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Chiral selectivity vs. noise in spontaneous
mirror symmetry breaking

David Hochberg, *a Thomas Buhse, b Jean-Claude Micheau c and
Josep M. Ribó *d

Mirror symmetry breaking bifurcations, that occur in nonlinear chemical systems leading to final chiral

states with very large enantiomeric excess, can be exploited as an efficient chiral signal selector for even

the smallest chiral polarizations. This effect of the chiral polarization requires the system’s capacity for

overcoming thermal noise, which is manifested as fluctuating reaction rate constants. Therefore, we

investigate the chiral selectivity across a range of tiny parity-violating energy differences (PVED) in the

presence of inevitable non-equilibrium temperature fluctuations. We use a stochastic differential

equation simulation methodology (Ito process) that serves as a valuable tool in open systems for

identifying the thresholds at which the chiral force induces chiral selectivity in the presence of non-

equilibrium temperature fluctuations. This approach enables us to include and analyze chiral selectivity

in the presence of other types of fluctuations, such as perturbations in the rate of fluid flow into and out

of the reactor and in the clamped input concentrations. These concepts may be of practical interest

(i.e., spontaneous deracemizations) but are also useful for a better understanding of the general

principles governing the emergence of biological homochirality.

1 Introduction

Enantiomerism1 refers to molecular geometrical structures that
break parity invariance2 The concept is related to chirality,
which involves the presence of right- and left-handed objects.
Chiral selectivity is the ability of a molecule or a system to
recognize and differentiate between chiral forms or enantio-
mers. Biological homochirality, or one-handedness, refers to
the uniform predominance of one and the same chiral sign of
the building blocks of the functionalized biological polymers
such as the L-amino acids in proteins and the D-sugars in DNA,
supporting the basic functions of life such as catalysis, meta-
bolism, self-reproduction and the ability for evolution.3

The homochirality of amino acids and sugar molecules in bio-
systems is a necessity for life,4,5 and has its most striking
experimental manifestation regarding the question of the
origin of biological homochirality.

The homochiral property of life stands in striking contrast to
the characteristics of artificial chemical processes that result in
chiral species. In laboratory or industrial chemistry, when there
is no external chiral polarization, the final output of a reaction
is typically racemic, meaning it contains an equal proportion
of both enantiomeric species. However, there are a few well-
known chemical experiments, such as the Soai reaction6 and
Viedma deracemization,7 where the final chiral composition is
often nearly homochiral rather than racemic. This phenom-
enon occurs in nonlinear chemical networks that exhibit
enantioselective autocatalysis leading to a bifurcation when
the racemic non-equilibrium stationary state (NESS) becomes
unstable. In these cases, fluctuations drive the system stochas-
tically towards one of the two possible enantiomorphic outputs.
This scenario, called spontaneous mirror symmetry breaking
(SMSB), bridges the gap between laboratory and prebiotic
chemistries, since it is now widely accepted that enantiomeric
excesses appeared very soon before the origin of life.8–12

However, due to fluctuations and in the absence of any
chiral polarization, there is a stochastic distribution of chiral
signs around the ideal racemic composition. It is important
to emphasize that SMSB represents a genuine bifurcation
scenario, which can be highly sensitive to even slight chiral
biases.13 This sensitivity stands in contrast to the strong chiral
polarizations that are required, for instance, in classical asym-
metric synthesis.14 The Soai reaction serves as a striking
example of this sensitivity, where the chiral output is directed
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Scientifique No. 5623, Université Paul Sabatier, F-31062 Toulouse, France
d Department of Organic and Inorganic Chemistry, Institute of Cosmos Science

(IEEC-UB), University of Barcelona, Barcelona, Catalonia, Spain.

E-mail: jmribo@ub.edu

Received 13th July 2023,
Accepted 10th October 2023

DOI: 10.1039/d3cp03311b

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 6

/2
5/

20
25

 4
:4

3:
18

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-0411-019X
https://orcid.org/0000-0001-5082-0873
https://orcid.org/0000-0002-1193-4306
https://orcid.org/0000-0001-6258-1726
http://crossmark.crossref.org/dialog/?doi=10.1039/d3cp03311b&domain=pdf&date_stamp=2023-10-26
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp03311b
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP025046


31584 |  Phys. Chem. Chem. Phys., 2023, 25, 31583–31595 This journal is © the Owner Societies 2023

by additives exhibiting chirality derived from isotopic substitu-
tions such as 12C/13C, 14N/15N and 16O/18O enantiomorphs.15–17

Moreover, the presence of chiral compounds at the contami-
nant concentration level (cryptochirality) can select the final
chiral sign.18–20 Nevertheless, it is crucial to acknowledge that
in real nonlinear chemical systems, any chiral polarization
competes with the unavoidable thermal and environmental
fluctuations. Therefore, it is likely that there exists a critical
threshold of chiral polarization capable of surpassing the
racemizing effects of these fluctuations. To estimate this
threshold from first principles, we assume for an ideal solution
with perfect mixing that, on the one hand, the changes in the
reaction rate constants are due to the thermal fluctuations and,
on the other hand, that there exists a tiny but permanent chiral
polarization, namely the parity-violation energy difference
(PVED) between the enantiomers.21,22 In the domain of funda-
mental physics, violation of charge-parity (CP) symmetry deter-
mines that enantiomorphs are non-identical entities by virtue
of the tiny energy difference that exists between them.8,23–31

Although PVED has not yet been detected in typical chemical
experiments29,30,32–34 a logical connection exists between phy-
sical reality and biological chirality.35,36 However, the planned
design and construction of ultrahigh resolution instruments
for vibrational spectra, and the use of heavy atom chiral
complexes, promises the possibility of successful PVED mea-
surements being carried out in the near future.

In this paper, we follow a different approach, namely the use
of SMSB37–40 as a powerful amplifier of chiral polarizations.
It is well-known that some enantioselective autocatalytic
systems lead to outcomes yielding large deviations from the
racemic composition. A stochastic distribution of final chiral
signs between successive experiments is expected on the
average,41 although there was some initial doubt for both the
Viedma deracemization42 and the Soai reaction.43 Therefore,
for any reasonable scenario of chemical evolution, and for a
relatively large number of analogous systems, the ultimate net
consequence should be the racemic composition. Nevertheless,
since Kondepudi’s pioneering work,44 it has been assumed that
weak neutral currents, extended over sufficiently long periods
of time, during which there is a slow increase of the substrate
concentration, could well lead to a deterministic and robust
chiral bias in nonlinear chemical networks involving enantio-
mers, even in a randomly fluctuating environment.45 Motivated
by this possibility, we developed a preliminary model46 demon-
strating that the very tiny47 but permanent parity violating
energy difference (PVED)22 can be sufficient to deracemize a
macroscopic and out of equilibrium chemical system, even in
the presence of unavoidable and permanent thermal fluctua-
tions. These calculations were based on nonlinear stochastic
differential rate equations, where the reaction rate constants
involving the enantiomers are sensitive to the thermal fluctua-
tions, and as well to the PVED bias. It was shown that when the
amplitude of the thermal fluctuations times the activation
enthalpy is of the same order of magnitude as the PVED bias,
a resilience of the parity-violation-induced chiral selectivity
to nonequilibrium temperature fluctuations is observed.

Encouraged by this initial success, and being aware that there
is always a risk that the influence of the fluctuations might not
be taken into account sufficiently, we clarify here a number of
important points not addressed or covered in our previous work.

The purpose of this paper is to focus on the details of the
stochastic histories of the enantiomeric chemical compositions
before and after the chiral symmetry breaking transition,
showing the influence of the presence or absence of the PVED
bias. Our findings demonstrate that in close proximity to the
critical threshold, an increased number of simulation trials
leads to a statistically more significant differentiation between the
stochastic and deterministic outcomes. In the present study, we
employ an improved stochastic simulation methodology that serves
as a valuable tool for identifying the thresholds at which chiral
forces, such as the PVED, induce chiral selectivity that remains
resilient in the face of non-equilibrium temperature fluctuations in
open systems. These findings shed light on the interplay between
chiral forces and fluctuation effects, providing insights into the
conditions under which chiral selectivity can be sustained in
dynamic chemical systems. To accomplish this, we define and
implement a different mathematical approach for the numerical
simulation of stochastic differential rate equations which is based
on Ito and Wiener processes,48 and we include the complete
untruncated thermal noise spectrum. This distinct approach will
allow us to consider fluctuating boundary conditions, fluctuations
in the system volume and also fluctuations in the input fluid flow
rates to the reactor, and distinct input/output reactor configurations
or reactor architectures. To this end, we employ a stochastic version
of an open-flow, fully reversible, Frank model.49 We choose this
dynamical model because it is now well known that its basic
ingredients, namely enantioselective autocatalysis and mutual inhi-
bition of opposite enantiomers, lie at the heart of the Soai reaction,
the first experimentally proven absolute asymmetric synthesis.6,50

This paper is organized as follows. In Section 2 we review
briefly the general expression for the amplitude of the rate-
constant fluctuations, the chiral selectivity criterion and the open
flow reaction scheme employed. We then present the set of coupled
Ito stochastic differential equations. In the present approach, the
entire range of temperature fluctuations are used in the numerical
simulations, in contrast to the approximation used previously, and
this is commented briefly in Section 3. The inclusion of chiral bias
due to PVED in the vector Ito equations is presented in Section 4.
The results of varying the relative magnitude of the temperature
fluctuations with respect to the fixed PVED bias are presented in
Section 5 for a range of bias values. Fluctuations in the boundary
conditions associated with the system volume, the fluid flow
rates, and the fixed input concentrations are treated in Section 6.
Conclusions are given in Section 7.

2 Chiral selectivity criterion and a
stochastic open-flow model

Temperature fluctuations dT(t) about a mean value T induce
corresponding fluctuations in the chemical reaction rate
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constants k which, to leading order in
dTðtÞ
T

����
����� 1; are given by

k T þ dTðtÞð Þ ¼ kðTÞ 1þ DHz

RT

dTðtÞ
T

� �
; (1)

where DH‡ is the activation enthalpy of the reaction. The (non-
equilibrium) temperature fluctuations dT are distributed
according to a Gaussian distribution with mean T and standard
deviation s51

s2 ¼ dTð Þ2
D E

¼ kBT
2

CV
; (2)

where kB is the Boltzmann constant and CV the constant
volume specific heat. This relation allows us to characterize
the T-fluctuation term in eqn (1) in terms of the root-mean-
square (rms) value h(dT)2i1/2 as follows. We estimate the ratio in

eqn (1) according to:
dTðtÞ
T
!
ðdTÞ2
� �

1=2

T
ZðtÞ ¼

ffiffiffiffiffiffiffi
kB

CV

r
ZðtÞ; so

that eqn (1) can be expressed as

ki(T + dT(t)) = ki(T)
�

1 + xiZi(t)
�

, (3)

where the amplitude xi of the fluctuation in the rate constant ki

is given by

xi ¼
DHzi
RT

ffiffiffiffiffiffiffi
kB

CV

s
4 0; (4)

and Zi(t) is a Gaussian white noise. As the transition enthalpy
can only be positive DH‡

i 4 0 we define a positive noise
amplitude xi 4 0. We lose no generality in defining x in this
way since the white noise factor it multiplies has both positive
and negative fluctuations that increase or decrease the corres-
ponding transition enthalpy factor. Both the amplitude xi and
the noise Zi depend on the individual ith reaction; the forward
and reverse steps are treated as independent reactions. Note
moreover that xi in eqn (4) is a product of two independent
contributions: the first one depends on the transition enthalpy
divided by the mean temperature, whereas the second factor
involves the relative rms temperature fluctuation. The former
is a chemical property of each single reaction path, while
the latter encodes the bulk thermodynamic properties of the
system, via the specific heat CV at constant volume (a physical
attribute).

Denote by DDG‡
i 4 0 the minute energy difference between

the two enantiomers due to their interaction with a chiral
polarization, exerted for example by chiral media, or by a
natural chiral physical force. Then, consider the case when g
corresponds to the PVED bias in the ith rate constant. When
this bias is greater than the rms temperature fluctuations times
the change in enthalpy factor associated with that rate con-
stant:

g ¼ DDGzi
RT

� DHzi
RT

ffiffiffiffiffiffiffi
kB

CV

s
¼ xi 4 0; (5)

then we would rightfully expect that the chiral bias g can over-
come the thermal noise xi, and therefore select deterministically
the final stable chiral outcome, provided the inequality g Z xi

holds for all the reactions i in which the PVED bias intervenes. The
relation eqn (5) implies a signal-to-noise (S/N) ratio g/xi Z 1, in
which the PVED bias plays the role of the constant applied ‘‘direct
current’’ or DC signal, and the temperature fluctuations comprise
the ‘‘alternating current’’ or AC background noise. See Appendix A
for derivation of particular cases of this chiral selectivity criterion
for the kinetic model described below.

We test this chiral selectivity criterion eqn (5) with the
following model. It involves four species A, L, D, P and ten
one-way reactions eqn (6)–(8), in addition to the five pseudo-
reactions or input/output flow terms eqn (9)–(13), as defined by
the following transformations:

Aþ LÐ
ka

k�a
Lþ L; AþDÐ

ka

k�a
DþD; (6)

AÐ
kd

k�d
L; AÐ

kd

k�d
D; (7)

LþDÐ
k1

k�1
P; (8)

�+ ���!kf ½A�in A; (9)

A �!kf +; (10)

L �!kf +; (11)

D �!kf +; (12)

P �!kf +; (13)

where kf = q/V, the volumetric flow rate q is in liters per second
and V is in liters. Species A is an achiral precursor and P is an
achiral product: the heterodimer LD = DL is the achiral (meso
form) dimer of the two chiral enantiomers L and D.

The individual forward and reverse reaction rate constants
in eqn (6) and (7) are constrained by the equality of the
equilibrium constants for enantioselective autocatalysis and

the direct production: that is, Keq
a ¼

ka

k�a
¼ kd

k�d
¼ Keq

d ; and this

relates the differences in the free energies of activation of the
forward and reverse reactions for autocatalysis and direct
production: DG‡

a � DG‡
�a = DG‡

d � DG‡
�d. This relation follows

from inserting the expression for the rate constants k into the
above constraint, and using transition state theory (the Eyring–
Polanyi equation for k). This is the most general statement that
can be made regarding the activation energies.

The stochastic reaction rate equations that follow from the
above transformations eqn (6)–(13) and using eqn (3), are
written as a set of coupled Ito stochastic differential equations,
see ref. 48. The noise terms follow from substituting the
expression for the fluctuating reaction rate constants ki,
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eqn (3), into the differential reaction rate equations that follow
from the above transformations. The result is then expressed as
Ito stochastic differential equations, using the definition of
Wiener processes to write the noise terms as indicated below.
We can separate each equation into its deterministic (pdt) and
random (pdWj(t)) parts in order to cast the equations as a
vector Ito process,48 using its attendant standard notation, as
follows:

d½A� ¼
	
�ka½A� ½L� þ ½D�Þ þ k�að½L�2 þ ½D�2Þ � 2kd½A�



þk�dð½L� þ ½D�Þ þ kfð½A�in � ½A�

��
dt

� kax½A�
	
½L�dWaLðtÞ þ ½D�dWaDðtÞ

�
þ k�ax

	
½L�2dW�aLðtÞ þ ½D�2dW�aDðtÞ

�
� kdx½A�

	
dWdLðtÞ þ dWdDðtÞ

�
þ k�dx

	
½L�dW�dLðtÞ þ ½D�dW�dDðtÞ

�
;

(14)

d½L� ¼
�
ka½A�½L� � k�a½L�2 þ kd½A� � k�d½L� � k1½L�½D�

þ k�1½P� � kf ½L�
��

dt

þ x
�
ka½A�½L�dWaLðtÞ � k�a½L�2dW�aLðtÞ:

þ kd½A�dWdLðtÞ � k�d½L�dW�dLðtÞ

� k1½L�½D�dW1ðtÞ þ k�1½P�dW�1ðtÞ
�
;

(15)

d½D� ¼
�
ka½A�½D� � k�a½D�2 þ kd½A� � k�d½D� � k1½L�½D�

þ k�1½P� � kf ½D�
��

dt

þ x
�
ka½A�½D�dWaDðtÞ � k�a½D�2dW�aDðtÞ

þ kd½A�dWdDðtÞ � k�d½D�dW�dDðtÞ � k1½L�½D�dW1ðtÞ

þ k�1½P�dW�1ðtÞ
�
;

(16)

d½P� ¼
�
k1½L�½D� � k�1½P� � kf ½P�

�
dt

þ x
	
k1½L�½D�dW1ðtÞ � k�1½P�dW�1ðtÞ

�
:

(17)

There are ten independent one-way transformations in eqn (6)–(8),
hence these stochastic equations will depend on ten independent
Wiener processes {Wi}i=1

10, where dWi(t) = Zi(t)dt;48 one such

Wiener process (and Gaussian white noise Zi) for each one of
the ten independent one-way reactions. In the above, we have
taken all xi = x to be equal, a reasonable first approximation;
see eqn (4).

We comment on the scaling. The reaction rates (the coeffi-
cients of the dt) scale as the inverse volume BV�1. The noise
terms (see coefficients of the dW) are given by the product of x
times the reaction rates, and the noise amplitude x scales as the
inverse square root of the heat capacity at constant volume: xB
(1/CV)1/2. The overall product, which gives the noise term thus
scales as BV�1(1/CV)1/2. The constant volume heat capacity
scales with the volume CV B V. Thus the overall noise terms
scale as BV�3/2. Thus relative to the deterministic contributions
(the coefficients of dt) to the rate equation which scale as BV�1,
the noise terms (coefficients of the dW) therefore scale as BV�1/2.

We remark that an attempt to estimate the individual noise
amplitudes xi would make sense if one were to consider using
the rather more involved and phenomenologically realistic
kinetic models of say, the Soai reaction,52 and provided of
course that one could reasonably estimate the values of the
transition enthalpies DH‡

i of the individual reactions belonging
to those kinetic and thermodynamic models. In that case, one
could use the van’t Hoff equation53 for this purpose, and would
therefore need to know the equilibrium constant of a given
reaction for at least two different temperatures, to be able to
calculate the transition enthalpy of that reaction.

3 Thermal noise statistics

A major important difference between the stochastic differen-
tial equations used in ref. 46, and the vector Ito process used
here, has to do with the treatment of the noise. For purposes of
the numerical simulations, the noise was generated as contin-
uous random functions, the latter obtained by interpolating
sequences of random numbers generated from a normal dis-
tribution. These continuous random functions were then
included in the differential equations. We also truncated the

spectrum of the relative temperature fluctuations
dTðtÞ
T

so as to

lie within one standard deviation of the mean temperature T.
In the present paper, we employ vector Ito process to model the
stochastic equations and use independent Wiener processes for
the noise terms, so no such restriction is imposed on the noise.
Whereas the former truncation accounted for approximately
67% of all the fluctuations, here all the fluctuations are
included, see Fig. 1. The ‘‘missin’’ fluctuations, those beyond
one standard deviation, make up for the remaining 33% of the
noise spectrum. Recall that the probability distribution for non-
equilibrium temperature fluctuations dT is given by ref. 46

PðdTÞ ¼ 1ffiffiffiffiffiffi
2p
p

s
exp�1

2

dT
dTrms

� �2

¼ 1

s
j

dT
dTrms

� �
; (18)

where j is the normal frequency function54 and the standard

deviation s = dTrms = h(dT)2i1/2, see eqn (2). So,
dT

dTrms

� �2

� 1
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corresponds to fluctuations within one standard deviation

(E67%), whereas 0 � dT
dTrms

� �2

o1 includes all fluctuations.

Using the full range of fluctuations will have an impact on the
ability of the PVED bias g to overcome the thermal noise and so
select a final chiral sign (see Section 5), but is not as drastic as
one might suppose, since the very largest fluctuations, which
are those lying beyond three standard deviations, 3s, from the
mean, have exponentially vanishing probabilities, and so are
extremely rare events, see Fig. 1. Moreover, as white Gaussian
noise includes all frequencies, and with equal weighting
(its frequency spectrum is flat), there always exists arbitrarily
large frequencies o such that oDt 4 1 is satisfied, where Dt is
the smallest time step used in the numerical solution of the
stochastic differential equations. Compliance with this inequality
implies that statistical randomness between successive simula-
tion time steps is assured.

