots
ecalculated for this subset for reference.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of performance metrics and datasets for a selection of recent solubility prediction studies from the literature. The values
representing this study are taken from the drip-feeding CV, where the number of same-solute data points in the training set was controlled

Ref. Model domain RMSE R2
No. same-solvent data
points in set

No. same-solute
data points in set

Total data points
in set

11 Water 0.67 0.81 829 0 829
12 Water 0.88 0.45 85 0 85
13 Water (narrow solubility range) 0.71 0.76 560 0 560
13 Water (wide solubility range) 0.71 0.93 900 0 900
13 Ethanol 0.79 0.53 695 0 695
13 Benzene 0.54 0.75 464 0 464
13 Acetone 0.83 0.42 452 0 452
This study 49 solvents 0.75–0.56 0.58–0.77 Max 51, median 10 0–4 714
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requiring only a small fraction of the number of data points per
solvent.
Conclusions

The rst goal of this work was to evaluate the use of a single,
cross-solvent model to predict solubility across a wide range of
systems. Varying both the solute and solvent introduced a new
layer of complexity for the model, but also valuable relational
information across solvents. It allowed the inclusion of small
numbers of data points for given solvents, themselves insuffi-
cient for training a solvent-specic prediction model. A further
goal was to examine the benet of a pre-existing, mechanistic
solubility prediction (COSMO-RS) included as a feature for the
data-driven method (RF).

The cross-solvent approach also introduced complexity
regarding validation techniques, since cases were no longer
fully independent of one another. A standard 10-fold CV boas-
ted a signicant improvement over COSMO-RS for both RF-pure
and RF-hybrid. While legitimate, this test did not control the
harnessing of same-solute data points in the training set. The
effect of controlling for this was demonstrated by LOSO-CV,
where train/test data partitions were chosen to isolate each
solute in turn. This forced the RF-based methods to treat all test
data as unseen solutes, mimicking a more relevant use case in
the pharmaceutical industry. Unsurprisingly, performance was
hindered. RF-pure did not convincingly outperform COSMO-RS
by LOSO-CV. RF-hybrid retained a minor overall improvement
in the same test, indicating some innate capacity for RF to
enhance COSMO-RS even with no available solubility data for
a given solute. This is signicant, since the enhancement could
be applied with little risk to any COSMO-RS prediction, even
with no prior knowledge of the solute, and will likely only
improve with a larger dataset.

The disparity between 10-fold CV and LOSO-CV was inter-
rogated further. 10-fold CV disregarded the effect of possessing
training data on the same solute being tested, which was not
satisfactory, while LOSO-CV only controlled this by forbidding it
entirely. However, it was possible to retain control of this extra
information while drip-feeding access to it, allowing the effect
to be quantied. It required a novel (to the best of the authors'
knowledge), brute force method that, for each solute in turn,
tested all combinations of training sets containing it on all
© 2023 The Author(s). Published by the Royal Society of Chemistry
further instances of the same solute, up to 4 instances in
training sets. The nal results aer pooling the correct subsets
were stark: they showed the stepwise gain in predictive power
that could be expected for any given solute as experimental
measurements of it in other solvents became available. Even
a single experimental solubility measurement in a different
solvent to the one of interest was enough to signicantly
improve RF-hybrid over its “blind” LOSO-CV performance.
Crucially, this gain is exclusively available to data-driven
approaches working on a cross-solvent basis.

Overall, the use of a sparsely populated, cross-solvent dataset
to enhance COSMO-RS solubility predictions proved successful,
achieving a RMSE of 0.75 log S for previously unseen solutes
but, signicantly, reducing to 0.65 when one instance of prior
knowledge was available, and continuing down to 0.56 when
four were available. For reference, COSMO-RS achieved a RMSE
of 0.97 across the same dataset. This nding indicates that,
where possible, an iterative approach to solubility screening
would be optimal for model accuracy, feeding back results as
they are generated in order to rene all remaining predictions.
For the dataset used in this study, results saw continuing
(though diminishing) improvements for up to four instances of
a solute in the training set, predicting a correction for a h.

This work focused on truly getting the most out of the “hard
currency” of experimental data in terms of predictive capability.
Alternative models to COSMO-RS and RF were not investigated,
and neither were alternative descriptor sets to MOE. The
strategy used was intentionally agnostic with respect to these
components: operators could freely swap any/all of them for
their preferred techniques and the analyses performed here
would remain valid, revealing equivalent parts of the story for
the new setup.

Finally, it is worth adding that the very fact that RF-hybrid
emerged signicantly superior to RF-pure at every turn
demonstrated the impact of the only difference between them:
the incorporation of COSMO-RS output. It hints at the enduring
value of mechanistic models in general; COSMO-RS was
selected for this study for practical reasons rather than anything
fundamental and is just one example. Models like this encap-
sulate vast quantities of expert human knowledge, oen with
years and decades of renement contained within their outputs.
Even when inaccurate for a particular system, the information
they contribute to a dataset is quantiably valuable, and, as
Digital Discovery, 2023, 2, 356–367 | 365
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demonstrated here, certainly not replaceable by simplistic, ML-
friendly molecular descriptors.
Data availability

The code for all model training and analysis, along with a pro-
cessed version of the non-condential portion of the dataset
that is ready for use with the code, is available at https://
github.com/AntonyVass/cmac_solpred_cosmo_rf. A release of
the source code can also be found at https://doi.org/10.5281/
zenodo.6380901. A fully referenced version of the dataset (i.e.
citation per measurement of solubility, enthalpy of fusion and
melting point) is also provided in the ESI.†
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