PCCP

CORRECTION

View Article Online

Cite this: Phys. Chem. Chem. Phys., 2023, 25, 18497

Correction: Comparative study on formic acid sensing properties of flame-made Zn₂SnO₄ nanoparticles and its parent metal oxides

Matawee Punginsang, a Kanittha Inyawilert, a Mameaseng Siriwalai, bce Anurat Wisitsoraat, d Adisorn Tuantranont and Chaikarn Liewhiran*ae

DOI: 10.1039/d3cp90141f

rsc.li/pccp

Correction for 'Comparative study on formic acid sensing properties of flame-made Zn₂SnO₄ nanoparticles and its parent metal oxides' by Matawee Punginsang et al., Phys. Chem. Chem. Phys., 2023, 25, 15407-15421, https://doi.org/10.1039/D3CP00845B.

Fig. 8-10 in the published version of the manuscript contained errors. Fig. 8(b) is partly overridden by another image, which is the correct image of Fig. 9. The image of Fig. 9 in the published version should have been Fig. 10. Fig. 10 in the published version of the manuscript is a copy of Fig. 11.

The correct images for Fig. 8-10 and the corresponding captions are given here.

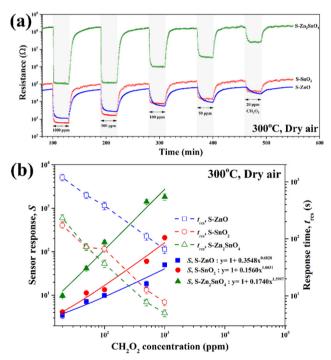


Fig. 8 (a) Typical changes in resistance, and (b) sensor response (S) and response time (t_{res}) of S-Zn₂SnO₄, S-SnO₂ and S-ZnO with different CH₂O₂ concentrations at 300 °C.

a Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: cliewhiran@gmail.com

^b PhD Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

^c Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand

d National Security and Dual-Use Technology Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Phathum Thani 12120, Thailand

^e Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

Correction **PCCP**

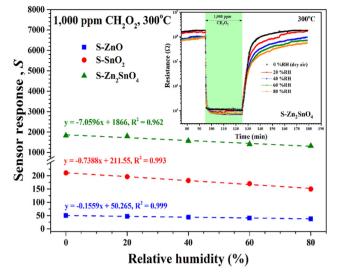


Fig. 9 Sensor response of S-ZnO, S-SnO₂, and S-Zn₂SnO₄ sensors towards 1000 ppm CH₂O₂ as a function of relative humidity (RH) at 0-80%. Inset: Corresponding change in resistance of S-Zn₂SnO₄ sensor.

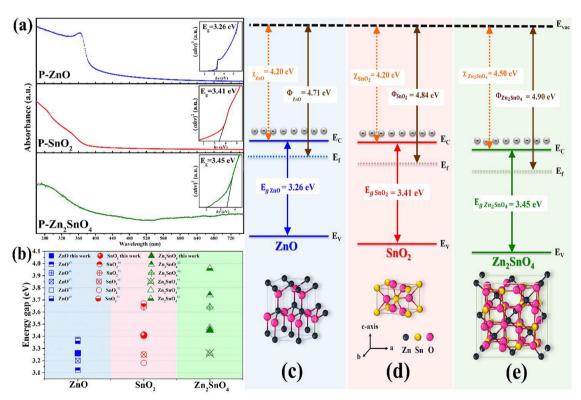


Fig. 10 (a) UV-visible absorption spectra of flame-made SnO₂, ZnO, and Zn₂SnO₄ nanoparticles, inset: the corresponding plot of $(\alpha h v)^2$ vs. phonon energy, (b) the calculated energy gap (E_0) in comparison with other reports and the energy band diagrams of (c) ZnO, (d) SnO₂, and (e) Zn₂SnO₄ creation at thermal equilibrium together with their structural models.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.