
Catalysis Science & Technology

A multidisciplinary journal focussing on all fundamental science and technological aspects of catalysis
rsc.li/catalysis

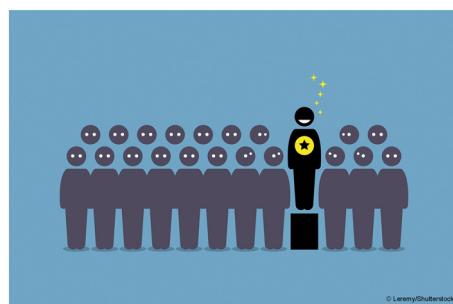
The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

IN THIS ISSUE

ISSN 2044-4761 CODEN CSTAGD 13(15) 4259–4570 (2023)

Cover

See Evgenii V. Kondratenko et al., pp. 4353–4359.
Image reproduced by permission of Evgenii V. Kondratenko from *Catal. Sci. Technol.*, 2023, 13, 4353.


Inside cover

See Hirosuke Matsui, Mizuki Tada et al., pp. 4360–4366.
Image reproduced by permission of Hirosuke Matsui from *Catal. Sci. Technol.*, 2023, 13, 4360.

EDITORIAL

4269

Outstanding Reviewers for Catalysis Science & Technology in 2022

MINI REVIEWS

4270

Functionalization of methane using molecular metal complexes as catalysts

Hiroto Fujisaki and Takahiko Kojima*

Methane functionalization by molecular catalysts

Editorial Staff**Executive Editor**

Maria Southall

Deputy Editor

Bianca Provost

Editorial Production Manager

Emily Skinner

Assistant Editors

Sean Browner, Molly Colgate, Paul Scott, Alison Winder

Editorial Assistant

Basita Javeed

Publishing Assistant

Allison Holloway

Publisher

Sam Keltie

For queries about submitted articles please contact

Emily Skinner, Editorial Production Manager, in the first instance.

E-mail catalysis@rsc.org

For pre-submission queries please contact

Maria Southall, Executive Editor.

E-mail catalysis-rsc@rsc.org

Catalysis Science & Technology electronic: ISSN 2044-4761 is published 24 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK.

All orders, with cheques made payable to the Royal Society of Chemistry, should be sent to the Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK. Tel +44 (0)1223 432398; E-mail orders@rsc.org

2023 Annual electronic subscription price: £2552; US\$4214. Customers in Canada will be subject to a surcharge to cover GST. Customers in the EU subscribing to the electronic version only will be charged VAT.

If you take an institutional subscription to any Royal Society of Chemistry journal you are entitled to free, site-wide web access to that journal. You can arrange access via Internet Protocol (IP) address at www.rsc.org/ip

Customers should make payments by cheque in sterling payable on a UK clearing bank or in US dollars payable on a US clearing bank.

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK. Telephone: +44 (0) 207 4378 6556.

Advertisement sales:

Tel +44 (0) 1223 432246; Fax +44 (0) 1223 426017;

E-mail advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

Catalysis Science & Technology

A multidisciplinary journal focusing on all fundamental science

and technological aspects of catalysis

rsc.li/catalysis

Editorial Board

Editor-in-ChiefBert Weckhuysen,
Utrecht University, The Netherlands**Associate Editors**Dirk De Vos, KU Leuven, Belgium
Shaojun Guo, Peking University, China

Mélanie Hall, University of Graz, Austria

Bin Liu, City University of Hong Kong, Hong Kong
Núria López, Institut Català d'InvestigacióQuímica, Spain
Will Medlin, University of Colorado Boulder, USA
Regina Palkovits, RWTH Aachen, Germany

Xiulian Pan, Chinese Academy of Sciences, China

Kenichi Shimizu, Hokkaido University, Japan
Andrew Weller, University of York, UKChris Williams, University of South Carolina, USA
Yong Zhou, Nanjing University, China

Advisory Board

Isabel Arends, Utrecht University, The Netherlands
Xinhe Bao, Dalian Institute of Chemical Physics, CAS, China
Bhalchandra Bhange, Institute of Chemical Technology, Mumbai, India
George Britovsek, Imperial College London, UK
Christian Bruneau, Institut des Sciences Chimiques de Rennes, France
Yong Cao, Fudan University, China
Matt Clarke, University of St Andrews, UK
Christophe Coperet, ETH Zürich, Switzerland
Avelino Corma, Valencia University, Spain
Johannes de Vries, Leibniz-Institut für Katalyse, Germany
Chris Hardacre, University of Manchester, UK

