

IN THIS ISSUE

ISSN 1463-9076 CODEN PPCPFQ 25(31) 20763–21112 (2023)

Cover

See Hong Qi,
Zhi-Heng Zheng *et al.*,
pp. 20782–20793.
Image reproduced
by permission of
Hong Qi from
Phys. Chem. Chem. Phys.,
2023, 25, 20782.

EDITORIAL

20775

Computational modelling in catalytic science

C. Richard A. Catlow,* Arunabharam Chutia* and
Matthew G. Quesne*

COMMUNICATION

20777

Unraveling the dynamic behaviors of BF_4^- -based ionic liquids at the $\text{SnO}_2/\text{FAPbI}_3$ interface using *ab initio* molecular dynamics simulations

Jinge Han, Hongbin Xiao,* Yanru Guo, Xue Liu,
Zhigang Zang and Ru Li*

Editorial Staff**Executive Editor**

Michael A. Rowan

Deputy Editor

Vikki Pritchard

Development Editors

Bee Hockin, Andrea Carolina Ojeda Porras

Editorial Production Manager

Gisela Scott

Senior Publishing Editor

Robin Brabham

Publisher

Jeanne Andres

Publishing Editors

Catherine Au, Isabel Darlington, Konoya Das, Alexandre Dumon, Amy Lucas, Kieran Nicholson, Rini Prakash, Charlotte Pugsley, Hugh Ryan

Publishing Assistant

Robert Griffiths

Editorial Assistant

Daphne Houston

For queries about submitted papers, please contact Gisela Scott, Editorial Production Manager, in the first instance. E-mail: pecp@rsc.org

For pre-submission queries, please contact Michael A. Rowan, Executive Editor. E-mail: pecp-rsc@rsc.org

PCCP (electronic ISSN 1463-9084) is published 48 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK.

All orders, with cheques made payable to the Royal Society of Chemistry, should be sent to the Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK. Tel +44 (0)1223 432398; E-mail: orders@rsc.org

2023 Annual (electronic) subscription price: £4448; US\$7835. Customers in Canada will be subject to a surcharge to cover GST. Customers in the EU subscribing to the electronic version only will be charged VAT.

If you take an institutional subscription to any Royal Society of Chemistry journal you are entitled to free, site-wide web access to that journal. You can arrange access via Internet Protocol (IP) address at www.rsc.org/ip

Customers should make payments by cheque in sterling payable on a UK clearing bank or in US dollars payable on a US clearing bank.

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK. Telephone: +44 (0) 207 4378 6556.

Advertisement sales:

Tel +44 (0) 1223 432246;

Fax +44 (0) 1223 426017;

E-mail: advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

PCCP

Physical Chemistry Chemical Physics – An international journal

rsc.li/pccp

PCCP is an international journal for the publication of original research papers, Communications and Perspective articles in the areas of physical chemistry, chemical physics and biophysical chemistry.

Owner Societies

Canadian Society for Chemistry

Deutsche Bunsen-Gesellschaft für Physikalische Chemie

Institute of Chemistry of Ireland

Israel Chemical Society

Kemisk Foren

Koninklijke Nederlandse Chemische Vereniging

Korean Chemical Society

New Zealand Institute of Chemistry

Norsk Kjemisk Selskap

Österreichische Physikalische Gesellschaft

Polskie Towarzystwo Chemiczne

Real Sociedad Espanola de Quimica

Royal Australian Chemical Institute

Incorporated

Royal Society of Chemistry

Società Chimica Italiana

Suomen Kemian Seura – Kemiska Sällskapet

I Finland

Svenska Kemisamfundet

Swiss Chemical Society

Türkiye Kimya Derneği

Honorary Board

G Ertl, Berlin, Germany

B Feringa, University of Groningen, Netherlands

S W Hell, Max Planck Institute for Biophysical Chemistry, Germany

J Jortner, Tel Aviv, Israel

M Karplus, Harvard University, USA

K Kohse-Hoeinghaus, Universitaet Bielefeld, Germany

Y T Lee, Academia Sinica, Taiwan

W H Miller, Berkeley, USA

E Neher, Max Planck Institute for Biophysical Chemistry, Germany

J Polanyi, Toronto, Canada

H Schwarz, Technische Universität Berlin, Germany

J P Simons, University of Oxford, UK

G A Somorjai, University of California, Berkeley, USA

J Troe, GWDG, Germany

R N Zare, Stanford, USA

Editorial Board

B Albinsson, Chalmers University of Technology, Sweden

L Bafares, Universidad Complutense de Madrid, Spain

M Curri, University of Bari, Italy

C Daniel, Institute of Chemistry, University of Strasbourg, France

K Gordon, University of Otago, New Zealand

H Kondoh, Keio University, Japan

A Krylov, University of Southern California, USA

P Maiti, Indian Institute of Science, India

R Naaman, Weizmann Institute of Science, Israel

I Tamlyn, University of Ottawa, Canada

Y Xu, University of Alberta, Canada

A Rijss, Vrije Universiteit Amsterdam, The Netherlands (Chair)

H Schaefer III, University of Georgia, USA (Deputy Chair)

J Tamlyn, University of Ottawa, Canada

J Zhang, New York University Shanghai, China

Advisory Board

C Adamo, ENSCP - Chimie ParisTech, France

H Agren, KTH Royal Institute of Technology, Sweden

K Ariga, National Institute for Materials

Science, Japan

P Ayers, McMaster University, Canada

A Ajayaghosh, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), India

P Baglioni, University of Florence, Italy

V Barone, Scuola Normale Superiore di Pisa, Italy

M Biczysko, Shanghai University, China

E Bieske, University of Melbourne, Australia

J Biteen, University of Michigan, USA

D Casanova, Donostia International Physics

Center, Spain

P Casavecchia, University of Perugia, Italy

O Christiansen, University of Aarhus, Denmark

G A Cisneros, University of North Texas, USA

S Coriani, Technical University of Denmark, Denmark

J Dupont, University of Nottingham, UK

S Faraji, University of Groningen, Netherlands

D Frenkel, University of Cambridge, UK

A Fujii, Tohoku University, Japan

S George, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India

R B Gerber, Hebrew University Jerusalem, Israel

D Ghosh, Indian Association for the

Cultivation of Science, India

D Goldfarb, Weizmann Institute of Science, Israel

S Grimme, University of Bonn, Germany

M Havenith, Ruhr-University Bochum, Germany

K Holmberg, Chalmers University of Technology, Sweden

Y Iwasawa, University of Tokyo, Japan

D Jacquemin, Université de Nantes, France

T Jagau, KU Leuven, Belgium

E Johnson, Dalhousie University, Canada

J MacPherson, University of Warwick, UK

S Matsika, Temple University, USA

H Mattoussi, Florida State University, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

Energy Conversion, Germany

D Nesbitt, University of Colorado, USA

D Neumark, University of California, Berkeley, USA

F Neese, Max Planck Institute for Chemical

RESEARCH PAPERS

20782

Performance improvement of three-body radiative diodes driven by graphene surface plasmon polaritons

Ming-Jian He, Xue Guo, Hong Qi,* Zhi-Heng Zheng,* Mauro Antezza and He-Ping Tan

20794

Scalable production of foam-like nickel–molybdenum coatings *via* plasma spraying as bifunctional electrocatalysts for water splitting

Xiuyu Wu, Alexis Piñeiro-García, Mouna Rafei, Nicolas Boulanger, Esdras Josué Canto-Aguilar and Eduardo Gracia-Espino*

20808

Accumulation and ordering of P3HT oligomers at the liquid–vapor interface with implications for thin-film morphology

Jakub K. Sowa, Thomas C. Allen and Peter J. Rossky*

20817

Radicals in aqueous solution: assessment of density-corrected SCAN functional

Fabian Belleflamme and Jürg Hutter*

RESEARCH PAPERS

20837

Prediction of potential hard sodium carbaboride compounds assuming sp^3 -bonded covalent clathrates

Ailing Liu, Xiaoran Cheng, Xingyu Wang, Yutong Zou and Miao Zhang*

20843

Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm

Anhua Wei, Jingfang OuYang, Yuyang Guo, Suju Jiang, Feifei Chen, Jun Huang, Qi Xiao and Zihua Wu*

20854

Janus GaOCIX (X = F, Br, and I) monolayers as predicted using first-principles calculations: a novel class of nanodielectrics with superior energy storage properties

Shujuan Jiang and Guangping Zheng*

20863

Integrated experimental and theoretical studies on structural and magnetic properties of thin films of double perovskite ruthenates: Ba_2DyRuO_6 & Sr_2DyRuO_6

Sahil Dani, Rakesh Kumar, Hitesh Sharma, R J Choudhary, Navdeep Goyal, Pawanpreet Kaur and Rabia Pandit*

RESEARCH PAPERS

20871

Ab initio simulations of ultrashort laser pulse interaction with Cl–Si(100): implications for atomic layer etching

Peizhi Wang and Fengzhou Fang*

20880

Electronic spectroscopy of homo- and heterometallic binuclear coinage metal phosphine complexes in isolation

Marcel J. P. Schmitt, Sebastian V. Kruppa, Simon P. Walg, Werner R. Thiel, Wim Klopper* and Christoph Riehn*

20892

Room temperature epoxidation of ethylene over delafossite-based AgNiO₂ nanoparticles

Dmitry A. Svintsitskiy,* Mikhail K. Lazarev, Elena M. Slavinskaya, Elizaveta A. Fedorova, Tatyana Yu. Kardash, Svetlana V. Cherepanova and Andrei I. Boronin

20903

In silico screening and computational evaluation of novel promising USP14 inhibitors targeting the palm–thumb pocket

Tianhao Wang, Jianbo Tong,* Xing Zhang, Hao Luo, Lei Xu and Zhe Wang*

RESEARCH PAPERS

20917

A theoretical characterization method for non-spherical core–shell nanoparticles by XPS

J. M. Gong, M. S. S. Khan, B. Da,* H. Yoshikawa, S. Tanuma and Z. J. Ding*

20933

Temperature dependence of O solubility in liquid Na by atomistic simulation of $\text{Na(l)}-\text{Na}_2\text{O(s)}$ interfaces using corrected machine learning potential: a step towards simulating Na combustion

Chaeyeong Kim and Takuji Oda*

20947

Three-membered beryllium ring, Be_3 : not just a hydrogen bond acceptor

Lakhya J. Mazumder and Ankur K. Guha*

20951

Multi-aspect simulation insight on thermolysis mechanism and interaction of NTO/HMX-based plastic-bonded explosives: a new conception of the mixed explosive model

Xiaofeng Yuan, Ying Huang, Shuhai Zhang,* Ruijun Gou, Shuangfei Zhu and Qianjin Guo

RESEARCH PAPERS

20969

Effects of pressure and temperature on topological electronic materials X_2Y_3 ($X = \text{As, Sb, Bi}$; $Y = \text{Se, Te}$) using first-principles

Le Fang, Chen Chen, Xionggang Lu* and Wei Ren*

20979

Significantly improved thermoelectric performance of SnSe originating from collaborative adjustment between valence and conduction bands, mass fluctuations, and local strainShuai Wang, Hang Yuan, Chunhui Li, HongQuan Liu,*
Yi-jie Gu* and YanFang Wang

20988

Gas-phase formation of glycolonitrile in the interstellar mediumLuis Guerrero-Méndez, Anxo Lema-Saavedra,
Elena Jiménez, Antonio Fernández-Ramos* and
Emilio Martínez-Núñez*

20997

Theoretical studies on the kinetics and dynamics of the $\text{BeH}^+ + \text{H}_2\text{O}$ reaction: comparison with the experimentJiaqi Li, Zhao Tu, Haipan Xiang, Yong Li* and
Hongwei Song*

RESEARCH PAPERS

21006

Anomalous π -backbonding in complexes between B(SiR₃)₃ and N₂: catalytic activation and breaking of scaling relations

Tore Brinck* and Suman Kalyan Sahoo

21020

The E₃ state of FeMoco: one hydride, two hydrides or dihydrogen?

Yunjie Pang and Ragnar Bjornsson*

21037

Enhancement for phonon-mediated superconductivity up to 37 K in few-hydrogen metal-bonded layered magnesium hydride under atmospheric pressure

Yong He, Juan Du,* Shi-ming Liu, Chong Tian, Min Zhang, Yao-hui Zhu, Hongxia Zhong, Xinqiang Wang and Jun-jie Shi*

21045

Morphology evolution of the aluminum surface in a fluorine-containing environment

Pengqi Hai, Chao Wu,* Xiangdong Ding* and Yuanjie Li*

RESEARCH PAPERS

21054

Unveiling the anchoring and catalytic effect of $\text{Co@C}_3\text{N}_3$ monolayer as a high-performance selenium host material in lithium–selenium batteries: a first-principles study

Shuwei Tang,* Wentao Liu, Zehui Yang, Chenchen Liu, Shulin Bai, Jingyi Zhang and Dongming Luo

21065

Lithium transference in electrolytes with star-shaped multivalent anions measured by electrophoretic NMR

Saheli Chakraborty, David M. Halat, Julia Im, Darby T. Hickson, Jeffrey A. Reimer and Nitash P. Balsara*

21074

Polarization-insensitive electromagnetically induced transparency and its sensing performance based on spoof localized surface plasmons in vanadium dioxide-based terahertz metasurfaces

Mingming Chen* and Xue-Xia Yang*

21082

A highly stable $\delta\text{-MnO}_2$ cathode with superior electrochemical performance for rechargeable aqueous zinc ion batteries

Priya Yadav, Dimas Putro, Nisha Kumari, Jaekook Kim* and Alok Kumar Rai*

RESEARCH PAPERS

21089

Unveiling the double triplet nature of the 2Ag state in conjugated stilbenoid compounds to achieve efficient singlet fission

Letizia Mencaroni, Martina Alebardi, Fausto Elisei, Irena Škorić, Anna Spalletti and Benedetta Carlotti*

21100

Iodine(I)-based and iodine(III)-based halogen bond catalysis on the Friedel–Crafts reaction: a theoretical study

Chang Zhao, Ying Li, Xiaoyan Li and Yanli Zeng*

CORRECTION

21109

Correction: First-principles modeling of the highly dynamical surface structure of a MoS₂ catalyst with S-vacancies

Po-Yuan Wang, Bo-An Chen, Yu-Chi Lee and Cheng-chau Chiu*