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Protein charge transfer far from equilibrium:
a theoretical perspective

Mike Castellano,a Christoph Kaspar,b Michael Thossb and Thorsten Koslowski *a

Potential differences for protein-assisted electron transfer across lipid bilayers or in bio-nano setups can

amount to several 100 mV; they lie far outside the range of linear response theory. We describe these

situations by Pauli-master equations that are based on Marcus theory of charge transfer between self-

trapped electrons and that obey Kirchhoff’s current law. In addition, we take on-site blockade effects

and a full non-linear response of the local potentials into account. We present analytical and numerical

current–potential curves and electron populations for multi-site model systems and biological electron

transfer chains. Based on these, we provide empirical rules for electron populations and chemical

potentials along the chain. The Pauli-master mean-field results are validated by kinetic Monte Carlo

simulations. We briefly discuss the biochemical and evolutionary aspects of our findings.

1. Introduction

Electron transfer reactions can be found throughout life on
earth. Photosynthesis, cellular respiration, sensing and DNA
repair are processes that are vital to many, and for some of
these processes to all organisms.1–3 Biological electron transfer
is based upon centers of excess electron localization, such as
hemes or iron–sulphur clusters. Frequently, the proteins host-
ing the cofactors are attached to lipid bilayers or even bridge
entire biological membranes. For example, the respiratory
complex I is partly embedded in the inner mitochondrial or
bacterial membrane4–6 The photoreaction reaction center of
Rps. viridis is a membrane protein that contains a cytochrome
subunit with four hemes, exposed to an aqueous environment.7

Electron transfer involving this cytochrome in recharging the
chlorophyll special pair has been addressed by Dohse et al.8

and by Medvedev et al.9

Within a cycle of work, both of these enzymes transfer two
electrons. The biochemically controlled transfer of electrons is
not limited to pairs: the NrfHA nitrite reductase catalyses the
reduction of nitrite to an ammonium cation, a reaction that
involves the transfer of six electrons. In its minimum functional
unit, NrfHAn (n = 1 or 2) contains nine to 14 heme groups, and
the enzyme is attached to the inner membrane of bacteria by a
hydrophobic anchor.10

The structural biology of membrane proteins has seen
considerable progress in recent years, in particular due to the

availability of high-resolution cryo transmission electron
microscopy.11,12 In addition, the combination of redox titration
experiments and in situ spectroscopy has added to insight into
the energetics of electron transfer reactions, often down to
pinning individual transfer steps and the redox states of single
electron acceptors. Usually, these studies are performed at
thermodynamic equilibrium in aqueous solution, while the
biologically operative protein complexes are associated with
membranes and experience a redox potential gradient.13 For
example, electron transfer in the respiratory complex I is driven
by the standard redox potential difference of at least 520 mV
between NAD+/NADH and 1,4-naphthoquinone-based mobile
redox carriers.14,15 For NrfH, we find a standard potential
difference of 650 mV between the nitrite and the ammonium
ion.16 For light-induced processes, potential differences span a
considerable fraction of the spectrum of visible light.

The situations under review in this paper are depicted in
Fig. 1 as cartoon models. Fig. 1a shows a redox-active protein
at equilibrium, the redox states of the excess electron centers
of localization can be populated by tuning an external chemical
potential, mred. In Fig. 1c, the protein is embedded in a mem-
brane and subject to two chemical potentials, to which we will
refer to as mL and mR. Such membranes, e.g. lipid bilayers,
separate cell or bacterial compartments in which different
physical and chemical conditions can be realized. In the
case studied here, this compartmentalization is essential for
realizing different chemical potentials on either side of the
bilayer, their difference drives the electron transport process.
These chemical potentials depend on the standard redox
potential and on the concentration of the redox-active species
on either side of the membrane. The major aim of our work is
the computation of the charge current, the charge carrier
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populations and the chemical potentials of the electron accep-
tors as a function of mL, mR and the energies characteristic of
biological charge transfer. The situation of a protein bridging
two compartments is related to that of a biopolymer spanning
metallic contacts or leads, as shown in Fig. 1b. The major
physical difference to Fig. 1c is the presence of a continuum of
states above and below mL and mR rather than a single state
representing the chemical potential.

The setup shown in Fig. 1b is reminiscent of that found in
the field of molecular electronics, i.e. small- to medium-sized
molecules spanning a small gap or bridging a scanning tunneling
microscope tip and a surface.17 In nanostructures such as
molecular junctions conductivity is often accompanied by
strong coupling of the transport electrons to the mechanical
degrees of freedom such as local vibrational modes or
phonons.18,19 For higher bias voltages, i.e., far from equilibrium,
this coupling gives rise to non-conservative forces and unusual
dissipative phenomena, which have important consequences.
For example, theoretical studies have predicted that in situations
far from equilibrium current-induced forces may cause so-called
runaway vibrational modes. Furthermore, negative friction may
exist, both resulting in mechanical instability of the structures.
Theoretical studies of these phenomena have, for example, been
based on quantum mechanical rate theories,20 classical concepts
such as Langevin equations21,22 or the hierarchical equations of
motion approach.19,23 The latter is a density matrix approach
that provides a fully quantum mechanical framework to study
nonequilibrium transport in open quantum systems.

There are, however, major differences between molecular
junctions and biopolymers, which render the application of the
schemes listed above difficult from a numerical perspective.
Proteins and DNA exist in aqueous environment, and the
negative DNA glycophosphate backbone charges have to be
compensated. As a consequence, these systems are dominated
by strong electron–phonon coupling, emerging from a continuous
vibrational density of states that ranges down to the Terahertz
range of the electromagnetic spectrum. As detailed below, this
coupling is expressed in a single characteristic quantity, the
reorganization energy l. For a single site that bridges two
metallic contacts, models of this type have been studied by
Sowa et al.24,25 In our paper, we discuss both electron transport
chains coupled to single entry and exit levels and chains
coupled to metallic leads, as they are intimately related math-
ematically and computationally.

As a biopolymer that exhibits long-range electron transfer,
DNA has been in the spotlight for many years. Two different
types of experiments have been in the focus of research. Light-
induced DNA fragmentation has been used in the work of
Barton, Giese, Schuster, Wagenknecht, to name a few.26–29

Here, a transition metal complex intercalated into DNA induces
charge separation upon irradiation, and an excess hole can
travel along the DNA strand until it is captured by a (GC)3

moiety, with consecutive oxidative fission in this place. DNA
amplification and consecutive chromatography has revealed a
notably large length scale of charge hopping up to B200 Å. In a
second type of experiments, short DNA strands bridge a metal
surface and a scanning electron microscope tip, permitting the
observation of current–voltage curves. Upon the application
of a voltage drop of 2–4 V along the strands, conductivities
amount to some 10 nA.30 Both processes have been modeled
theoretically and computationally.31–33 While for the latter, the
current–voltage curves have been reproduced quantitatively,
approximations have been made, such as postulating a linear
voltage drop along the chain, or restrictions upon the total
number of charge carriers that populate the chain. With
application to a different kind of biopolymers, electron transfer
proteins, we present a scheme that overcomes these constraints
and approximations.

The remaining part of this work is organized as follows.
In the next section, we present the model, which is based upon
hopping conduction in a polarizing environment. We also
detail the computational approach that is used to solve the
resulting Pauli-master equations at constant flow, and a kinetic
Monte Carlo approach that introduces a stochastic element to
the description of the transport process. In the third section,
analytical results are given for a specific set of parameters.
In addition, computational results are presented in the third
section for setups that model proteins spanning membranes
and nanoscopic setups. In the final section, the results are
discussed in a general context, and conclusions are derived.

2. Model and methods
2.1. Model background and Pauli-master equations

A description of nonequilibrium transport between centers of
excess electron trapping has to make at least some reference to
the energetics of Marcus’ theory of electron transfer,34,35 to

Fig. 1 Cartoon representation of protein charge transfer scenarios discussed in this work. Redox-active protein in equilibrium with its environment,
resembling a redox titration (a), non-equilibrium transfer through a protein bridging two metallic leads (b) or a lipid bilayer (c). Protein atoms as grey
spheres, chromophore atoms in color.
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which it can be reduced at equilibrium. The three relevant
parameters are the electronic coupling between the centers, t,
the driving force, DG, and the reorganization energy, l. For two
centers at equilibrium, the corresponding nonadiabatic trans-
fer rate is given by:

k ¼ t2

�h

ffiffiffiffiffiffiffiffiffiffiffiffi
p

lkBT

r
exp �ðDGþ lÞ2

4lkBT

� �
: (1)

In the following, we will abbreviate the preexponential factor
as k0. For charge transfer in proteins, reorganization energies
typically amount to B1 eV,36–38 an energy scale that has to be
compared to the thermal energy of 25 meV at room tempera-
ture. As a consequence, electron transfer is thermally activated
and can be interpreted as small polaron hopping from the
perspective of solid state physics.39,40 For clarity only, the
reduction of the activation barrier by the electronic coupling,
t, is not considered here. In the range of parameters used here,
this reduction is not relevant. For biological systems like the
NrfH protein studied here, we typically have reorganization
energies of 0.5 to 1 eV and couplings less than 50 meV.42

Away from equilibrium, we have to take into account the
drop in electronic chemical potential (or the voltage) along the
transport chain, which modifies the effective local driving force
and leads to

kij ¼ k0ij exp �
DGij þ lij þ mi � mj
� �2

4lijkBT

 !

¼ k0ij f DGij ; lij ;Dmij
� �

(2)

for sites located within the chain, i.e. those not connected to
leads. We have now indexed the sites participating in the
transfer step and note the symmetries k0

ij = kji
0, DGij = �DGji,

lij = lji and Dmij = �Dmji.
As the centers of localization accommodate excess charge on

a molecular scale, they exhibit a strong on-site electron–elec-
tron repulsion, usually limiting the number of excess electrons
or holes to a single one. From a mean-field perspective, this
local blockade effect can be taken into account using the local
excess charge carrier population pi. From this point of view,
charge transfer from a site i to a site j occurs with a probability
proportional to pi(1 � pj). In the end, we will drop the mean-
field character of the populations p and simulate charge
transfer between states characterized by binary integer charges
using a kinetic Monte Carlo algorithm.

All the elements described above can be arranged into a
system of Pauli-master equations:

_pi ¼
X
j

kjipj 1� pið Þ �
X
l

kilpi 1� plð Þ: (3)

We investigate a linear arrangement of sites for convenience,
as depicted in Fig. 2, and we note in the remaining part of the
paper whenever this affects the physical properties of the
system. We consider a chain of redox-active sites at constant
flow, tantamount to :

pi = 0 for all sites i. For a quantity that is
conserved, e.g. the charge, the net flow into each site from the
left (positive contributions to the rhs of eqn (3)) and to the right

(negative contributions to the rhs of eqn (3)) are equal. As a
consequence, we have

ki�1,ipi�1(1 � pi) � ki,i�1pi(1 � pi�1) = ki,i+1pi(1 � pi+1) �
ki+1,ipi+1(1 � pi). (4)

Using the decomposition indicated in eqn (2), we write

k0i�1;ipi�1 1� pið Þf DGi�1;i; li;i�1;Dmi�1;i
� �

� k0i;i�1pi 1� pi�1ð Þf DGi;i�1; li;i�1;Dmi;i�1
� �

¼ k0i;iþ1pi 1� piþ1ð Þf DGi;iþ1; li;iþ1;Dmi;iþ1
� �

� k0iþ1;ipiþ1 1� pið Þf DGiþ1;i; li;iþ1;Dmiþ1;i
� �

;

(5)

which we abbreviate as Ai � Bi = Ci � Di in the sequence of the
terms in eqn (5).

For a chain coupled to a left and a right single-level redox
potential mL and mR (the situation depicted in Fig. 1c), the
following equations hold for the entry and the exit site. For the
first site, we have

k0L 1� p1ð Þf DGL; lL; mL � m1ð Þ

� k0Lp1f �DGL; lL; m1 � mLð Þ

¼ k012p1 1� p2ð Þf DG12; l12;Dm12ð Þ

� k021p2 1� p1ð Þf DG21; l12;Dm21ð Þ:

(6)

In a similar way, we can write for the final site

k0n�1;npn�1 1� pnð Þf DGn�1;n; ln;n�1; mn�1;n
� �

� k0n;n�1pn 1� pn�1ð Þf DGn;n�1; ln;n�1; mn;n�1
� �

¼ k0Rpnf DGR; lR; mn � mRð Þ

� k0R 1� pnð Þf �DGR; lR; mR � mnð Þ:

(7)

We now discuss the presence of metallic leads, where the
density of electronic states is continuous (Fig. 1b). In electro-
chemistry, this model is known as the Marcus-DOS or the
Marcus–Hush–Chidsey theory.41 We make use of the approxi-
mation of a constant density of states and a Fermi distribution,

Fig. 2 Conductivity model used in this work. A chain of n sites 1,. . .,i, j,. . .,n
is connected to a left (L) and right (R) lead, which exhibit a constant
potential. Hopping rates kij within the system, and kL, kR, kL

0; kR
0 to and from

the leads. The leads may either be metallic junctions (Fig. 1b) or consist of
single levels (Fig. 1c).
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FFD(e), that is represented by a Heavyside step function of the
electronic energy, implying that FFD(e) = Y(mL � e) at the left
and FFD(e) = Y(mR � e) at the right electrode.

For the left lead, we now have to modify the f for the
entry process

~f DGL; lL; mL � m1ð Þ ¼
ðmL
�1

de exp � DGL þ lL þ e� m1ð Þ2

4lkBT

 !

(8)

and

~f �DGL; lL; m1 � mLð Þ ¼
ð1
mL

de exp � �DGL þ lL þ m1 � eð Þ2

4lkBT

 !

(9)

for the exit process. Similar relations hold for the right electrode.
We only apply the zero-temperature approximation to the Fermi
distribution of the lead electrons, and we believe that the error
introduced in this way is much smaller than that of assuming a
constant lead electronic density of states.

For small populations, small reorganization energies and
small chemical potential differences (the latter two compared
to kBT), we recover Ohmic conductivity and Kirchhoff’s current
law by transforming the chemical potentials m into voltages U,

f DGij ; lij ;Dmij
� �

¼ DmijY Dmij
� �

þO Dmij
3

� �
¼ e Ui �Uj

� �
Y eUi � eUj

� �
þO Ui �Uj

� �3 (10)

and the quantities k0
ij become conductances. The accuracy of a

linear approximation will be discussed below in the context of
eqn (14), which has the same series expansion.

Detailed balance is satisfied under those conditions where
Boltzmann statistics can be applied, i.e. in the absence of
external driving forces and for a number of particles that is
much smaller than the number of states, i.e. pi { 1.

2.2. Numerical approach

To solve the Pauli-master equations at constant flow, we have
to fulfill Ai � Bi � Ci + Di = 0 for each site, including the
corresponding equations for the entry and the exit site. For
non-reversible models, as appropriate for high differences
between mL and mR, Ai � Ci C 0 holds.

Ai, Bi, Ci and Di depend on the n populations, which can be
assembled into a vector, -p, and on the n local chemical
potentials, ~m. The resulting system of n equations is nonlinear,
and it is subject to the constraints 0 r pi r 1 8i. For vanishing
equilibrium driving forces, DGij = 0, and a linear topology, mL Z

mi Z mR8i holds. In this situation, the chemical potentials also
have to obey mi+1 r mi. For a given ~m, we have

Ai � Bi � Ci + Di = 0 = gi(
-
p), (11)

which can be solved iteratively by Newton’s method with a
reasonable initial guess -p0,

-
pN+1 = -

pN � J�1g(-pN). (12)

Here, N is the index of the iteration step, J is the Jacobian
matrix, which contains the partial derivatives of the rows gi with
respect to pj, Jij = qgi/qpj, which can be evaluated analytically
or numerically. The eqn (12) can be written as a linear system
of equations,

J(-pN+1 �
-
pN) = �g(-pN), (13)

that can be solved at each iteration step. As the populations
enter the eqn (5)–(7) linearly and quadratically, only a small
number of iterations (typically less than ten) are required to
achieve convergence to ten digits. To address the problem of
computing the chemical potentials, we require that the total
current through the system becomes a maximum. We note that
this requirement has to hold strictly in the Ohmic regime,43

and otherwise can be interpreted as an upper limit to the
current. The current is computed as Ai � Bi times the elemen-
tary charge for an arbitrary site i. As we consider both the rate
equations and look for a maximum of the conductivity, the
problem is not underdetermined any more, and we find unique
solutions. We have probed the uniqueness by (i) always reco-
vering the analytical solutions numerically with randomized
initial conditions and (ii) using different initial conditions for
the cases that can only be studied numerically.

To solve for -
p and~m simultaneously, we follow the strategy of

Koslowski and Wilkening applied in the Ohmic regime with an
added local blockade and backward transfer.44 Starting from an
initial guess for both quantities, the mi are subject to a Monte
Carlo (MC) optimization. In each MC step, a random site i is
selected, and the corresponding chemical potential mi is altered
by �Dmi, which is drawn from a uniform distribution. The
change is accepted if mi fulfills the constraints listed above – if
applicable – and if the conductivity increases. For the old and the
new mi, we solve for -

pold and -
pnew by Newton’s method. Eqn (13)

is solved by the dgesl and dgefa subroutines of the linpack
library.45 For small system sizes, the potentials may also be
scanned by n coarse-grained outer loops in a brute force manner.

2.3. Kinetic Monte Carlo simulations

We apply a kinetic Monte Carlo simulation in order to over-
come the mean-field approximation to the site populations,
pi, which can be continuous, 0 r pi r 1. In the following,
we describe the local populations by a binary (or spin-like)
variable, si, that can only exhibit values of zero or unity, as
appropriate to strong electron trapping in the regime of large
electron–phonon coupling. Each electronic state can be repre-
sented by a sequence of such variables, Sm = {s1, s2, s3,. . ., sn}.
For example, S6 = {0, 1, 1, 0} = {s1, s2, s3, s4} defines a state with
four sites populated by two electrons at sites 2 and 3. The value
of m is computed by accumulating the powers of two, weighted

by si, starting from the left: m ¼
Pn
i¼1

si2
i�1. We take into account

all possible one-electron hops between the sites along the chain
and the two reservoirs. The sample state S6 can turn into
S14 = {0, 1, 1, 1} by accepting an electron from the right lead,
or into S7 = {1, 1, 1, 0} by the same process involving the left lead.
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These processes occur with a rate of kR and kL, respectively. In
addition, S6 can turn into S5 = {1, 0, 1, 0} by electron hopping
from site 2 to site 1 with a rate k21 or into S10 = {0, 1, 0, 1} by
electron hopping from site 3 to site 4 with a rate k34.

We make use of a rejection Monte Carlo algorithm,46,47

starting with a randomly populated system at t = 0, and we
calculate its index m. We choose one of the states c out of L
accessible by m, and compute the rate kmc by identifying the
corresponding electron hopping process and its rate. The move
is accepted with a probability kmc/kmax, where kmax is the
maximum of all hopping rates. We compute a second random
number 0 o r r 1 and increment the time by Dt =
�(Lkmax)�1 ln r. We loop through the process until a time limit
is reached or a predefined number of electrons has passed
through the system.

3. Results
3.1. Analytical solutions

To discuss the analytical solutions, we consider electron trans-
fer chains connected to single levels, as sketched in Fig. 1c. For
uniform, site-independent values of DG and l (including the entry
and exit processes) and for k0

L = 2k0
12 = � � � = 2k0

i,i+1 = � � � = 2k0
n�1,n = k0

R,
it is straightforward to write down an analytical solution of the
eqn (5)–(7). We find pi = 1/2 for all sites i and a linear chemical
potential drop along the system, mi = mL � iD~m, with D~m =
Dm/(n + 1) = (mL � mR)/(n + 1). We use this solution to illustrate
characteristic features of the current-chemical potential curves
and their dependence on one of the characteristic energies
of Marcus’ theory, the reorganization energy l. The current
amounts to

I ¼ 2k0 exp � l� D~mð Þ2

4lkBT

 !
� 2k0 exp � lþ D~mð Þ2

4lkBT

 !

¼ 4k0 exp �l
2 þ D~m2

4lkBT

� �
sinh

D~m
2kBT

� �
:

(14)

The nature of the solutions becomes particularly clear for
values of Dm that are considerably larger than those usually
applied experimentally due to electrochemical reactions. They
are illustrated in Fig. 3 for l = 0.75 eV and two different numbers
of excess electron centers. As a function of the external chemical
potential drop, we find maxima of the modulus of the current
at Dm C �(n + 1)l. The presence of extrema is a consequence
of Marcus’ theory as the basis of local transport rates, it reflects
the crossover from the so-called normal to the inverted regime.
This occurs for a vanishing exponent at equilibrium (eqn (1)), or
for a vanishing exponent of one of the two summands on the right
hand side of eqn (14), first line, while the other is negligible. It is
interesting to note that the maximum is shifted towards higher
chemical potentials with an increasing number of centers of
electron localization, n (vice versa for the minimum).

It is interesting to compare these analytical results obtained
for systems coupled to two redox potentials (Fig. 1c) to numerical
values computed for those attached to metallic leads (Fig. 1b).
For identical values of k0 and l as used above, the current-

chemical potential curve is shown in Fig. 3 for a system consisting
of three chromophores. As compared to the Marcus result, the
system attached to conducting leads is slightly shifted to higher
values of Dm, and it saturates slightly above Dm = l(n + 1) to a
maximum current. This behaviour is due to the presence of
metallic states in a uniform density of states below and above
the Fermi level, which are always available as a source or drain
of electrons.

Eqn (14) can be expanded into a Taylor series around Dm = 0.
With l = 1 eV, at room temperature (kBT = 0.025 eV) and with
k0 = 0.25 (in arbitrary units), we have two leading terms of
20 exp(�10)D~m and 3400 exp(�10)D~m3/3. For n = 1, a lineariza-
tion gives rise to a relative error that is less than 10% for Dm o
80 meV. For uniform chains, this range becomes more
extended with increasing n. This energy scale has to be com-
pared to �2 V that can be achieved in a bio-nano setup or to the
biologically relevant differences in redox potentials of up to
500 meV referenced above.

3.2. Numerical solutions

Nonuniform intrasite transfer rates k0
ij can be addressed

numerically, and we use these computations in simple systems
to test our computational methods and to check the results
against physical concepts and our physical intuition. Following
these calculations, we compute the charge transfer characteristics
for two bacterial membrane-bound proteins, each containing four
heme molecules as centers of excess charge localization.

For a two-site system, we have three rates, of which we set
two to k0 and use the third (k0

L, k0
R or k0

12) as a bottleneck
by decreasing the rate by a factor of 100. We also study an
additional symmetric system with a small but equal entry and
exit hopping rate. We apply external chemical potential

Fig. 3 Analytical solution (eqn (14)) for the current as a function of
the external drop in the chemical potential for a reorganization energy
of l = 0.75 eV and n = 1 (red, solid line) and n = 3 (black, solid line) centers
of excess electron localization. Open circles, J, depict the results of
kinetic Monte Carlo simulations for n = 3. The underlying model is shown
in Fig. 1c. We also present numerical results for metallic leads and n = 3, as
depicted in Fig. 1b. The results are shown as a black chain line.
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differences of 0.5 and 1 eV, the former defining a maximum of
biological ground state protein electron transfer, the latter lying
in the range of nanoscopic setups involving narrow-band
metals or doped semiconductors. In Table 1, we list the
populations and the chemical potentials calculated for these
values of Dm. All of these calculations refer to the model with
single level contacts depicted in Fig. 1c.

Regardless of the Dm value applied, we always find the
largest drops in the chemical potential between the sites –
including the leads – that exhibit the smallest hopping rates.
The hopping rates of the first and the last model listed in
Table 1 are symmetric w.r.t. to an exchange of the hopping
rates, this symmetry is reflected both in the populations and
chemical potentials. Populations add up to unity for the sym-
metric models, and the individual contributions can deviate
considerably from the analytical solutions for uniform models
with p = 1/2, as computed above. This deviations increase with
an increasing Dm. It is important to note that nonuniform
hopping rates lead to changes both in the populations pi and in
the chemical potentials mi, as compared to the uniform case and
its analytical solution. In retrospect, this behaviour justifies the
strategy of treating both quantities as variables, and of designing a
scheme that permits their simultaneous computation.

We have also tested our numerical approach for two charge
proteins of biological relevance. Our choice of the proteins has
been motivated by our previous experience with the systems
and the availability of reliable computed energy landscapes for
electron transfer. Furthermore, we believe that NrfH is a very
suitable candidate for a protein in bio-nano setup. It has a
membrane anchor that can be attached to a lipid covering
a conducting metal surface on one end, and a free valence
on the heme iron on the other end that can be contacted e.g. by
a His–Ni moiety.

First, we turn to an electron transfer protein that has been
mentioned in the introduction, the cytochrome subunit of the
photoreaction center of the purple bacterium Rps. viridis. This
protein contains four heme groups, and its geometry is displayed
in Fig. 4 using the X-ray structure of Deisenhofer et al.7 Following
the approach of Gnandt et al.,38 the driving forces and the
reorganization energies have been computed by a numerical
solution of the Poisson–Boltzmann equation applying the Delphi

program package.48,49 For the atomic charges and radii that
enter these computations, we have used the values of the Amber
force field.50,51 Within the protein and the lipid bilayer, a
dielectric constant of e = 3.5 has been used; for water, we take
the room temperature value e = 78.4. Rather than computing the
electronic coupling that enters eqn (1), we apply the empirical
Dutton–Moser rule36,52 to estimate the value of k0. The rule
relates k0 to the edge-to-edge distance between two chromo-
phores, r, via

k0(r) = k0(r0)exp(�g(r � r0)) (15)

with r0 = 3.6 Å, g = 0.6 Å�1 and k0(r0) = 1013 s�1. The computed
input parameters of our numerical scheme are listed in Tables
2 and 3.

We assume that the parameters relevant for the contacts of
proteins to metallic leads are essentially governed by the same
relations as those relevant to charge transfer within the protein,
i.e. a dependence of the tunnel splitting upon the contact-
chromophore distance that follows an exponential Dutton–
Moser law, a reorganization energy that is determined by the
dielectric response of the aqueous environment of the system,
and with driving forces that can be tuned by the material of the
contacts and the external voltages.

For the contacts, we use DGL = DGR = 0, l = 1 eV and a k0
L

entry and a k0
R exit hopping rate close to the maximum of k0

ij

within the chain.

Table 1 Populations pi and chemical potentials mi for two-site models
showing one or two bottlenecks. For the systems, L and R refer to left and
right leads, the numbers refer to the sites. The underlying model is
depicted in Fig. 1c and consists of an electron transfer chain coupled to
single levels. Hopping rates k0 are indicated by a line (�), reduced hopping
rates of k0 � 10�2 by a dot (�). Note that mR is set to zero

System mL (eV) p1 p2 m1 (eV) m2 (eV)

L-1�2-R 0.5 0.66 0.34 0.43 0.07
L-1�2-R 1.0 0.77 0.23 0.80 0.20
L�1-2-R 0.5 0.38 0.48 0.16 0.06
L�1-2-R 1.0 0.26 0.46 0.42 0.17
L-1-2�R 0.5 0.52 0.62 0.44 0.34
L-1-2�R 1.0 0.54 0.74 0.83 0.58
L�1-2�R 0.5 0.40 0.60 0.27 0.23
L�1-2�R 1.0 0.36 0.64 0.58 0.42

Fig. 4 Protein structures used in the work. Amino acid atoms drawn as
grey spheres, non-iron heme atoms as red sticks, iron atoms as orange
spheres. (a) Cytochrome subunit of the photoreaction center of Rps. viridis
after the X-ray structure of Deisenhofer et al.,7 protein databank identifier
1PRC, (b) NrfH subunit of the nitrite reductase of D. vulgaris after the X-ray
structure of Rodrigues et al.,10 protein databank identifier 2J7A. The hemes
H1 and 335 are closest to the membrane, respectively.

Table 2 Exponential prefactor k0, as computed using the empirical
Dutton–Moser rule eqn (15), and the characteristic energies of Marcus
theory of charge transfer (thermodynamic driving force DG and reorgani-
zation energy l) for the cytochrome subunit of the photoreaction center
of Rps. viridis. For the enumeration of the hemes see Fig. 4a

Reaction k0 (s�1) DG (eV) l (eV)

L - 333 8.00 � 1010 0.00 1.0
333 - 334 7.45 � 1010 0.05 0.81
334 - 336 1.84 � 1010 �0.27 0.72
336 - 335 8.57 � 1010 �0.28 0.82
335 - R 8.00 � 1010 0.00 1.0
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For the cytochrome subunit, we have a monotonous drop of
DG along the transport chain, a nearly uniform l and a hopping
rate bottleneck between the hemes 334 and 336 as the para-
meters entering the computation of the currents, the popula-
tions and the local chemical potentials as a function of Dm.
Within the computations, mR is fixed and defines the zero of the
chemical potential, while mL is varied. We note that the driving
forces depend on the protonation pattern of the cytochrome,53

and that the charge flow in the biological system is still
unknown due to the lack of the identification of the electron
donor binding site.

The current-chemical potential curves are displayed in Fig. 5
for single-level (cf. Fig. 1c) and metallic (Fig. 1b) contacts. As
above, the curve in the positive Dm branch is shifted to slightly
higher chemical potentials for a computation involving metal-
lic leads. The curves are asymmetric w.r.t. Dm = 0 and exhibit a
current that is close to zero in range from �1.5 eV to 0.2 eV.
This behaviour partly reflects the extent of the original free energy
surface (cf. Table 2): barriers of 0.05 eV (transfer to the left) or

0.65 eV (transfer to the right) have to be overcome to facilitate
electron transfer.

Similar curves have been obtained for electron transfer
through the NrfH protein, which also constitutes a charge
transfer process that is essentially downhill. They are also
shown in Fig. 5. Compared to the cytochrome, the currents
are about an order of magnitude larger throughout the entire
range of Dm. Here, larger l values are overcompensated by a
tighter packing of the chromophores, which in turn leads to
larger values of k0. We note that the Amber charges usually lead
to an overestimate of the reorganization energies54 and that
we have not applied the so-called Pekar factor that reduces the
reorganization energies. At Dm = 1 eV, the currents lie in the
range of 100 to 500 pA, which puts them into the range of
scanning tunnel microscope or patch clamp experiments.
We note that currents of 100 pA can be detected with an accuracy
of 1 ppm using commercially available instrumentation.55 For
biological soft-matter systems, ionic currents around 1 pA can be
measured using patch clamp techniques,56,57 electronic currents
recorded by scanning tunnel microscope experiments permit a
resolution much better than 1 nA.30

While the currents as a function Dm are as continuous as the
local chemical potentials, the local populations show a different
behaviour. For NrfH, they are displayed in Fig. 6. Approaching
the range of a particularly small conductivity from the left, p1

and p4 show values in the range of 0.5 to 0.85, while p2 and p3

gradually converge to unity and hence block the conductivity
channel by effectively taking out these sites as electron accep-
tors, cf. eqn (3)–(6). At zero voltage, p2 starts to decline, and the
channel is unblocked with p1, p3 and p4 not far away from one
half. We find a very similar behaviour both for single-site and

Table 3 Exponential prefactor k0, as computed using the empirical
Dutton–Moser rule eqn (15), and the characteristic energies of Marcus
theory of charge transfer (thermodynamic driving force DG and reorgani-
zation energy l) for the NrfH subunit of the nitrite reductase of D. vulgaris.
For the enumeration of the hemes see Fig. 4b

Reaction k0 (s�1) DG (eV) l (eV)

L - H1 1.00 � 1013 0.00 1.0
H1 - H2 1.32 � 1013 �0.61 1.37
H2 - H3 4.60 � 1011 0.00 1.3
H3 - H4 4.32 � 1012 0.07 1.64
H4 - R 1.00 � 1013 0.00 1.0

Fig. 5 Currents I as a function of the applied difference in the external
chemical potential, Dm for two four-heme protein subunits. Red, solid
line: NrfH, single-level contacts; black, solid line: photoreaction center
cytochrome, single-level contacts; (both as in Fig. 1c); red, dashed line:
NrfH, metallic leads; black, dashed line: photoreaction center, metallic
leads (the latter two as in Fig. 1b). Note that for the latter curves, the current
has been multiplied by a factor of 100.

Fig. 6 Excess electron populations for the four heme molecules of the
NrfH nitrite reductase protein chain as a function of the external chemical
potential, Dm. Red open symbols and line: H1, single-level contacts, black
open symbols: H2, single-level contacts, blue open symbols: H3, single-
level contacts, green open symbols: H4, single-level contacts, the under-
lying model is depicted in Fig. 1c. Full symbols (�) refer to coupling to
metallic leads, as shown in Fig. 1b.
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metallic contacts, and overlapping curves reflecting these situa-
tions are not shown in Fig. 6.

3.3. Kinetic Monte Carlo

Kinetic Monte Carlo simulations46,47 have been performed for
chain lengths of n = 2 to n = 4 for the single level coupling case
depicted in Fig. 1c. The parameters are identical to those
situations where an analytical mean-field solution is available,
which gives average local populations pi = 0.5, a linear chemical
potential drop along the chain and currents expressed by
eqn (14), all as a function of the externally applied chemical
potential, Dm. For each value of Dm, we have used the chemical
potentials of the analytical solutions, but have made the
populations a quantity subject to a random hopping process
using the rates expressed in eqn (2). For each chemical
potential difference, we have computed 105 Monte Carlo steps,
which have shown an acceptance ratio of roughly one half. For
two sites, a net of about 4000 electrons passed the system
during the simulation, reduced to B2000 for n = 3. The
emerging currents – number of particles that passed the system
divided by the total simulation time – are virtually indistin-
guishable from the mean-field results, they are shown in Fig. 3.

In this way, we are not only able to show that the mean-field
solutions for the populations are identical to their numerical
mean-field counterparts, but recover the underlying micro-
scopic picture. The objects of hopping transport are electrons,
and sites of excess electron localization exhibit a charge of zero
or the elementary charge. As a simple argument from dielectric
theory suggests that the reorganization energy is proportional
to the square of the charge,34,35 a hopping electron experiences
the full reorganization energy l rather than l/4, as a mean-field
value of p = 1/2 suggests.

We are not aware of a rigorous deviation of the nonlinear
master equations from an extended linear scheme. As we
obtain the same numerical results for a linear Fock space
representation as for the mean-field nonlinear site representa-
tion (cf. Fig. 3), we are confident that the introduction of the
nonlinear terms is valid.

4. Conclusions

In this work, we have presented a model of steady-state electron
transfer in a strongly polarizable medium far from equilibrium.
It extends the equilibrium charge transfer theory of Marcus,
and it applies to biological charge transfer in DNA or proteins.
Focussing on the latter, we use the characteristic energies of
Marcus’ theory as input parameters to a system of Pauli-master
equations for hopping transport between centers of excess
electron localization. The electrons are subject to an external
chemical potential difference via metallic leads or single levels.
They experience local blockade effects and obey Kirchhoff’s
current law. In the parameter space addressed in our work, we
have always checked that the solution has a steady-state char-
acter, both in the site representation (mean-field populations)
and in Fock space (kinetic Monte Carlo simulation with given

chemical potentials). We can, however, not guarantee that this
statement holds generally.

Analytical results have been derived for a special set of
parameters, from which we conclude a general trend towards
an average site occupation of one half and a linear voltage – or
chemical potential – drop along an electron transport chain
with a linear topology. Introducing bottlenecks, we have to
resort to numerical solutions that optimize the occupations
and the local chemical populations simultaneously. Around
these bottlenecks, both the chemical potentials and the electron
populations show a drop. In retrospect, this justifies the setup of
a considerable numerical apparatus that treats both quantities
on an equal footing. We have verified and rationalized our
methodology by relaxing the mean-field approach to one of
these variables, the populations, via kinetic Monte Carlo simula-
tions. We have demonstrated the application of the scheme to
four-center proteins of biological relevance. Here, the compara-
tively simple current-chemical potential characteristics reflect
a remarkably complex underlying pattern of chromophore
populations. We are confident that the extension of our work
to a catalogue of charge transfer proteins will lead to new
perspectives and microscopic interpretations of biological elec-
tron transport.

The computational approach applied is robust and efficient,
for the systems studied here the calculations can be performed
within a few minutes on a desktop computer. Nevertheless,
we find it desirable to have a more controllable numerical
procedure available for the optimization of the local chemical
potentials, e.g. by a nonlinear simplex method. An important
physical aspect still missing are long-range intersite electron–
electron interactions, which can also be obtained using
dielectric theory computations.58 We have not yet touched
more complex topologies involving parallel conduction channel
or dead-end storage sites, although they can be addressed
by the methods described here. Furthermore, the high
potentials applied in nanoscopic setup may have an impact
on the protein structure and on the protonation pattern,
which may in turn effect the characteristic parameters of
Marcus’ theory.

We note that coherence effects in biological charge transfer
have been discussed recently,59–61 which lie outside the range
of Marcus’ theory used here. The equations outlined above can
be adapted to corrections of the Marcus scheme, provided they
can be formulated in the context of simple rate equations.

Finally, we briefly comment on the biochemical and evolu-
tionary aspects of our findings. Multicenter charge transfer
chains can efficiently bridge membranes, or they can store
electrons for many-electron redox reactions, as in the NrfHA,
cytochrome and respiratory complex I protein complexes refer-
enced above. In addition, the current–voltage characteristics
are subject to the parameters of the chain and the number of
cofactors. They are the subject of an evolutionary optimization
process, which can adapt to requirements such as handling an
increased oxygen intake on the mitochondrial level, which can
increase by a factor of ten to 65 between states of rest and
activity for mammals and birds.62
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lographic refinement at 2.3 Ã. . . Resolution and Refined
Model of the Photosynthetic Reaction Centre from Rhodop-
seudomonas viridis, J. Mol. Biol., 1995, 246, 429–457.

8 B. Dohse, P. Mathis, J. Wachtveitl, E. Laussermai and
S. Iwata, et al., Electron Transfer from the Tetraheme
Cytochrome to the Special Pair in the Rhodopseudomonas
viridis Reaction Center: Effect of Mutations of Tyrosine
L162, Biochemistry, 1995, 34, 11335–11343.

9 E. S. Medvedev, A. I. Kotelnikov, N. S. Goryachev,
B. L. Psikha and J. M. Ortega, et al., Protein dynamics
control of electron transfer in reaction centers from Rps.
viridis, Mol. Simul., 2006, 32, 735–750.

10 M. L. Rodrigues, T. F. Oliveira, I. A. C. Pereira and
M. Archer, X-ray structure of the membrane-bound cyto-
chrome c quinol dehydrogenase NrfH reveals novel haem
coordination, EMBO J., 2006, 25, 5951–5960.

11 J. Frank, Generalized single-particle cryo-EM – a historical
perspective, Microscopy., 2015, 65, 3–8.

12 E. G. Yoga, H. Angerer, K. Parey and V. Zickermann,
Respiratory complex I – Mechanistic insights and advances
in structure determination, Biochim. Biophys. Acta, Bioenerg.,
2020, 1861, 148153.

13 P. Mitchell, Coupling of Phosphorylation to Electron and
Hydrogen Transfer by a Chemi-Osmotic type of Mechanism,
Nature, 1961, 191, 144–148.

14 F. S. Saleh, M. R. Rahman, T. Okajima, L. Mao and
T. Ohsaka, Determination of formal potential of NADH/
NAD+ redox couple and catalytic oxidation of NADH using
poly(phenosafranin)-modified carbon electrodes, Bioelectro-
chemistry, 2011, 80, 121–127.

15 M. T. Huynh, C. W. Anson, A. C. Cavell, S. S. Stahl and
S. Hammes-Schiffer, Quinone 1e� and 2e�/H+ Reduction
Potentials: Identification and Analysis of Deviations from
Systematic Scaling Relationships, J. Am. Chem. Soc., 2016,
138, 15903–15910.

16 Y. Guo, J. R. Stroka, B. Kandemir, C. E. Dickerson and
K. L. Bren, Cobalt Metallopeptide Electrocatalyst for the
Selective Reduction of Nitrite to Ammonium, J. Am. Chem.
Soc., 2018, 140, 16888–16892.

17 J. C. Cuevas and E. Scheer, Molecular Electronics: An Intro-
duction to Theory and Experiment, World Scientific, Singa-
pore, 2010.

18 D. Segal and A. Nitzan, Conduction in molecular junctions:
inelastic effects, Chem. Phys., 2002, 281, 235–256.

19 M. Thoss and F. Evers, Perspective: Theory of quantum
transport in molecular junctions, J. Chem. Phys., 2018,
148, 030901.

20 D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, M. Thoss and
U. Peskin, High-Voltage-Assisted Mechanical Stabilization
of Single-Molecule Junctions, Nano Lett., 2018, 18,
4727–4733.
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