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Automatic identification of chemical moieties†

Jonas Lederer, *ab Michael Gastegger,ab Kristof T. Schütt,ab

Michael Kampffmeyer, c Klaus-Robert Müllerabdef and Oliver T. Unke *abd

In recent years, the prediction of quantum mechanical observables with machine learning methods has

become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing

atomic representations, from which the properties of interest are predicted. Here, we introduce

a method to automatically identify chemical moieties (molecular building blocks) from such

representations, enabling a variety of applications beyond property prediction, which otherwise rely on

expert knowledge. The required representation can either be provided by a pretrained MPNN, or be

learned from scratch using only structural information. Beyond the data-driven design of molecular

fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative

entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the

identification of reaction coordinates.

1 Introduction

The computational study of structural and electronic properties
of molecules is key to many discoveries in physics, chemistry,
biology, and materials science. In this context, machine learning
(ML) methods have become increasingly popular as a means to
circumvent costly quantum mechanical calculations.1–37 One class
of such ML methods are message passing neural networks
(MPNNs),38 which provide molecular property predictions based
on end-to-end learned representations of atomic environments.

In contrast to such fine-grained representations, chemists
typically characterize molecules by larger substructures (e.g.
functional groups) to reason about their properties.39–41 This
gives rise to the idea of using MPNNs for the automatic
identification of ‘‘chemical moieties’’, or characteristic parts
of the molecule, to which its properties can be traced back.
Since manually searching for moieties that explain (or are
characteristic of) certain properties of molecules is a complex
and tedious task, the capability of ML to find patterns and

correlations in data could ease the identification of meaningful
substructures drastically.

Previous work has introduced a variety of different
approaches to identify substructures in molecules and materials,
with objectives ranging from substructure mining42–47 over mole-
cule generation48–52 and interpretability of machine learning
architectures53–62 and coarse-graining63–65 to insights into atomis-
tic simulations.66 While these methods offer substantial advan-
tages for their specific tasks, it is important to note that most of
them are tailored to address singular objectives, thereby limiting
their overall applicability. In this work, the primary goal is to
introduce a method that prioritizes versatility and generality,
aiming to encompass a broader range of potential applications.
Hence, to ensure the identification of meaningful moieties that
can be utilized for a wide range of applications, a procedure is
required (i) to be transferable w.r.t. molecule size, (ii) to provide a
substructure decomposition of each molecule which preserves its
respective global structure (required for, e.g., coarse-graining), and
(iii) to allow for identifying several moieties of the same type in
individual molecules (due to a common substructure often
appearing multiple times). None of the methods mentioned above
meets all of these criteria.

In this work, we propose MoINN (Moiety Identification Neural
Network) – a method for the automatic identification of chemical
moieties from the representations learned by MPNNs. This is
achieved by constructing a soft assignment (or affinity) matrix
from the atomic features, which maps individual atoms
to different types of multi-atom substructures (Fig. 1, top). By
employing representations from MPNNs pretrained on molecular
properties, the identified moieties are automatically adapted to
the chemical characteristics of interest. Alternatively, it is possible
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to find chemically meaningful substructures by training MPNNs
coupled with MoINN in an end-to-end manner. Here, only struc-
tural information is required and ab initio calculations can be
avoided. Crucially, MoINN is transferable between molecules of
different sizes and automatically determines the appropriate num-
ber of moiety types. Multiple occurrences of the same structural
motif within a molecule are recognized as the same type of moiety.

We demonstrate the versatility of MoINN by utilizing the
identified chemical moieties to solve a range of tasks, which
would otherwise require expert knowledge (Fig. 1, bottom). For
example, the learned moiety types can serve as molecular
fingerprints, which allow to extract the most representative

entries from quantum chemical databases. Beyond that, moi-
eties can be employed as coarse-grained representations of
chemical structures, allowing to automatically determine beads
for the construction of coarse-grained force fields. Finally, we
use MoINN to identify reaction coordinates in molecular tra-
jectories based on the transformation of detected moieties.

2 Method

The automated identification of moieties with MoINN corre-
sponds to a clustering of the molecule into different types of

Fig. 1 MoINN methodology and applications. The top shows the moiety identification process for malondialdehyde. First, atomic feature representations (red
and blue bars) are learned. Next, MoINN constructs type assignment vectors (pink and orange bars) based on these features. Each entry represents the probability
of an atom to be assigned to a specific type of moiety (atoms are colored according to the highest atom-to-type affinity). Based on these assignments and the
proximity of atoms, MoINN divides molecules into individual moieties. In this example, three chemical moieties of two distinct types associated with methylene
(type 1, orange) and aldehyde (type 2, pink) groups are identified. The moiety representation allows for a variety of applications, which are shown on the bottom.
They range from moiety-based fingerprint design, reaction coordinate analysis, and data reduction to coarse grained molecular dynamics.
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chemical environments. Hence, atoms in comparable environ-
ments, i.e. with similar feature representations (see Section 2.1),
are likely to be assigned to the same cluster. In the following,
the term ‘‘environment types’’ or short ‘‘types’’ will be used, since
each cluster is associated with a specific substructure that exhibits
particular chemical characteristics. Note that atoms belonging to
the same environment type are not necessarily spatially close,
because similar substructures may appear multiple times at
distant locations in a molecule. This is why, after atoms have
been assigned to environment types (see Section 2.2), individual
(spatially disconnected) chemical moieties can be found by
introducing an additional distance criterion (see Section 2.3).
Both steps are combined to arrive at an unsupervised learning
objective for decomposing molecules into chemical moieties
(see Section 2.4).

2.1 Representation learning in message passing
neural networks

Message passing neural networks (MPNNs)38 are able to learn
atomic feature representations from data in an end-to-end
manner (without relying on handcrafted features). They achieve
state-of-the-art performance for molecular property prediction,
solely taking atomic numbers and atom positions as
inputs.7,11,12,14–17 The representation learning scheme of an
MPNN can be described as follows. First, atomic features are
initialized to embeddings based on their respective atomic
numbers (all atoms of the same element start with the same
representation). Subsequently, the features of each atom are
iteratively updated by exchanging ‘‘messages’’ with neighbor-
ing atoms, which depend on their current feature representa-
tions and distances. After several iterations, the features encode
the relevant information about the chemical environment of
each atom. In this work, we use SchNet7,9,28 to construct atomic
feature representations. In general, however, MoINN is applic-
able to any other representation learning scheme.

2.2 Assigning atoms to environment types

Starting from F-dimensional atomic feature representations
x1,. . .,xN of N atoms (e.g. obtained from an MPNN), a type
assignment matrix S, which maps individual atoms to different
environment types, is constructed. Following a similar scheme
as Bianchi et al.,67 the type assignment matrix is given by

S = softmax(SiLU(XW1)W2) , (1)

where W1 2 RF�K and W2 2 RK�K are trainable weight
matrices, the n-th row of the feature matrix X 2 RN�F is the
representation xn 2 RF of atom n, and SiLU is the Sigmoid
Linear Unit activation function.68 Here, K is a hyperparameter
that denotes the maximum number of possible types. As will be
shown later, a meaningful number of types is automatically
determined from data and largely independent of the choice of
K (see Section 2.4). The softmax function ensures that entries
Snk of the N � K matrix S obey

P
k

Snk ¼ 18n with Snk 4 0. Thus,

each row of S represents a probability distribution over the
K environment types, with each entry Snk expressing how likely

atom n should be assigned to type k. Even though assignments
are ‘‘soft’’, i.e. every atom is partially assigned to multiple
environment types, the softmax function makes it unlikely that
more than one entry in each row is dominant (closest to 1). The
advantage of a soft type assignment matrix is that its computa-
tion is well suited for gradient-based optimization. In other
contexts, however, it might be more natural to assign atoms
unambiguously to only one environment type. For this reason,
we also define a ‘‘hard’’ type assignment matrix Sh 2 RN�K with
entries

Sh;nk ¼
1 Snk 4 Snj8j 2 ½0;KÞnfkg

0 otherwise

(
; (2)

such that each row contains exactly one non-zero entry
equal to 1.

The atomic feature representations making up the matrix
X can either be provided by a pretrained model, or learned in
an end-to-end fashion. Depending on the use case, both
approaches offer their respective advantages: since the type
assignment matrix S is directly connected to X via eqn (1),
pretrained features allow to find types adapted to a specific
property of interest. End-to-end learned representations have the
advantage that they do not rely on any reference data obtained
from computationally demanding quantum mechanical calcula-
tions. Instead, they are found from structural information by
optimizing an unsupervised learning problem (see Section 2.4).

2.3 Assigning atoms to individual moieties

Molecules may consist of multiple similar or even identical
substructures. Consequently, distant atoms with comparable
local environments can be assigned to the same type, even
though they do not necessarily belong to the same moiety
(see Fig. 1). To find the actual chemical moieties, i.e. groups
of nearby atoms making up a structural motif, we introduce the
N � N moiety similarity matrix given by

C = SST�A , (3)

where ‘‘�’’ denotes the Hadamard (element-wise) product.
Here, the N � N matrix SST measures the similarity of the type
assignments between atoms, i.e. its entries are close to 1 when a
pair of atoms is assigned to the same environment type and
close to 0 otherwise. The adjacency matrix AA[0,1]N�N on the
other hand captures the proximity of atoms. Its entries are
defined as

AijðrijÞ ¼
0:5 1þ cos

prij
rcut

� �� �
rij o rcut

0 rij � rcut

8><
>: ; (4)

where rij is the pairwise distance between atoms i and j and
rcut is a cutoff distance. For simplicity, we employ a cosine
cutoff to assign proximity scores, but more sophisticated
schemes are possible (e.g. based on the covalent radii of atoms).
The combination of SST and A ensures that the entries of the
similarity matrix C are close to 1 only if two atoms are both
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assigned to the same type and spatially close, in which case
they belong to the same chemical moiety.

Analogous to the hard assignment matrix Sh (see eqn (2)),
a hard moiety similarity matrix Ch, which unambiguously
assigns atoms to a specific moiety, might be preferable over
eqn (3) in some contexts. To this end, we define the matrix

C0
h = ShST

h�Acov . (5)

where Acov has entries of 1 for each atom-pair connected by
a covalent bond (see Section S1, ESI†) and 0 otherwise.
C0

h describes a graph on which breadth-first search69 is per-
formed to find its connected components (moieties). This
yields a hard similarity matrix Ch, which maps atoms unam-
biguously to their individual moieties (for further details,
please refer to Section S2, ESI†).

2.4 Optimization of environment type assignments and
moiety assignments

Chemical moieties are identified by minimizing the unsuper-
vised loss function

L ¼ Lcut þ Lortho þ aLent ; (6)

where Lcut, Lortho, and Lent are cut loss, orthogonality loss, and
entropy loss, and a is a trade-off hyperparameter. The cut loss
Lcut

67 penalizes ‘‘cutting’’ the molecule, i.e. assigning spatially
close atoms to different moieties. It is defined as

Lcut ¼ �
Tr CT ~AC
� �

Tr CT ~DC
� � ;

where ~A ¼ D�1=2AD�1=2 2 RN�N is a symmetrically normalized
adjacency matrix (see eqn (4)). The degree matrix D 2 RN�N is

diagonal with elements Dii ¼
PN
j

Aij ; where Aij are the entries of

A. Consequently, D̃ is the degree matrix obtained from the
entries of Ã.

To avoid converging to the trivial minimum of Lcut where all
atoms are assigned to the same moiety and type, the orthogon-
ality loss67

Lortho ¼
SST

SSTk kF
� INffiffiffiffi

N
p

				
				
F

drives the type assignment vectors of different atoms (i.e., the
rows of S) to be (close to) orthogonal. Here, IN is the N � N
identity matrix and 8�8F is the Frobenius norm.

Finally, the entropy term70

Lent ¼ �
1

N

X
nk

Snk ln Snkð Þ

favors ‘‘hard’’ assignments and indirectly limits the number of
used types (here, Snk) are the entries of S, see eqn (1). Without
this term, there is no incentive to use fewer than K types, i.e.,
the model would eventually converge to use as many different
types as possible. Hence, by introducing the entropy term,
we avoid relying on expert knowledge for choosing K and instead
facilitate learning a meaningful number of types from data.

In principle, the number of used types still depends on K
and the entropy trade-off factor a. However, as is shown in
Section S3 (ESI†), there is a regime of a where the number of
used types is largely independent of K (as long as K is suffi-
ciently large). Hence, we arbitrarily choose K = 100 in our
experiments if not specified otherwise. In Section S4 (ESI†),
we demonstrate the influence of different cutoff radii on the
model output. The experiments show that for a cutoff radius
rmin between one and two covalent bond lengths the number of
environment types is largely independent of rmin.

3 Applications

This section describes several applications of MoINN. First,
we use MoINN to identify common moieties in molecular data
(Section 3.1). Leveraging these insights, we select representa-
tive examples from a database of structures to efficiently
reduce the number of reference calculations required for
property prediction tasks (Section 3.2). Next, an automated
pipeline for coarse-grained molecular dynamics simulations
built on top of MoINN is described (Section 3.3). Finally, we
demonstrate how to utilize MoINN for automatically detecting
reaction coordinates in molecular dynamics trajectories
(Section 3.4).

3.1 Identification of chemical moieties

To demonstrate the automatic identification of chemical moi-
eties, we apply MoINN to the QM9 dataset.71 Here, two different
models are considered: one utilizes fixed feature representa-
tions provided by a SchNet model pretrained to predict ener-
gies, while the other model is trained in an end-to-end fashion
on purely structural information. In the following, these will
be referred to as the pretrained model and the end-to-end
model, respectively. Details on the training of SchNet and
MoINN, as well as, a comparison between pretrained model
and end-to-end model can be found in Section S4 (ESI†). Also
the impact of varying training data size on MoINN outputs is
shown there.

Fig. 2 depicts the results for the pretrained MoINN model
evaluated on a test set of 1000 molecules that were excluded
from the training procedure. The top shows four exemplary
molecules with corresponding type assignments and moieties.
As expected, we observe that moieties of the same type may
occur across different molecules, as well as multiple times in a
single molecule. The evaluation of environment types and
corresponding moieties for all 1000 molecules (see bottom of
Fig. 2) shows that each type is associated with a small set of
similar moieties, i.e., the environment types form a ‘‘basis’’ of
common substructures that can be combined to form all
molecules contained in the dataset. In Section S5.1 (ESI†), we
evaluate MoINN w. r. t. various ring systems and the largest
identified moieties. We observe that while saturated rings are
predominantly divided into several small moieties, MoINN
tends to identify aromatic rings as individual entities.
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3.2 Sampling of representative molecules

The quality of the reference dataset used to train ML models
greatly impacts their generalization performance.72 Since the
calculation of molecular properties at high levels of theory is
computationally demanding, it is desirable to find ways to
reduce the amount of reference data needed for training
accurate machine learning models. One way to allow for more
data efficient training is by sampling a representative subset of
data points from chemical space (instead of choosing points
randomly). Amongst other benefits, Huang et al. have shown
that this can be achieved by utilizing small molecular building
blocks (atom-in-molecule-based fragments) in the training
data.35 Cersonsky et al. have evaluated supervised and unsu-
pervised approaches based on low-rank approximation of the
feature matrix and farthest point sampling (FPS).73 Browning
et al. utilize a genetic algorithm to find an optimized training
set,74 and Podryabinkin et al. proposed an approach based on
the D-optimality criterion.75,76

In contrast, we aim to find a representative set of molecules
that can be understood as a ‘‘basis’’ of molecules that allows to
reconstruct the features (fingerprints) of all the remaining
molecules as closely as possible. To this end, we define type-
based fingerprints from the assignments learned by the end-to-
end MoINN model as

hMoINN ¼
X
n

SnkðXÞ ; (7)

where X denotes the atomic feature matrix and Snk is the
assignment matrix entry for the n-th atom and the k-th type.
Note that the feature size of the type-based fingerprints is given
by the number of environment types K = 100. However, due to

the sparsity of the environment types, the effective number of
features is 17 (see also Section S4, ESI†).

By stacking the fingerprints hMoINN of D molecules on top of
each other we obtain the fingerprint matrix HMoINN 2 RD�K .
To find a possible small subset of molecules (‘‘basis’’), which
still represents the QM9 dataset sufficiently well, we minimize
the loss function

Ldata ¼ WHMoINN �HMoINNk kFþl
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

wij
2

r
; (8)

where W 2 RD�D is a trainable weight matrix with entries {wij}.
The first term in eqn (8) describes the reconstruction error. To
avoid converging to the trivial solution, where the trainable
matrix W is simply the identity matrix, we introduce a regular-
ization term that enforces sparse rows in the weight matrix W.
The trade-off between both terms can be tuned by the factor l,
i.e. larger values of l will select a smaller subset of representa-
tive molecules. Intuitively, minimizing eqn (8) corresponds to
selecting a small number of molecules as ‘‘basis vectors’’, from
which all other molecules can be (approximately) reconstructed
by linear combination.

Based on this procedure, we select several QM9 subsets of
different size as training sets and compare them to randomly
sampled subsets, and subsets obtained by stratified sampling
w. r. t. the number of atoms in each molecule. For each of these
subsets, we train five SchNet models and evaluate their average
performance (Fig. 3). Models trained on subsets chosen by
MoINN perform significantly better than those trained on
randomly sampled subsets and stratified sampled subsets. This
effect is most pronounced for small training set sizes. Thus,
selecting data with MoINN is most useful in a setting where
only few data points can be afforded, e.g. when using a high
level of theory to perform reference calculations. For more
details on the experiment and a comprehensive discussion of
the results please refer to Section S5.2 (ESI†).

Fig. 2 Common moieties of the QM9 dataset. The top shows four
exemplary molecules along with type assignments (colored circles) and
moieties (enclosed by dashed lines). The bottom shows the distribution of
environment types and corresponding most common moieties for the test
set (1000 molecules), black bars indicate the relative amount of atoms
assigned to the respective moieties. For each environment type, over 70%
of its atom assignments correspond to at most three different moieties.

Fig. 3 Mean absolute error (MAE) of energy predictions for SchNet
models trained on randomly sampled training sets (blue), training sets
obtained by stratified sampling (orange) and training sets selected with
MoINN (green). Each data point is averaged over five independent training
runs and standard errors are indicated by error bars.
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3.3 Coarse-grained molecular dynamics

While ML force fields accelerate ab initio MD simulations by
multiple orders of magnitude,13 the study of very large mole-
cular structures is still computationally demanding. Coarse-
graining (CG) reduces the dimensionality of the problem
by representing groups of atoms as single interaction sites.
Most approaches rely on systematically parametrized CG force
fields,77,78 but also data driven approaches have been pro-
posed.79–83 In both cases, however, the coarse-grained ‘‘beads’’
are usually determined manually by human experts.84

Here, we propose an automated pipeline for coarse-grained
molecular dynamics simulations (CG-MD), which comprises
atomistic SchNet models for noise reduction, MoINN for redu-
cing the molecule’s degrees of freedom, and a SchNet model
trained on the CG representation for simulating the CG dynamics.
We apply this approach to the trajectory of alanine-dipeptide in
water,85,86 which is a commonly used model system for compar-
ing different CG methods.79–81

The CG representation, shown in Fig. 4, is inferred from the
environment types and moieties provided by the pretrained
MoINN model described in Section 3.1, which has been trained
on the QM9 dataset. For a comparison to conventional CG
representations such as, e.g., OPLS-UA,87,88 or an automated CG
approach89 for the Martini force field,77 please refer to section
S5.3 (ESI†). The original atomistic trajectory of alanine-
dipeptide does not include reference energies. This is because
the dynamics have been simulated in solvent, which introduces
noise to the energy of the system if the solvent is not modeled
explicitly. The data contains forces for all atoms in the alanine-
dipeptide molecule, which implicitly include interactions
with solvent molecules. However, sparsely sampled transition
regions between conformers are challenging to learn with force
targets only. Coarse-graining introduces additional noise on
the energies and forces81 since some information about the
atom positions is discarded.

To reduce the noise, we train an ensemble of five SchNet
models to provide a force field for alanine-dipeptide at atomic
resolution. Subsequently, we use the corresponding forces F̂
and energies Û as targets for training the CG SchNet model in a
force-matching scheme adapted from ref. 79–81, 90, 91 (see
Section S5.3 for details, ESI†). Based on the CG SchNet model,
we run MD simulations in the NVT ensemble at room tempera-
ture (300 K). The trajectories are initialized according to the

Boltzmann distribution at the six minima of the potential
energy surface. For keeping the temperature constant, we use
a Langevin thermostat. Fig. 5 shows that the free energy
surfaces derived from the all-atom and CG trajectories are in
good agreement.

MoINN also allows for coarse-graining structures outside the
scope of QM9. This is shown in Fig. 6 for decaalanine. The
provided CG representation resembles the commonly used
OPLS-UA representation.87,88 However it is striking that the
type of terminal methyl groups differs from that of the back-
bone methyl groups, while in the OPLS-UA representation, by
construction, those groups are considered to be interchange-
able. For more details how the CG representation is derived
from the provided environment types, see Section S5.3 (ESI†).

3.4 Dynamic clustering and reaction coordinate analysis

MoINN is also capable of learning environment types for
molecular trajectories. In this case, the types describe ‘‘dynamic
clusters’’, which can be useful, e.g., for determining collective
variables that describe chemical reactions. As a demonstration of
this concept, we consider two chemical reactions, namely the
proton transfer reaction in malondialdehyde and the Claisen
rearrangement of allyl p-tolyl ether (see ref. 92 and 93 for details
on how the trajectories were obtained). We train individual
end-to-end MoINN models on each reaction trajectory.

For each time step in the trajectory, we construct a high-
dimensional coordinate vector

hdyn = (S11,S12,. . .,S1K,S21,. . .,S2K,. . .,SNK) ,

which consists of the type assignment matrix entries {Snk}.
By applying standard dimensionality reduction methods like
principal component analysis (PCA),94,95 it is possible to extract
a low-dimensional representation of the largest structural
changes in the trajectory. For the two considered cases, we
find that a one-dimensional reaction coordinate given by the
first principal component provides a good description of the
dynamic process and shows a prominent ‘‘jump’’ when the
reaction happens (see Fig. 7). In Section S5.4 (ESI†), we show
that the reaction coordinate derived from MoINN allows for a
more clear distinction between reactants and product than
simply using the adjacency matrix based on the pairwise
distances of atoms.

Fig. 4 Automated coarse-graining with MoINN. On the left, the alanine-
dipeptide molecule is depicted at atomic resolution, assigned environment
types are indicated by colored circles. On the right, the corresponding
coarse-grained representation, derived from environment types and
moiety assignments, is shown.

Fig. 5 Ramachandran plots of the free energy surface of alanine-
dipeptide with respect to the torsion angles f and c for the atomistic
MD (left) and the coarse-grained MD (right) (f and c are computed with
respect to the coarse-grained geometry).
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4 Discussion

Owing to its computational efficiency, interpretability, and
transferability, MoINN is applicable to a wide range of different
tasks which otherwise rely on expert knowledge. MoINN
involves a representation-based pooling approach which shares
common ideas with the graph-pooling approaches DiffPool70

and MinCut.67 Latter describe the acquisition of a soft assign-
ment matrix, which allows to pool graph nodes (atoms) to
representative super-nodes (atom groups). In DiffPool the
assignment matrix is learned utilizing GNNs, while MinCut
employs a multilayer perceptron (MLP) architecture. Both
methods introduce unsupervised loss functions to ensure a
reasonable number of super-nodes while preferably grouping
nearby nodes. Similar to MinCut, MoINN learns a mapping
from atomic feature representations to type assignments by two
dense layers (an MLP). The shallow network architecture results
in computationally cheap training and inference. As the most
prominent difference, MoINN distinguishes between individual
moieties and environment types, while DiffPool and MinCut
handle those entities interchangeably. As a result, MoINN
stands out with regards to interpretability and transferability.

The distinction between moieties and environment types
allows for a more detailed analysis of the identified substruc-
tures. While the environment types explain the composition
and conformation of the molecular substructures, the moie-
ties represent individual molecular building blocks. Besides
the benefits with regards to interpretability, the distinction

between moieties and environment types allows to identify
multiple identical moieties in the same molecule. This feature
is particularly useful for molecular systems since those often
possess atom groups (moieties) of the same type multiple
times. In contrast, pooling distant nodes is penalized when
utilizing MinCut or DiffPool. Hence, even though some distant
nodes might exhibit similar feature representations, they are
unlikely to be grouped together. This makes it difficult to find
common moieties and might hamper transferability w.r.t.
molecules of different size, since the mapping between atoms
and atom groups becomes more sensitive to small changes in
the feature representations. For more details on this problem,
please refer to Section S6 (ESI†).

Another approach that allows for identifying reoccurring
patterns in molecular data was proposed by Gasparotto et al.
called PAMM.66 This method utilizes Gaussian mixture models
to recognize reoccurring patterns in atomistic simulation data,
and has shown to be of great use regarding the identification of
hydrogen bonds. While MoINN and PAMM share the scheme of
identifying motifs in molecular data, the underlying concepts
are very different. One point that makes MoINN unique is its
end-to-end framework. In contrast to PAMM, MoINN can be
integrated into different neural network architectures and
optimization tasks. This feature, inter alia, allows to obtain
insight into the representation learning of neural networks.
Furthermore, while the number of clusters needs to be speci-
fied for the Gaussian mixture model, MoINN does not require
prior knowledge regarding the number of environment types
but learns them. This makes MoINN well transferable (the
transferability of MoINN regarding the molecule size is shown
in Section S5.3, ESI†).

5 Conclusion and outlook

We have introduced MoINN, a versatile approach capable of
automatically identifying chemical moieties in molecular data
from the representations learned by MPNNs. Our method gives
insight into the representation learning of MPNNs by identify-
ing environment types based on the learned feature environ-
ments of the underlying MPNN. MoINN is differentiable, and
thus, it can be exploited for a variety of applications beyond
those showcased in this work. Depending on the task at hand,
MoINN can be trained based on pretrained representations or
in an end-to-end fashion. While pretrained representations
may lead to moieties that are associated with a certain mole-
cular property, training MoINN in an end-to-end fashion cir-
cumvents costly first principle calculations. By construction,
MoINN allows to identify multiple moieties of the same type

Fig. 6 CG-representation of deca-alanine inferred from environment types provided by MoINN.

Fig. 7 Automatic detection of reaction coordiantes for the proton trans-
fer in malondialdehyde (top) an the Claisen rearrangement of allyl p-tolyl
ether (bottom). The identified reaction coordinate is plotted w.r.t. the time
step of the respective trajectory.
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(e.g. corresponding to the same functional group) in individual
molecules. This design choice also makes MoINN transferable
w.r.t. molecule size and allows to automatically determine a
reasonable number of moieties and environment types without
relying on expert knowledge. The soft assignment of atoms
to the respective environment types ensures a transparent
identification of distinct moieties (compare Section S5.3, ESI†).

Representing molecules as a composition of chemical moi-
eties paves the way for various applications, some of which have
been demonstrated in this work: human-readable and inter-
pretable fingerprints can be directly extracted from the environ-
ment types identified by MoINN and they can be employed for
selecting representative molecules from quantum mechanical
databases to reduce the number of ab initio reference data
necessary for training accurate models. Further, we have
proposed a CG-MD simulation pipeline based on MoINN,
which includes all necessary steps from the identification of
CG representations, the machine learning of a CG force field,
up to the MD simulation of the CG molecule. The pipeline is
fully automatic and does not require expert knowledge. As
another example, we have presented the dynamic clustering
of chemical reactions, demonstrating that the environment
types identified by MoINN capture conformational information
that can be used to define reaction coordinates.

A promising avenue for future work is the application of
MoINN in the domain of generative models.25,26 Jin et al. have
shown that generating molecules in a hierarchical fashion can
be advantageous.48,50 MoINN could help to identify promising
motifs for molecule generation and hence facilitate the dis-
covery of large molecules. Furthermore, MoINN could be uti-
lized to analyze other interesting reactions. In summary,
MoINN extends the applicability of MPNNs to a wide range
of chemical problems otherwise relying on expert knowledge.
In addition, we expect applications of MoINN to allow new
insights into large-scale chemical phenomena, where MPNNs
acting on individual atoms are prohibitively computationally
expensive to evaluate.

Software and data availability

We provide the source code of MoINN on GitHub https://
github.com/jnsLs/MoINN. For the experiments we solely uti-
lized public datasets, which can be found at https://www.
quantum-machine.org/.
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Rev. Lett., 2010, 104, 136403.
3 M. Rupp, A. Tkatchenko, K.-R. Müller and O. A. von Lilien-

feld, Phys. Rev. Lett., 2012, 108, 058301.
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and K. T. Schütt, Nat. Commun., 2022, 13, 973.

27 S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller and
A. Tkatchenko, Comput. Phys. Commun., 2019, 240, 38–45.
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M. Nazaré and A. Volkamer, J. Comput.-Aided Mol. Des.,
2020, 34, 731–746.

61 A. H. Khasahmadi, K. Hassani, P. Moradi, L. Lee and
Q. Morris, International Conference on Learning Represen-
tations, 2019.

62 S. Letzgus, P. Wagner, J. Lederer, W. Samek, K.-R. Müller
and G. Montavon, IEEE Signal Processing Magazine, 2022, 39,
40–58.
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