Graham Hutchings, University of Cardiff, UK
David Jackson, University of Glasgow, UK
Axel Knop-Gericke, Fritz-Haber Institute of the Max Planck Society, Germany
Can Li, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Wei-Xue Li, University of Science and Technology of China, China
Antonio Llobet, Institut Català d'Investigació Química, Spain
Jennifer Love, University of Calgary, Canada
Ding Ma, Peking University, China
Debabrata Maiti, IIT Bombay, India
Noritaka Mizuno, University of Tokyo, Japan
Francesca Paradisi, University of Bern, Switzerland

Evgeny Pidko, Delft University of Technology, The Netherlands
Robert M. Rioux, The Pennsylvania State University, USA
Tito Scaino, University of Ottawa, Canada
Tetsuya Shishido, Tokyo Metropolitan University, Japan
Tsunehiro Tanaka, Kyoto University, Japan
Nick Turner, University of Manchester, UK
Piet van Leeuwen, University of Toulouse, France
Ning Yan, National University of Singapore, Singapore
Jinhua Ye, National Institute for Materials Science, Japan

Information for Authors

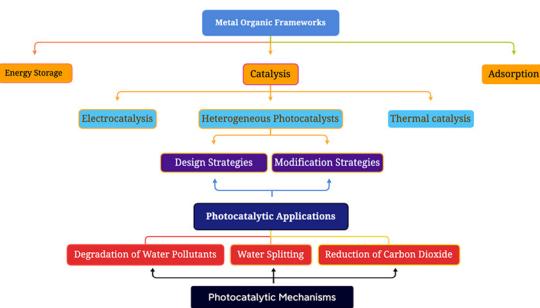
Full details on how to submit material for publication in Catalysis Science & Technology are given in the Instructions for Authors (available from <http://www.rsc.org/authors>). Submissions should be made via the journal's homepage: rsc.li/catalysis

Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form: (Original Citation)–Reproduced by permission of the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2023.

Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the Publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.

Registered charity number: 207890

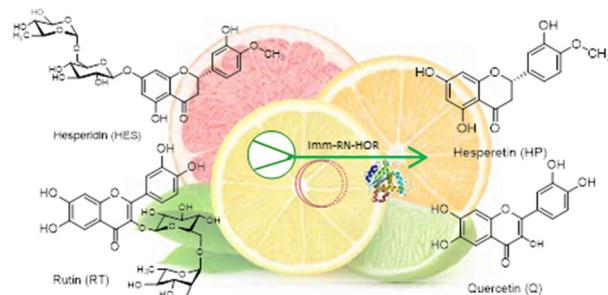


MINI REVIEWS

4285

State of the art and prospectives of heterogeneous photocatalysts based on metal-organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO₂ reduction

Zeren Ma, Bin Guan,* Jiangfeng Guo, Xingze Wu, Yujun Chen, Jinhe Zhang, Xing Jiang, Shibo Bao, Lei Chen, Kaiyou Shu, Hongtao Dang, Zelong Guo, Zekai Li, Shunyu Yao and Zhen Huang

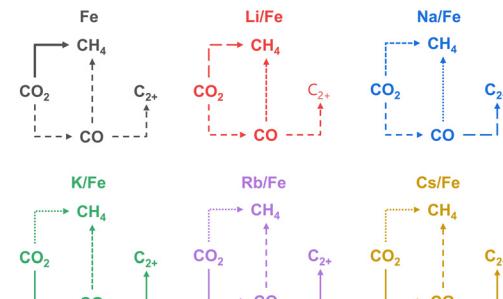


COMMUNICATION

4348

Flow bioprocessing of citrus glycosides for high-value aglycone preparation

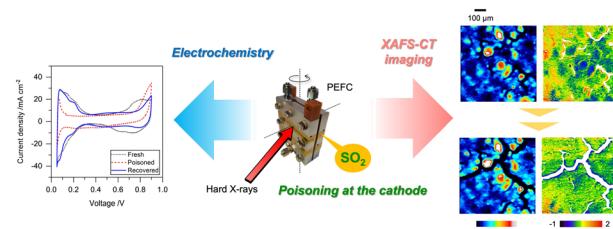
Agostina Colacicco, Giorgia Catinella, Cecilia Pinna, Alessandro Pellis, Stefano Farris, Lucia Tamborini, Sabrina Dallavalle, Francesco Molinari, Martina Letizia Contente* and Andrea Pinto



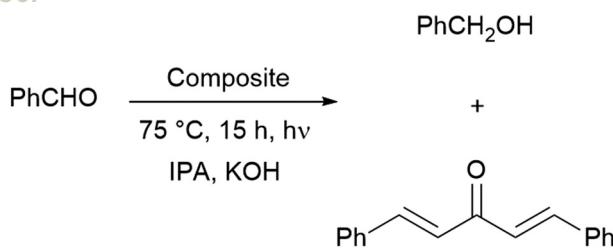
PAPERS

4355

Spatial analysis of CO₂ hydrogenation to higher hydrocarbons over alkali-metal promoted iron(II) oxalate-derived catalysts

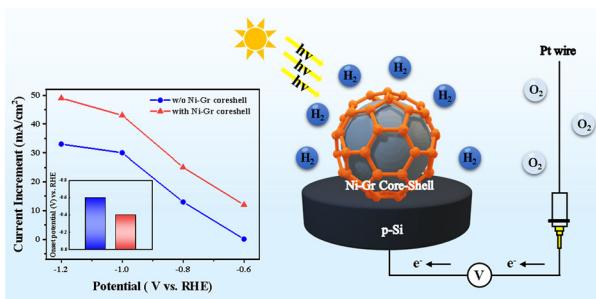

Andrey S. Skrypnik, Henrik Lund, Qingxin Yang and Evgenii V. Kondratenko*

4360


Spatial imaging of catalyst poisoning with SO₂ on Pt/C PEFC electrocatalyst by *operando* Pt L_{III}-edge XAFS-CT imaging

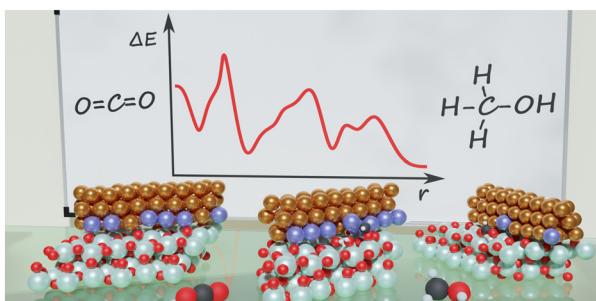
Hirosuke Matsui,* Koshin Sato, Naoko Isobe, Gabor Samjeské, Tomoya Uruga and Mizuki Tada*

PAPERS


4367

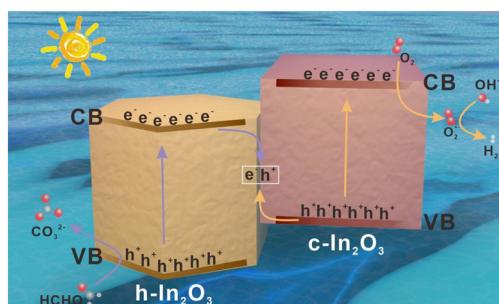
Synthesis of new graphene oxide/TiO₂ and TiO₂/SiO₂ nanocomposites and their evaluation as photocatalysts

Marta Rosenthal, Timur Biktagirov, Wolf Gero Schmidt and René Wilhelm*


4378

A surface-engineered Si photocathode with synergistic Ni-graphene core-shell for efficient hydrogen evolution

Chaewon Seong, Hyesu Ryu, Hokyun Rho, Hyojung Bae, Pratik Mane, Sang Hyun Lee* and Jun-Seok Ha*


4387

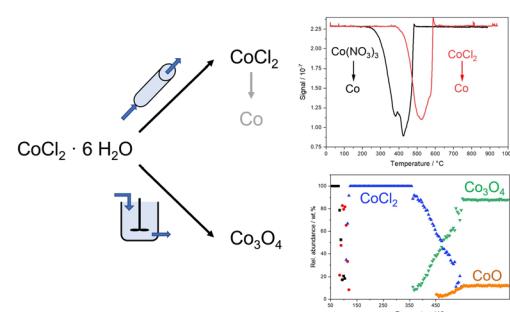
Exploring CO₂ hydrogenation to methanol at a CuZn-ZrO₂ interface via DFT calculations

Aku Lempelto, Lars Gell, Toni Kiljunen and Karoliina Honkala*

4400

Enhanced adsorption of oxygen species on c/h-In₂O₃ Z-scheme heterophase junctions for oxygen-mediated photocatalytic hydrogen production

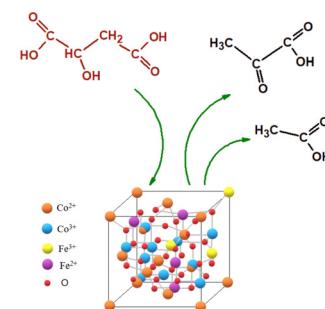
Zhengxin Peng, Xiangbowen Du, Nan Lu, Jing Sui, Xiaofan Zhang, Renhong Li and Xiaoqing Yan*



PAPERS

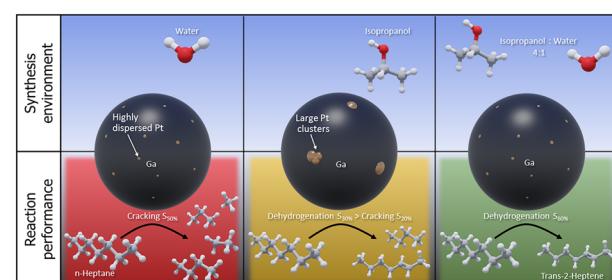
4409

On the problem of cobalt chloride-based catalysts in the Fischer–Tropsch synthesis


Madita Einemann,* Simon Haida, Nico Fischer, Nattawut Osakoo, Jatuporn Wittayakun and Frank Roessner

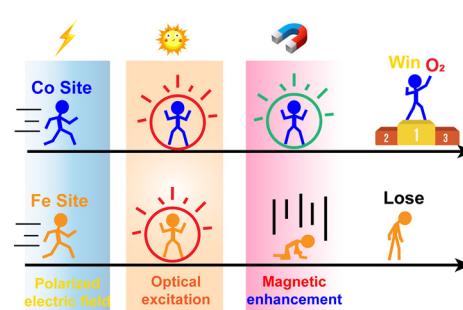
4420

Iron-doped Co_3O_4 catalysts prepared by a surfactant-assisted method as effective catalysts for malic acid oxidative decarboxylation

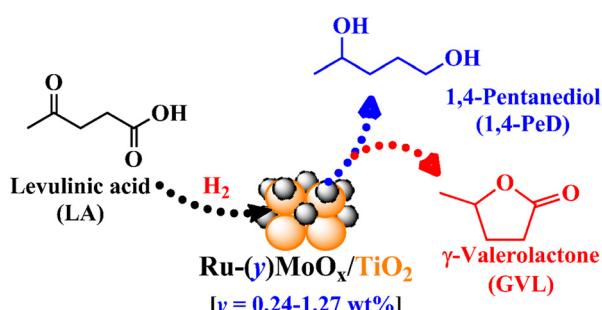

Gheorghita Mitran,* Ştefan Neaţu, Octavian Dumitru Pavel, Adriana Urdă, Anca G. Mirea, Mihaela Florea and Florentina Neaţu*

4435

Ga-Pt supported catalytically active liquid metal solutions (SCALMS) prepared by ultrasonication – influence of synthesis conditions on *n*-heptane dehydrogenation performance

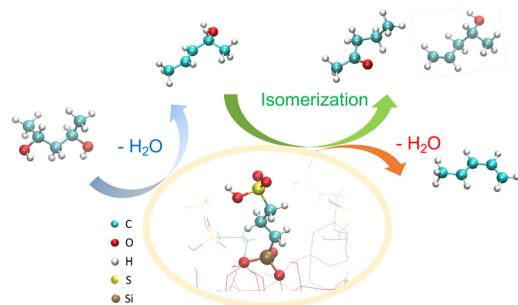

Oshin Sebastian, Asem Al-Shaibani, Nicola Taccardi, Umair Sultan, Alexandra Inayat, Nicolas Vogel, Marco Haumann* and Peter Wasserscheid*