4 Including PVED bias

To include a chiral bias g due to a small energy difference
between enantiomers, in the above stochastic differential rate
equations, we make the following substitutions in the first two
equations eqn (14) and (15): and in only those terms that
contain [L], but in no term containing [D]:

k�d - (1 � g)k�d, (19)

ka - (1 � g)ka, (20)

k�a - (1 � 2g)k�a. (21)

This chiral bias favors the D-enantiomer over the L (changing
the sign from �g to +g in the above favors instead the
L-enantiomer over the D). This leads to the modified stochastic

equations for [A] and [L]:

d½A� ¼ �ka½A� ½L�ð1� gÞ þ ½D�ð Þ þ k�a ð1� 2gÞ½L�2 þ ½D�2

 �


�2kd½A� þ k�d ½L�ð1� gÞ þ ½D�ð Þ þ kf ½A�in � ½A�

 ��

dt

� kax½A� ð1� gÞ½L�dWaLðtÞ þ ½D�dWaDðtÞð Þ

þ k�ax ð1� 2gÞ½L�2dW�aLðtÞ þ ½D�2dW�aDðtÞ

 �

� kdx½A� dWdLðtÞ þ dWdDðtÞð Þ

þ k�dx ð1� gÞ½L�dW�dLðtÞ þ ½D�dW�dDðtÞð Þ;
(22)

d½L� ¼ ka½A�½L�ð1�gÞ�k�að1�2gÞ½L�2þkd½A��k�dð1�gÞ½L�:


�k1½L�½D�þk�1½P��kf ½L�ÞÞdt

þx kað1�gÞ½A�½L�dWaLðtÞ�k�að1�2gÞ½L�2dW�aLðtÞ



þkd½A�dWdLðtÞ�k�dð1�gÞ½L�dW�dLðtÞ

�k1½L�½D�dW1ðtÞþk�1½P�dW�1ðtÞÞ:
(23)

The remaining two stochastic equations eqn (16) and (17) are
unchanged. We can then carry out simulations of the four
coupled stochastic differential equations eqn (16), (17), (22) and
(23) to assess the ability of a range of PVED biases g to select
deterministically final stable scalemic states in the presence of
random temperature fluctuations x, according to eqn (5). The
simulations of the set of Ito stochastic differential equations
have been performed using the Euler–Maruyama method, as
defined and implemented in Mathematica v13.

5 Fluctuating reaction rate constants:
stochastic vs. deterministic regimes

The model parameters are taken as follows: kd = 10�4, k�d =
10�9, ka = 102, k�a = 10�3, k1 = 102, k�1 = 10�4, [A]in = 10�2

and the flow rate kf = 10�3. From eqn (6) and (7) these imply an
equilibrium constant Keq = 105. We initiate all the simulations
on the idealized racemic composition: [L]0 = [D]0 = 10�3, with
[P]0 = 10�6 and [A]0 = [A]in. These values locate the system on the
unstable racemic branch in the absence of chiral bias.

We first generate multiple runs of the system subject to the
temperature fluctuations alone (no PVED bias: g = 0), and for
strict racemic initial conditions. This yields a set of statistically
independent random histories, a typical example of which is
shown in Fig. 2. After an induction period the system bifur-
cates, and the times at which the concentrations of the two
enantiomers separate from each other is spread out in time,
this dispersion is due to the fluctuations in the rate constants.
We can map these bifurcations to histograms of the final
enantiomeric excesses ee = ([L] � [D])/([L] + [D]) by taking
time-slices through the bifurcation curves (at the final times
at t = 5000 s) in these sets of histories. Note, for each individual
run, there is a majority (on the upper branch) and a minority

Fig. 1 The standard normal frequency function j, eqn (18). The approxi-

mation used in ref. 46 corresponds to relative fluctuations
dT

dTrms

� �����
���� � 1

lying within one standard deviation from the mean. Here in this work, the
full unbounded range is employed.
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(on the lower branch) enantiomer, which can be either the L or
the D enantiomer, respectively, and we calculate the corres-
ponding ee for this run. As each outcome is essentially homo-
chiral (already for t = 5000 s, there are seven orders of
magnitude difference in the majority vs. minority enantiomer
concentrations) this single run either yields ee D �1 (when the

D is the majority enantiomer) or else ee D +1, (when the L is the
majority enantiomer). This procedure is then repeated for the

entire set of all n runs, and so we calculate
Pn
j

eejðþÞ and

Pn
j

eejð�Þ, where eej(�) = �1, where +1 holds for the majority

D-enantiomer, and �1 holds for the majority L-enantiomer,
respectively. We plot the results in histograms to show the
distribution of the set of all outcomes. The data slice is taken at
t = 5000 s. Next, we include the PVED bias g 4 0 in the
stochastic equations and make multiple runs, again with
racemic initial conditions. For each value of the PVED bias
chosen, we test the chiral selectivity against various noise
amplitudes x, for noise greater than, equal to, and less than
the bias: x 4 g, x = g, x o g. We map the outcomes to
histograms of final enantiomeric excesses ee as outlined above.
Here in contrast, after the induction period the times at which
the concentrations of two enantiomers separate from each
other is sharply focused in time, see Fig. 3. The PVED bias
has overcome the thermal fluctuations in the rate constants.
See Fig. 4 for characteristic examples sampled over a wide range
of g and also Table 1 for a guide to the characterization of the
distinct outcomes. Very recent calculations of PVED for cinna-
bar crystals,55 lead to values as large as g = 2.2 � 10�12, which
we include in our analysis below. Some comments regarding
these results, with respect to the those obtained in ref. 46, are
in order. There is now a qualitative and quantitative pattern of
statistical uniformity in the outcomes of the numerical results

with respect to the range of g bias values tested in that: (i) all
the g’s tested here select the final state deterministically when
the noise level is an order of magnitude smaller than the bias:
x o g (see Panel (a) in Fig. 4), (ii) for noise of the same order of
magnitude as the bias x = g, the selection is still biased strongly,
but is slightly skewed (see Panel (b) in Fig. 4), and for noise an
order of magnitude larger than the bias x4 g, the outcomes are
bimodal, no statistically significant selection of a final scalemic
state is possible, see Panel (c) in Fig. 4. Here we solve numeri-
cally for the four coupled Ito stochastic differential equations
eqn (16), (17), (22) and (23). The main mathematical difference
between this approach and the previous one is now the random
T-fluctuations are taken from a complete normal distribution,
and are not restricted to lie within (�s) one standard deviation
of the mean (see discussion in Section 3 on this point). That is,
all the temperature fluctuations beyond one standard deviation
from the mean are now included. This translates into a
diminished chiral selectivity when the fluctuations are greater
than the bias x 4 g, which is natural and is to be expected. The
largest temperature fluctuations (meaning those that lie
beyond three standard deviations from the mean) diminish
the chiral selectivity of the PVED bias, but they are also less
likely than the smaller fluctuations that lie within one standard
deviation of the mean temperature, see Fig. 1. Further details of
the individual numerical simulations are compiled in Table 2.
For a given chiral bias g 4 0, noise amplitude x 4 0 and
number of statistically independent runs n, we obtain the total
numbers of final homochiral L and D outcomes, where L + D = n.
From this we calculate the net enantiomeric excess heein =
(L � D)/(L + D) averaged over the n runs, and also the fraction of
homochiral D-outcomes pD = D/(L + D). We compare the latter to
the 99% confidence interval (C.I.) for expecting a racemic
outcome, i.e., when pD = 1/2. This C.I. eqn (24) depends on
p, the confidence level and also on n. Note, in the so-called
‘‘severe’’ region of parameter space, for which the strength of
the chiral bias is less in magnitude than the noise amplitude

Fig. 2 Random outcomes. Example of n = 20 independent runs of the
stochastic equations eqn (14)–(17) without PVED bias (g = 0); with
x = 10�19. The symmetry breaking bifurcation is spread out in time by the
noise, but all individual histories converge to the same asymptotic state. With
no bias, both the upper and lower sets of branches are equally populated by
L and D outcomes on average. Computing the enantiomeric excess ee for
each individual run at time slice t = 5000 s leads to a bimodal histogram for all
the runs, qualitatively similar to that in Fig. 4(c). See text for how these
outcomes are mapped to histograms and see Table 1 for their interpretation.

Fig. 3 Deterministic outcomes. Example of 20 independent runs of the
stochastic equations eqn (16), (17), (22) and (23) with bias g = 10�18 with
x = 10�19. The bias g reduces the spread in the bifurcation times. Compare
to Fig. 2. Computing the enantiomeric excess ee at time slice t = 5000 s
leads to a unimodal histogram for all the runs, qualitatively similar to that in
Fig. 4(a). See text for how these outcomes are mapped to histograms and
see Table 1 for their interpretation.
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g o x, we have also further increased the number of runs n
from 100 to 500 and then to 1000 in order to ascertain whether
the final stationary outcomes can be regarded as either racemic
or else biased. We use the 99% confidence interval (C.I.) for
expecting a racemic outcome as criterion:

CI ¼ p� z
1�a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
; (24)

where p is the proportion of interest (e.g., for racemic propor-
tion p = 1/2), n is the sample size, a the desired confidence, and
z1�a

2
the Z-value for the desired confidence, z

1�a2
¼ 2:57 for 99%

confidence.56 These confidence interval bounds are computed
and listed in the right-hand column of Table 2. The table is
based on time-slices through the bifurcation curves at the final
times at t = 5000 s.

When the results in Fig. 4 are plotted against the logarithms
of the bias g and of the noise x, a simple pattern emerges as
shown in Fig. 5. Indeed, there is a line, or separatrix, that divides
the region of deterministic chiral outcomes from the region
of stochastic ones, for the range of bias and noises considered.

This is a linear relation between log(g) and log(x). We also see the
effect of using the full noise noise spectrum here in contrast to the
simulations of ref. 46. Also, for noise levels x = 10 g an order of
magnitude greater that the bias, increasing the number of runs n
narrows the confidence interval CI eqn (24), so what was a racemic
outcome for low n can become a chiral one for larger n, since now
the fraction pD lies outside the 99% CI, see Fig. 5.

The results in Table 2 correspond to the equilibrium
constant Keq = ka/k�a = kd/k�d = 105. We can consider the

Fig. 4 Distributions of the outcome from multiple simulations n = 100 of the competition between the PVED g and the product of the rms temperature
fluctuation times the activation enthalpy factor xj, eqn (4). The level of constant chiral bias corresponds to g = 10�n. Panel (a): x = 10�n�1; (b): x = 10�n; (c):
x = 10�n+1. For n = 19, 18, 16, 13, 12. See Table 1 for how the outcomes are characterized.

Table 1 Characterization of the various outcomes: random, biased or
deterministic, in terms of relationships between the sums of the enantio-
meric excesses of the individual homochiral runs eej (�) = �1. A statistically
more precise discrimination between the random or biased outcomes is
provided by estimating the confidence intervals (C.I.) for having a racemic
outcome, as discussed in the text; see also Tables 2 and 3. Note thatPn

j
eejðþÞ þ

Pn
j
eejð�Þ

�����
����� ¼ n holds for all outcomes. See Fig. 4

Outcome Relations involving
Pn

j
eejð�Þ

Random Pn
j
eejðþÞ ¼

Pn
j
eejð�Þ

�����
����� ¼ n

2

Biased
0a

Pn
j
eejðþÞa

Pn
j
eejð�Þ

�����
�����a0

Deterministic Pn
j
eejðþÞ ¼ n &

Pn
j
eejð�Þ

�����
����� ¼ 0

Or else Pn
j
eejðþÞ ¼ 0 &

Pn
j
eejð�Þ

�����
����� ¼ n

Table 2 Summary of the simulations carried out for the open flow
stochastic Frank model subject to chiral bias g and temperature fluctua-
tions x, see eqn (16), (17), (22) and (23). g: the chiral bias in the rate
constants; x: the amplitude of the temperature fluctuations, n: the number
of statistically independent runs; L and D: the total number of homochiral
outcomes for the L- and D-enantiomers, respectively; heein = (L�D)/(L +
D): the net enantiomeric excess averaged over the n runs; pD = D/(L + D) is
the fraction of homochiral D-outcomes for n. Final column gives the
99% confidence interval (C.I.) for expecting a racemic outcome that is,
for pD = 1/2, see text for further explanation

g x n L D heein pD

99% C.I. for racemic
outcome

10�19 10�20 100 0 100 �1 +1 (Deterministic outcome)
10�19 10�19 100 10 90 �0.8 0.9 0.37 r p r 0.63
10�19 10�18 100 44 56 �0.12 0.56 0.37 r p r 0.63
10�19 10�18 500 212 288 �0.15 0.576 0.443 r p r 0.557
10�19 10�18 1000 481 519 �0.038 0.519 0.459 r p r 0.541
10�18 10�19 100 0 100 �1 +1 (Deterministic outcome)
10�18 10�18 100 7 93 �0.86 0.93 0.37 r p r 0.63
10�18 10�17 100 47 53 �0.06 0.53 0.37 r p r 0.63
10�18 10�17 500 235 265 �0.06 0.53 0.443 r p r 0.557
10�18 10�17 1000 448 552 �0.104 0.552 0.459 r p r 0.541
10�16 10�17 100 0 100 �1 +1 (Deterministic outcome)
10�16 10�16 100 12 88 �0.76 0.88 0.37 r p r 0.63
10�16 10�15 100 42 58 �0.16 0.58 0.37 r p r 0.63
10�16 10�15 500 244 256 �0.024 0.512 0.443 r p r 0.557
10�16 10�15 1000 452 548 �0.096 0.548 0.459 r p r 0.541
10�13 10�14 100 0 100 �1 +1 (Deterministic outcome)
10�13 10�13 100 5 95 �0.9 0.95 0.37 r p r 0.63
10�13 10�12 100 52 48 +0.04 0.48 0.37 r p r 0.63
10�13 10�12 500 214 286 �0.144 0.572 0.443 r p r 0.557
10�13 10�12 1000 443 557 �0.114 0.557 0.459 r p r 0.541
10�12 10�13 100 0 100 �1 +1 (Deterministic outcome)
10�12 10�12 100 13 87 �0.74 0.87 0.37 r p r 0.63
10�12 10�11 100 54 46 +0.08 0.46 0.37 r p r 0.63
10�12 10�11 500 221 279 �0.12 0.558 0.443 r p r 0.557
10�12 10�11 1000 450 550 �0.10 0.55 0.459 r p r 0.541
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consequence of lowering the equilibrium constant by a factor of
102, by choosing the rate constants such that kd = 10�6 and ka =
1 keeping all other rate constants and parameters fixed, then
Keq = 103. Then, mirror symmetry is still broken by temperature
fluctuations, but now the reactions are less exergonic, or more
reversible, than before. The results are tabulated in Table 3. For

the same values of chiral bias g, noise amplitude x and number
of runs n, the chiral selectivity of the bias is enhanced, for a
lower value of the equilibrium constant, with respect to the
results in Table 2. This indicates that when the reactions are
more reversible (i.e., are less exergonic) the greater is the chiral
selectivity of the bias g with respect to a given noise level x (see
Table 3). We again take time-slices through the bifurcation
curves at the final times at t = 5000 s.

The relationship between the number of experiments
needed to yield an adequate CI in order to be able to distin-
guish between stochastic or deterministic outputs is a point
that cannot be detected using common chemical kinetic meth-
ods. Despite the fact that the ratio g/x = 1 defines the transition
from stochastic to deterministic regimes (see Tables 2 and 3
and Fig. 4), the CI (24) indicates the efficiency of the system
towards chiral selectivity when the ratio between chiral induc-
tion and noise amplitude changes are 41; a large number of
experiments, or in a origin of life scenario a large set of
separated similar systems, is necessary to detect the chiral
selection effect in SMSB. However, when g/x c 1 only a small
number of experiments, or a few separated systems, will already
lead to the same final chiral sign selected by g.

6 Role of fluctuations in the boundary
conditions: volume, flow rates and
input concentrations

Fluctuations in the input and output rate dkf (see the pseudo-
reactions in eqn (9)–(13)) can arise due to either fluctuations in

Fig. 5 Left: Influence of the calculation technique on the system output. Open circles or squares: truncated fluctuations, filled circles and squares:
unrestricted fluctuations. Red round symbols: racemic output, green square symbols: chiral output. For an equivalent number of trials the stochastic Ito
process is less selective than the calculations carried out in ref. 46. This can be seen at log(noise) = �11 and log(bias) = �12. For n = 100, Ito gives a
racemic output (red filled dot) while truncated calculation gives a chiral output (open green square, n = 120). The same effect is also seen at log(noise) =
�16 and log(bias) = �17 where truncated calculation gives a chiral output (open green square) while a red filled dot (racemic output) is expected from the
Ito process. The dashed line (log(noise) = log(bias) + 0.5) is parallel to the first diagonal. It appears as a sensitive zone (separatrix between racemic and
chiral domains from the Ito process) where the noise is about three times larger than the bias. Right: Statistical analysis of a series of parallel runs using a
99% confidence interval (CI) for expecting a racemic output in the presence of a noise 10 times greater than the bias. Results show that a high run number
helps to unveil the tiny (but permanent) effect of the chiral bias which, otherwise would remain undetected (100 vs. 1000 runs). It is also shown that a
higher bias is needed to overcome the randomizing effect of a greater noise level (bias 410�14 at 500 runs).

Table 3 Results of simulations for an equilibrium constant Keq = 103, two
orders of magnitude smaller than that corresponding to Table 2. g: the
chiral bias in the rate constants; x: the amplitude of the temperature
fluctuations, n: the number of statistically independent runs; L and D: the
total number of homochiral outcomes for the L- and D-enantiomers,
respectively; heein = (L � D)/(L + D): the net enantiomeric excess averaged
over the n runs; pD = D/(L + D) is the fraction of homochiral D-outcomes
for n. Final column gives the 99% confidence interval (C.I.) for expecting a
racemic outcome that is, for pD = 1/2. Note there is always a chiral output.
Compare to Table 2

g x n L D heein pD

99% C.I. for racemic
outcome

10�19 10�20 100 0 100 �1 +1 (Deterministic outcome)
10�19 10�19 100 0 100 �1 +1 (Deterministic outcome)
10�19 10�18 100 28 72 �0.44 0.72 0.37 r p r 0.63
10�18 10�19 100 0 100 �1 +1 (Deterministic outcome)
10�18 10�18 100 0 100 �1 +1 (Deterministic outcome)
10�18 10�17 100 29 71 �0.42 0.71 0.37 r p r 0.63
10�16 10�17 100 0 100 �1 +1 (Deterministic outcome)
10�16 10�16 100 0 100 �1 +1 (Deterministic outcome)
10�16 10�15 100 27 73 �0.46 0.73 0.37 r p r 0.63
10�13 10�14 100 0 100 �1 +1 (Deterministic outcome)
10�13 10�13 100 0 100 �1 +1 (Deterministic outcome)
10�13 10�12 100 27 73 �0.46 0.73 0.37 r p r 0.63
10�12 10�13 100 0 100 �1 +1 (Deterministic outcome)
10�12 10�12 100 0 100 �1 +1 (Deterministic outcome)
10�12 10�11 100 26 74 �0.48 0.74 0.37 r p r 0.63
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the fluid flow rate itself dq and or to fluctuations in the system
volume dV:

dkf ¼ d
q

V

	 �
¼ dq

V
� kf

dV
V

� �
: (25)

) dkf
kf
¼ dq

q
� dV

V
: (26)

These are independent from the internal temperature fluctua-
tions. We may include them in the above Ito formulation by
making the following substitution in all the terms involving the
flow rate:

kf ! kf 1þ dq
q
� dV

V

� �
¼ kf 1þ xfZfðtÞð Þ; (27)

where Zf is a Gaussian white noise, with an amplitude xf and
introducing the single Wiener process dWf[t] = Zf(t)dt for the
fluctuating term. Then using eqn (27) in eqn (16), (17), (22)
and (23) leads to the following replacements, where X = Ain, A, L,
D, P:

kf[X]dt - kf[X]dt + kf[X]xfdWf[t]. (28)

Whereas the rate constant fluctuations dki (due to the tempera-
ture fluctuations) for the ten individual one-way reactions
eqn (6)–(8) are statistically independent, the open-flow terms
eqn (9)–(13) will fluctuate coherently and in unison. This is
because the input and output channels depend on one and the
same flow rate constant kf. In particular, this means the
fluctuations in the enantiomeric concentrations [L] and [D]
due to the random flow rate dq and or volume fluctuations dV
are racemic, and also of first order. So, no mirror symmetry
breaking is expected due to these types of racemic, or ‘‘diag-
onal’’, fluctuations. We have confirmed this with simulations.
The outcome is similar to the Panel (a) in Fig. 4: a deterministic
result. By way of example, even for very large amplitude
fluctuations in the flow rate kf of the order of xf = 0.16
(eqn (27)) and for a minuscule chiral bias g = 10�18, and in
the presence of T-fluctuations, the chiral bias still selects
deterministically for g 4 x, while there is a statistically significant
bias when x = 10�18 and then no significant bias for x = 10�17,
which is an order magnitude greater that the fixed chiral bias.
Indeed, the qualitative pattern is that of the Panels (a) to (c) in

Fig. 4. So, it is statistically indistinguishable from the case where
the flow rate does not fluctuate. This is a consequence of the input
and output flow scheme or flow architecture, for which all species
concentrations are removed at the same rate in one unique output
channel and where only the achiral substrate A is input to the
reactor, see Fig. 6.

A distinct and realistic open-flow set-up from the chemical
point of view, is to arrange for both enantiomers to flow into
the reaction tank in a common shared channel and with an
average racemic composition [L]in = [D]in. We can arrange for
the achiral species A flow to in on a separate channel, see Fig. 6.
There are thus two input channels, and a single common
output channel carrying all four species A, L, D, P. In this case,
the pseudo-reactions corresponding to the input flows are as
follows:

�+ ���!kfA½A�in A; (29)

�+ ��������!kfL ½L�in¼kfD½D�in L;D: (30)

where [X]in denotes the fixed on average, or clamped, input
concentration, and we define the individual input flow rates as
follows:

kfA ¼ kf
fA;in

fout

; (31)

kfL ¼ kf
fL;in

fout

; (32)

kfD ¼ kf
fD;in

fout

; (33)

where the fluxes fX,in satisfy the constant volume constraint
fout ¼

P
j¼A;L;D

fj;in.57 We consider fluctuations on the inflows of

the enantiomers, see Fig. 6. From eqn (30), (32) and (33) these
in turn can be due in principle to either (i) fluctuations in the

individual flux fractions
fX;in

fout

; and/or (ii) fluctuations about the

average racemic composition [L]in = [D]in. This choice will
depend on how we choose the Wiener processes, that is,
whether they are the same process or else independent

Fig. 6 Left: Reversible Frank model in a continuous open-flow reactor of volume V at mean temperature T, assuming instant and perfect diffusion of all
the species in solution. Achiral resource A flows in at fixed concentration [A]in. All four species A, L, D, and P flow out in a single common channel
with their instantaneous concentrations, as determined inside the well-mixed reactor; see eqn (9)–(13). The matter flow maintains the system out of
chemical equilibrium. Right: Here, the achiral resource A and both enantiomers L and D flow in at fixed concentrations [A]in and [L]in = [D]in, respectively,
in two separate channels. The enantiomers share a common input channel and feed into the reactor with a racemic composition on average.
See eqn (29) and (30).
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processes. Note however since the two enantiomers are being
transported (by passive advection) by same fluid stream, we
must rule out independent, and hence chiral, fluctuations in
the L.D flux fractions. This leaves us with the possibility to
consider only fluctuations in the enantiomer inflow concentra-
tions, which are on average racemic. So we make the following
replacements in the Ito stochastic equations for [L], [D] and [A]
as follows using substitutions analogous to eqn (28):

(kfL[L]in � kf[L])dt + kfL[L]inzdWLin(t), (34)

(kfD[D]in � kf[D])dt + kfD[D]inzdWDin(t), (35)

(kfA[A]in � kf[A])dt, (36)

for two independent Wiener processes WLin, WDin. z 4 0
represents the amplitude of noise in the enantiomer concen-
trations [L]in and [D]in. Of course, we choose racemic input
conditions: kfL = kfD; equal input flux fractions for both enan-
tiomers, see eqn (32) and (33), and [L]in = [D]in, so that any
deviations from mirror symmetry coming from these terms
eqn (34) and (35) are thus due strictly to the independent noises
on the common L,D-input channel, as quantified via z 4 0.
Since WLin, WDin are independent Wiener processes, the fluc-
tuations in the monomial terms kfL[L]in and kfD[D]in are there-
fore uncorrelated. So, they can give rise to net chiral
fluctuations which can degrade the chiral selectivity of the
PVED bias g provided the input noise amplitude z 4 0

is sufficiently large. The constant volume constraint is

1 ¼
fA;in

fout

þ
fL;in

fout

þ
fD;in

fout

. This can be satisfied by taking the flux

fractions to be
fA;in

fout

¼
fL;in

fout

¼
fD;in

fout

¼ 1

3
for the two input chan-

nels, this implies kfA = kfL = kfD = kf/3. Examples of the
competition between chiral bias and noise on the enantiomer
input channel are shown below in the Fig. 7–9.

For the range of PVED biases g considered above, and for
fixed thermal noise levels x4 0, we can estimate the maximum
amplitudes of the enantiomeric input line noises z4 0 that can
be tolerated before washing out the PVED selectivity. Determi-
nistic outcomes can tolerate an external noise level z up to
approximately 103 greater than the chiral bias g, and in the
presence of temperature fluctuations, whereas the chiral bias
gets obliterated for external noise levels on the order of
approximately 105 greater than the chiral bias, see Fig. 7–9.

7 Concluding remarks

In our open flow stochastic Frank model, subject to a chiral
bias g and temperature fluctuations x, the ratio g/x = 1 (see
Section 4), defines the transition from stochastic to determi-
nistic regimes. This condition represents a critical threshold for
chiral sign selection in SMSB. When the ratio of chiral bias
to temperature fluctuations is greater than unity g/x 4 1,

Fig. 7 Distributions of the outcomes from n = 100 simulations of the competition between the PVED g and the rms temperature fluctuation times the
activation enthalpy factor x, eqn (4) in the presence of chiral fluctuations z in the racemic [L]in = [D]in input channel, see Fig. 6. The level of chiral
bias corresponds to g = 10�12 and x = 10�13. (D,L) gives the number of homochiral outcomes for the D- and L-enantiomers. Panel (a): z = 10�7, (54,46);
(b): z = 10�8, (64,36); (c): z = 10�9, (99,1).

Fig. 8 Distributions of the outcomes from n = 100 simulations of the competition between the PVED bias g and the rms temperature fluctuation times
the activation enthalpy factor x, eqn (4) in the presence of chiral fluctuations z in the racemic [L]in = [D]in input channel, see Fig. 6. The level of chiral
bias corresponds to g = 10�18 and x = 10�19. (D,L) gives the number of homochiral outcomes for the D- and L-enantiomers. Panel (a): z = 10�13, (47,53);
(b): z = 10�14, (61,39); (c): z = 10�15, (97,3).
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a calculated confidence interval is used to indicate the effi-
ciency of the system towards chiral selectivity. A larger number
n of experiments is necessary to detect statistically the chiral
selection effect in SMSB. This relationship, depending on the
system parameters, between the number of experiments
needed to distinguish between stochastic or deterministic
outputs, is a point that cannot be detected using common
chemical kinetic methods.

