



Cite this: *Phys. Chem. Chem. Phys.*,
2023, **25**, 25055

DOI: 10.1039/d3cp90185h

rsc.li/pccp

The authors regret that **Fig. 5(b)** was incorrect in the original manuscript due to a minor error in the code used for calculating the orientation-dependent radiative limit to photovoltaic conversion efficiency. The corrected figure is shown here. The optical absorption spectra of Sb_2S_3 and Sb_2Se_3 result in a weak orientation-dependent radiative limit of conversion efficiencies. When the film thickness is 500 nm, the difference between the maximum and minimum efficiencies along different directions is 1.31% and 2.40% for Sb_2S_3 and Sb_2Se_3 , respectively. The authors note that the correction of **Fig. 5(b)** does not change the central conclusions of the paper.

Fig. 5 (a) Calculated optical absorption spectra of Sb_2S_3 and Sb_2Se_3 arising from direct valence to conduction band transitions. The fundamental band gaps are shown in grey dotted lines. (b) Thickness-dependent maximum efficiencies based on the radiative limit of Sb_2S_3 and Sb_2Se_3 . x, y and z refer to the direction of the electric polarisation vector of light.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK. E-mail: a.walsh@imperial.ac.uk

^b Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea

^c Thomas Young Centre and Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