4451


Magnetic field enhancement of the FeCoSe_2 photoanode for the oxygen evolution reaction by adjusting the hole density to reduce competitive adsorption between Fe and Co in a photoelectrochemical water-splitting system

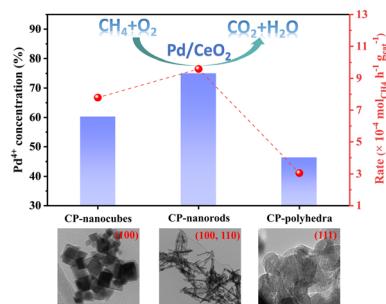
Ben Fan, Zebin Yu,* Ling Ding, Ronghua Jiang, Yanping Hou, Shuang Li and Jianhua Chen

PAPERS


4466

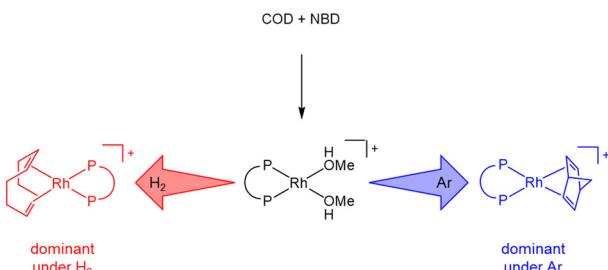
MoO_x-decorated Ru/TiO₂ with a monomeric structure boosts the selective one-pot conversion of levulinic acid to 1,4-pentanediol

Rodiansono,* Atina Sabila Azzahra, Heny Puspita Dewi, Indri Badria Adilina and Kiky Corneliasari Sembiring


4477

Mechanistic insights into the conversion of polyalcohols over Brønsted acid sites

Quy P. Nguyen, Han K. Chau, Lance Lobban, Steven Crossley and Bin Wang*


4489

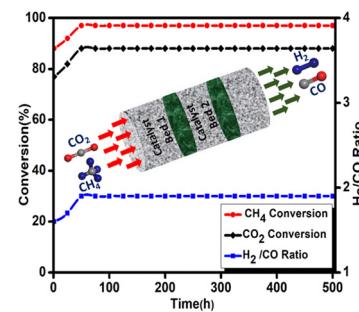
Ceria crystal facet impact for methane C–H activation in Pd/CeO₂ catalysts

Kewu Yang, Ke Wang, Xianfeng Shen, Fanxing Zhang, Bei Huang, Keping Yan, Yao Shi, Yi He* and Pengfei Xie*

4498

Major–minor concept revisited: causes for the reversal of thermodynamically determined intermediate ratios under reaction conditions

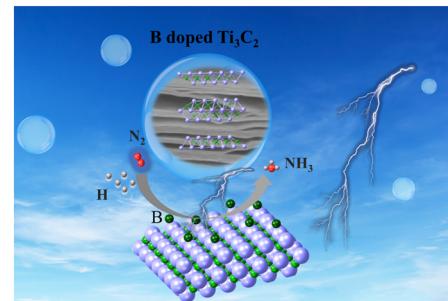
Nora Jannsen, Julia Jurrat, Helfried Neumann, Christian Fischer, Richard Thede and Detlef Heller*



PAPERS

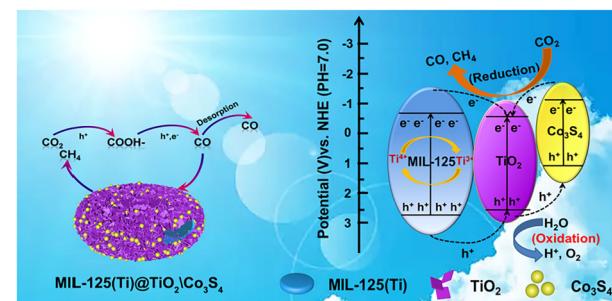
4506

Enhanced coke-resistant Co-modified Ni/modified alumina catalyst for the bireforming of methane