Moreover, since each simulation describes the behavior of a
very small volume element, the confidence interval gives a
description of what occurs in a macroscopic volume resulting
from addition of large numbers of small volume elements.
Therefore, larger sets of small volume reactors lead to a greater
confidence for the distinction between stochastic or determi-
nistic outcomes. This result is interesting because the chemical
systems description of abiotic evolution are those based on
the cooperative interaction between many micro systems (e.g.
ref. 58). As expected, when g/x c 1 already a small number of
experiments will lead to the g-selected final chiral sign. A large
non-equilibrium system containing many interacting chiral
species may behave as a collection of many microsystems.
In this regard, a recent work shows a phase transition towards
a homochiral state is likely to occur as the number of chiral
species becomes large, see ref. 59.

Since it is expected that larger amplitude chiral fluctuations
in real systems (imperfect mixing, limited diffusion rates. . .),
occur distinctly from those originating from the temperature
fluctuations in the values of the rate constants, the experi-
mental detection of a possible PVED effect calls for a difficult
and challenging experimental procedure able to eliminate or
suppress the sources of the chiral fluctuations that are not due
the temperature fluctuations in thermally isolated systems.

Our results show that for the range of PVED biases g
considered above, and for fixed thermal noise levels x 4 0,
there exists a maximum tolerable amplitude of the enantio-
meric input line noises x. In the presence of temperature
fluctuations, deterministic outcomes can tolerate an external
noise level x of up to approximately 10 greater that the chiral
bias g. However, the PVED selectivity is washed out for external
noise levels x about 102 times greater than the chiral bias.
These refer to the thermal noise levels that can be tolerated by

the chiral bias. By contrast, estimates concerning the chiral
noise levels (chiral fluctuations on the ideal racemic composi-
tion that feeds into the reactor, see right hand side of Fig. 6),
that can be tolerated by the chiral bias, and in the presence of
fixed level of thermal noise, are notably more generous.

Results on permanent physical chiral forces overcoming
chiral fluctuations are widely reported, and even in the case
where the chiral force is at the order of cryptochirality.41

Cryptochirality refers to minute perturbations of the chiral
symmetry which remain undetected (hence, hidden chirality)
in classical physical measurements or in enantioselective reac-
tions, but which are amplified in the bifurcation in these
polarized (chiral biased) spontaneous mirror symmetry break-
ings. Note this definition encompasses not only PVED, but also
other experimentally undetectable sources of chiral polariza-
tions, be they of a structural, an environmental or a statistical
nature. This means that the presence of a chiral polarization
below the experimental limits for detecting chirality by physical
methods can determine the output chiral sign. An example of
cryptochirality arises from stereochemical isotopic substitu-
tions in the Soai reaction.15–17 Note, however that contrary to
such cryptochirality, whose sign can be random, the effect of
PVED must always be present, and precisely because it adds to,
or subtracts from, biases exerted by other chiral forces, its
detection could be indirectly made by means of an accurate
statistical analysis of multiple outputs of cryptochiral enantio-
morphic polarizations. A detailed discussion of cryptochirality
can be found in ref. 41.

Finally, it is worthwhile pointing out that this fact is contrary
to the older opinions and models which supposed that bio-
logical homochirality could arise from stochasticity. Here we
demonstrate that low exergonic enantioselective autocatalysis
can lead to SMSB in a deterministic way.
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Fig. 9 Distributions of the outcomes from n = 100 simulations of the competition between the PVED g and the rms temperature fluctuation times the
activation enthalpy factor x, eqn (4) in the presence of chiral fluctuations z in the racemic [L]in = [D]in input channel, see Fig. 6. The level of chiral bias
corresponds to g = 10�18 and also x = 10�18. (D,L) gives the number of homochiral outcomes for the D- and L-enantiomers. Panel (a): z = 10�13, (53,47);
(b): z = 10�14, (56,44); (c): z = 10�15, (86,14).
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Appendices

A Chiral selectivity: direct production
and autocatalysis

We consider the reaction-coordinate diagrams used in ref. 46.
From eqn (3), the rate constants for the reverse direct produc-
tion k�d of the enantiomers eqn (7) in the presence of tem-
perature fluctuations are given by:

k�d,L(T + dT(t)) = k�d,L(T)(1 + x�d,LZ�d,L(t)), (37)

k�d,D(T + dT(t)) = k�d,D(T)(1 + x�d,DZ�d,D(t)). (38)

We emphasize the dependence of the rates and fluctuations on
each enantiomer, L or D. The mean values, in the absence
of external chiral bias satisfy the chiral constraint k�d,L(T) =
hk�d,L(T + dT(t))i = hk�d,D(T + dT(t))i = k�d,D(T), since the noise
satisfies hZi(t)i = 0. But a finite chiral bias leads to a tiny free
energy difference DDG‡ 4 0 between the two transition states,
and so the ratio of the mean values of these rate constants is
given by ref. 60:

k�d;LðTÞ
k�d;DðTÞ

¼ exp �DDG
z

RT

� �
’ ð1� gÞ; (39)

in the case of higher transition state energy for the D-enantio-
mer with respect to the L. Substitute eqn (39) into eqn (37),
expanding to leading order in g and x yields

k�d,L(T + dT(t)) = k�d,D(T)(1 + x�d,LZ�d,L(t) � g).
(40)

Hence, if the chiral bias is greater (in absolute value) than the
characteristic rms magnitude of the thermal fluctuations

g 4 x�d,L 4 0, (41)

then according to eqn (39), which since g 4 0, then k�d,D(T) 4
k�d,L(T), implying a faster reconversion of D back into achiral
substrate A, it should be able to select for the D-enantiomer.

The chiral selection in enantioselective autocatalysis eqn (6)
proceeds in a similar fashion. Here, the ratio of the corres-
ponding rate constants is

ka;LðTÞ
ka;DðTÞ

’ ð1� gÞ: (42)

Then, analogous to the case of direct production, the chiral
selectivity criterion is

g 4 xa,L 4 0, (43)

then according to eqn (42), which since g 4 0, then ka,D(T) 4
ka,L(T), implying a faster autocatalysis for D. Hence the bias
should be able to select for the D-enantiomer. Finally, following

the previous steps, the selectivity criterion for the inverse
autocatalysis is

g4
x�a;L
2

4 0: (44)

All the above instances eqn (41), (43) and (44) are subsumed in
eqn (5).
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J. M. Ribó, J. Crusats and J.-C. Micheau, Chem. Rev., 2021,
121, 2147–2229.

42 C. Viedma, Cryst. Growth Des., 2007, 7, 553–556.
43 B. Barabas, L. Caglioti, C. Zucchi, M. Maioli, E. Gál,
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