PCCP

CORRECTION

View Article Online
View Journal | View Issue

Correction: Terahertz spectroscopy of the helium endofullerene He@C₆₀

Cite this: *Phys. Chem. Chem. Phys.*, 2023, **25**, 19269

Tanzeeha Jafari,^a George Razvan Bacanu,^b Anna Shugai,^a Urmas Nagel,^a Mark Walkey,^b Gabriela Hoffman,^b Malcolm H. Levitt,^b Richard J. Whitby^b and Toomas Rõõm*^a

DOI: 10.1039/d3cp90140h

rsc.li/pccp

Correction for Terahertz spectroscopy of the helium endofullerene He@C $_{60}$ ' by Tanzeeha Jafari et al., Phys. Chem. Phys., 2022, **24**, 9943–9952, https://doi.org/10.1039/D2CP00515H.

Eqn (12) in the published version of this manuscript contained some errors. The equation should have read as:

$$\langle l_{\rm f} \parallel T_k \parallel l_{\rm i} \rangle = (-1)^{l_{\rm f}} \sqrt{\frac{(2l_{\rm f}+1)(2k+1)(2l_{\rm i}+1)}{4\pi}} \begin{pmatrix} l_{\rm f} & k & l_{\rm i} \\ 0 & 0 & 0 \end{pmatrix}$$

In addition, the published version of this manuscript contains missing information in some of the sentences. The corrected sentences are listed as follows:

1. Introduction:

Page 9944, left column, 1st paragraph – 'The incarceration of large noble gas atoms results in the structural and electronic distortion of C_{60} which has been examined by IR and Raman, ³⁴ NMR, ³⁷ X-ray³⁸ and electronic spectroscopy. ³⁹

Page 9944, left column, 2nd paragraph – 'It was spotted by mass spectrometry when the 4 He atom was incorporated in C_{60} as the highly accelerated C_{60}^{+} ions struck with helium gas 9 and later found in fullerenes produced by arc discharge in the He gas. 6 ,

2. Theory:

Page 9944, left column, 1st paragraph – 'Also, we ignore the effect of the translational motion of C_{60} in the crystal lattice and its molecular vibrations.'

Page 9945, right column, 1st paragraph – 'Factor ($\eta^2 + 2$)/3 is the enhancement of radiation electric field at the molecule embedded in dielectric⁴⁷ and η is the index of refraction (for C₆₀ $\eta = 2$, ref. 48).'

3. Discussion:

Page 9947, left column, 2nd paragraph – 'Although the anharmonic contributions to the H_2 potential have been determined experimentally, 15,22,23 a more detailed comparison with He is not meaningful as firstly, H_2 has translation–rotation coupling terms in the potential and secondly, it misses the V_6 term in the potential fit.'

Page 9947, right column, Fig. 3 caption – 'The anharmonic terms in the potential, V_4 and V_6 , split the energy levels with different l and each energy level has the unique l value within the spherical symmetry, on the right.'

Page 9947, right column, 1st paragraph – 'In general, the interaction of neutral A with C_{60} can be separated into repulsive interaction and electrostatic interaction expanded in induction and dispersion terms.³³ Since He has no electric dipole nor quadrupole moment the induction terms are zero.'

Page 9947, right column, 2nd paragraph – 'To further validate the potential parameters of $He@C_{60}$ obtained from the fit of single high temperature spectra we compare the temperature dependence of line intensities of measured and calculated spectra, Fig. 4.'

Page 9948, left column, 1st paragraph – 'The dipole moment of He is induced by the displacement from the C_{60} cage center.' The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia. E-mail: toomas.room@kbfi.ee

^b School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK