

Cite this: *Phys. Chem. Chem. Phys.*,
2023, **25**, 19269

DOI: 10.1039/d3cp90140h

rsc.li/pccp

Correction: Terahertz spectroscopy of the helium endofullerene $\text{He}@\text{C}_{60}$

Tanzeeha Jafari,^a George Razvan Bacanu,^b Anna Shugai,^a Urmas Nagel,^a Mark Walkey,^b Gabriela Hoffman,^b Malcolm H. Levitt,^b Richard J. Whitby^b and Toomas Rõõm^{a*}

Correction for 'Terahertz spectroscopy of the helium endofullerene $\text{He}@\text{C}_{60}$ ' by Tanzeeha Jafari et al., *Phys. Chem. Chem. Phys.*, 2022, **24**, 9943–9952, <https://doi.org/10.1039/D2CP00515H>.

Eqn (12) in the published version of this manuscript contained some errors. The equation should have read as:

$$\langle l_f \parallel T_k \parallel l_i \rangle = (-1)^{l_f} \sqrt{\frac{(2l_f + 1)(2k + 1)(2l_i + 1)}{4\pi}} \begin{pmatrix} l_f & k & l_i \\ 0 & 0 & 0 \end{pmatrix}$$

In addition, the published version of this manuscript contains missing information in some of the sentences. The corrected sentences are listed as follows:

1. Introduction:

Page 9944, left column, 1st paragraph – 'The incarceration of large noble gas atoms results in the structural and electronic distortion of C_{60} which has been examined by IR and Raman,³⁴ NMR,³⁷ X-ray³⁸ and electronic spectroscopy.³⁹

Page 9944, left column, 2nd paragraph – 'It was spotted by mass spectrometry when the ${}^4\text{He}$ atom was incorporated in C_{60} as the highly accelerated C_{60}^+ ions struck with helium gas⁹ and later found in fullerenes produced by arc discharge in the He gas.⁶

2. Theory:

Page 9944, left column, 1st paragraph – 'Also, we ignore the effect of the translational motion of C_{60} in the crystal lattice and its molecular vibrations.'

Page 9945, right column, 1st paragraph – 'Factor $(\eta^2 + 2)/3$ is the enhancement of radiation electric field at the molecule embedded in dielectric⁴⁷ and η is the index of refraction (for C_{60} $\eta = 2$, ref. 48).'

3. Discussion:

Page 9947, left column, 2nd paragraph – 'Although the anharmonic contributions to the H_2 potential have been determined experimentally,^{15,22,23} a more detailed comparison with He is not meaningful as firstly, H_2 has translation–rotation coupling terms in the potential and secondly, it misses the V_6 term in the potential fit.'

Page 9947, right column, Fig. 3 caption – 'The anharmonic terms in the potential, V_4 and V_6 , split the energy levels with different l and each energy level has the unique l value within the spherical symmetry, on the right.'

Page 9947, right column, 1st paragraph – 'In general, the interaction of neutral A with C_{60} can be separated into repulsive interaction and electrostatic interaction expanded in induction and dispersion terms.³³ Since He has no electric dipole nor quadrupole moment the induction terms are zero.'

Page 9947, right column, 2nd paragraph – 'To further validate the potential parameters of $\text{He}@\text{C}_{60}$ obtained from the fit of single high temperature spectra we compare the temperature dependence of line intensities of measured and calculated spectra, Fig. 4.'

Page 9948, left column, 1st paragraph – 'The dipole moment of He is induced by the displacement from the C_{60} cage center.' The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia. E-mail: toomas.room@kbf.ee

^b School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK

