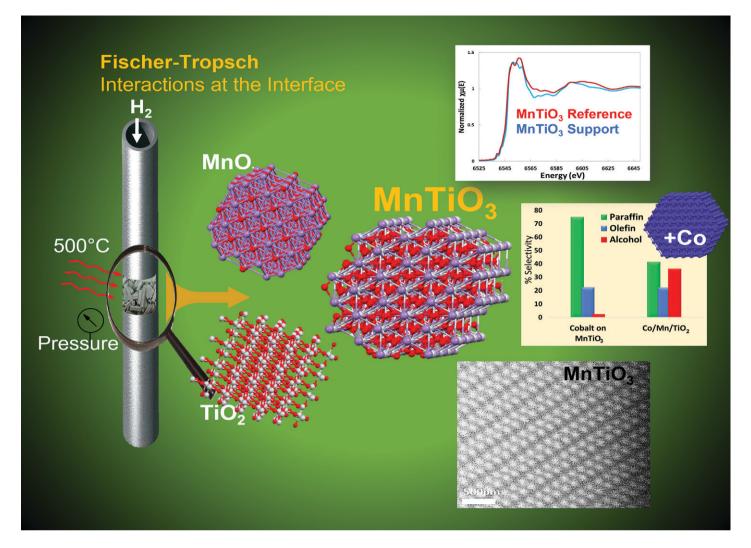


RSC Applied Interfaces


Interfacial and surface research with an applied focus

Interdisciplinary and open access

rsc.li/RSCApplInter

Fundamental questions
Elemental answers

Registered charity number: 207890

Showcasing research from BP Applied Sciences, Hull, UK.

Controlling cobalt Fischer-Tropsch stability and selectivity through manganese titanate formation

Manganese titanate is shown to be an effective support with a ABO $_3$ perovskite structure for Fischer-Tropsch, and shows substantial differences in catalytic performance over the conventional Mn impregnated TiO $_2$ support with the same composition. Cobalt supported on the MnTiO $_3$ shows significantly higher C_{5+} selectivity and CO conversion than the equivalent conventional Co/Mn/TiO $_2$ catalyst. Interestingly, after the MnTiO $_3$ support is re-oxidised to TiO $_2$ and MnO $_2$, it subsequently reduces back to MnTiO $_3$ at low temperature, suggesting a structural memory for the MnTiO $_3$ phase after oxidation.