Satyajit Panda, Vedant Joshi, Vivek Kumar Shrivastaw, Subhashis Das, Mukesh Poddar, Rajaram Bal and Ankur Bordoloi*

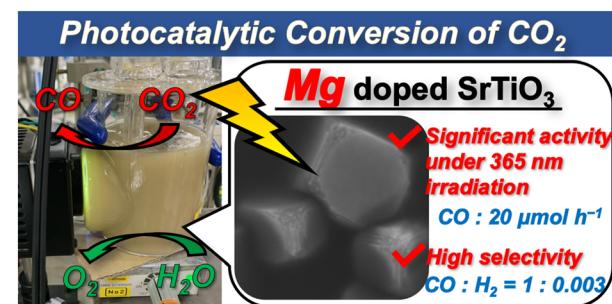
4517

Facile fabrication of boron-doped titanium carbide for efficient electrocatalytic nitrogen reduction

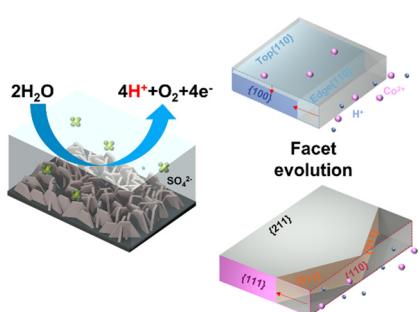

Tao Leiming,* Pang Kui, Qin Wen, Huang Liming, Duan Linhai, Zhu Guanhua, Li Qiuye* and Yu Changlin*

4525

MIL-125(Ti)@ZIF-67-derived MIL-125(Ti)@ TiO_2 hollow nanodiscs decorated with Co_3S_4 for remarkable photocatalytic CO_2 reduction

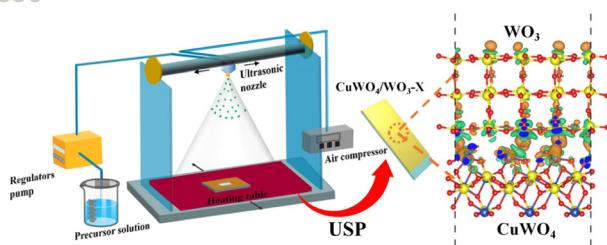

Qiuyu Zhang, Yajie Chen, Xinyan Yu, Yuejia Yin, Yixin Ru and Guohui Tian*

4534


Mg-doped SrTiO_3 photocatalyst with Ag-Co cocatalyst for enhanced selective conversion of CO_2 to CO using H_2O as the electron donor

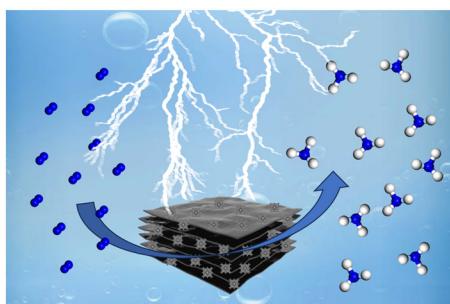
Takechi Nakamoto, Shoji Iguchi,* Shimpei Naniwa, Tsunehiro Tanaka and Kentaro Teramura*

PAPERS


4542

Crystal facet evolution of spinel Co_3O_4 nanosheets in acidic oxygen evolution catalysis

Ziyang Sheng, Sihong Wang, Qu Jiang, Yuanman Ni, Chaoran Zhang, Ashfaq Ahmad and Fang Song*


4550

Interfacial engineering of $\text{CuWO}_4/\text{WO}_3$ thin films precisely fabricated by ultrasonic spray pyrolysis for improved solar water splitting

Feng Cao, Yuhuan Sun, Xiaoyu Duan, Mengyang Li, Biao Chen, Yang Cao, Qinghua Liang*, Amany M. El Nahrawy and Gaowu Qin*

4558

A simple approach to synthesize NiFe-LDH- Nb_2C MXene for enhanced electrochemical nitrogen reduction reactions by a synergistic effect

Qianqian Hua, Haiding Zhu, Sensen Xue, Fang Zhao, Zhuangzhuang Liang, Xuefeng Ren, Liguo Gao, Tingli Ma and Anmin Liu*

