
27524 |  Phys. Chem. Chem. Phys., 2023, 25, 27524–27531 This journal is © the Owner Societies 2023

Cite this: Phys. Chem. Chem. Phys.,

2023, 25, 27524

Energy-entropy multiscale cell correlation method
to predict toluene–water log P in the SAMPL9
challenge†

Hafiz Saqib Ali *a and Richard H Henchman *b

The energy-entropy multiscale cell correlation (EE-MCC) method is used to calculate toluene–water log

P values of 16 drug molecules in the SAMPL9 physical properties challenge. EE-MCC calculates the free

energy, energy and entropy from molecular dynamics (MD) simulations of the water and toluene

solutions. Specifically, MCC evaluates entropy by partitioning the system into cells of correlated atoms at

multiple length scales and further partitioning the local coordinates into energy wells, yielding vibrational

and topographical terms from the energy-well sizes and probabilities. The log P values calculated by EE-

MCC using three 200 ns MD simulations have a mean average error of 0.82 and standard error of the

mean of 0.97 versus experiment, which is comparable with the best methods entered in SAMPL9. The

main contribution to log P is from energy. Less polar drugs have more favourable energies of transfer.

The entropy of transfer consists of increased solute vibrational and conformational terms in toluene due

to weaker interactions, fewer solute positions in the larger-molecule solvent, reduced water vibrational

entropy, negligible change in toluene vibrational entropy, and gains in solvent orientational entropy. The

solvent entropy contributions here may be slightly underestimated because software limitations and

statistical fluctuations meant that only the first shell could be included while averaged over the whole

solution. Nonetheless, such issues will be addressed in future software to offer a general method to

calculate entropy directly from MD simulation and to provide molecular understanding or guide system

design.

1. Introduction

The base-10 logarithm of the partition coefficient P of a
molecule, log P, represents the degree of dissolution of a
molecule in one immiscible liquid relative to another. One
liquid is typically polar, usually water, and the other non-polar,
making log P a measure of a molecule’s hydrophilicity or
hydrophobicity.1 This property is highly significant in assessing
a molecule’s bioavailability, toxicology, and pharmacological
suitability, and it is, for example, part of Lipinski’s rule of
five.2,3 The organic phase mimics the cell membrane that drugs
would need to cross from one aqueous compartment to
another. Most commonly, the partition coefficient is measured
from water to octanol.4,5 Other non-polar solvents include
chloroform, alkanes such as n-dodecane or n-hexadecane, 1,2-

dichloroethane, dibutyl ether, cyclohexane, toluene, and pro-
pylene glycol dipelargonate.6–12 Low solubility in solvents such
as alkanes limits the applicability of log P,13–15 although drugs
that are flexible may be able to adopt particular conformations
that differentially optimise their surface interactions with a
particular solvent11 or stabilise intramolecular interactions,
information that may prove useful in adjusting log P to desired
therapeutic ranges.16

Experimentally, log P is directly measured from the ratio of
the concentrations of the molecule in the two liquids. Compu-
tational methods to predict log P are also widely used, offering
advantages in speed or molecular insight, but not always
with clear-cut accuracy and reliability. Knowledge-based and
machine-learning methods are fast and widely used after
training on databases of known log P values for specific
solvents.1,13,14 Electronic structure methods calculate the solva-
tion free energy by treating the solute at the electronic structure
level, the solvent as a dielectric continuum, and the interface
between them with atomic surface tension parameters.17–19

These include the quantum mechanical self-consistent reaction
field (QM-SCRF)17–19 and the conductor-like screening models
(COSMO).20,21 Alchemical methods are a widely used route to
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log P, calculating it from the solvation free energy in each liquid
using a series of molecular dynamics (MD) simulations that
gradually decouple the solute from the solvent.22,23 They typi-
cally use all-atom solute and solvent modelled with force-field
parameters. Methods that have been used to calculate log P
directly from a simulation of each solution without intermedi-
ate states include linear interaction energy (LIE),24 the three-
dimensional reference interaction site model (3D-RISM),25 grid
inhomogeneous solvation theory (GIST),26 and energy-entropy
multiscale cell correlation (EE-MCC).27

To help assess the accuracy and capabilities of different
computational methods, the SAMPL (statistical assessment of
the modelling of proteins and ligands) log P blind challenges
have helped demonstrate the performance of computational
methods.28 Previously they involved water with octanol or
cyclohexane solvent. Now in the ninth running, the SAMPL9
log P challenge involves the less commonly used toluene–water
log P6–12 for the drug molecules depicted in Fig. 1.

In this work we apply and further test the EE-MCC method
used previously to calculate octanol–water log P values,29–31 this
time to the toluene–water log P values in the SAMPL9 log P
Challenge. In EE-MCC the energy is taken from the MD simula-
tions and the entropy is calculated for both solute and solvents
over all degrees of freedom at multiple length scales. MCC has
been developed for liquids,29,30,32 solutions,33–36 chemical
reactions,37 host–guest systems,38 and proteins31,39–41 and offers
the advantage of providing a comprehensive breakdown of
entropy across all atomic degrees of freedom.

2. Methods
2.1 EE-MCC log P Calculation

The log P value for a solute partitioning from water to toluene
relates to the transfer Gibbs free energy DGtransfer

tol–wat by

log P = �DGtransfer
tol–wat /(ln(10)kBT) (1)

where kB is Boltzmann’s constant and T is temperature. This
equals the Gibbs free energy of the solute in toluene and pure
water minus that of pure toluene and the solute in water

DGtransfer
tol–wat = (Gsol+tol + Gwat) � (Gtol + Gsol+wat) (2)

where sol + tol and sol + wat denote the solute in the respective
solvents toluene or water, and wat and tol denote the respective
pure liquids. The solutions are assumed to be dilute and are
defined to have the same concentration, such that the transfer
energy does not depend on the solute concentration. We ignore
the small amount of solvent mixing that takes place for experi-
ment. In the EE method, G of each system is calculated using
the standard thermodynamic expression G = H–TS, where H is
enthalpy, S is entropy and T is temperature. H is directly
obtained from a MD simulation as the average potential energy
plus the average kinetic energy of the system, and the pressure-
volume term is ignored because it is small at ambient pressures
and even then cancels in the difference. S is calculated from the
same MD simulation using the MCC method, which is
described in the next section. Four simulations are required
for a single log P calculation, but the pure solvent simulations
are identical, and so effectively only two simulations per solute
are required.

2.2 Multiscale cell correlation

Entropy is calculated from an MD simulation using MCC in a
multiscale fashion in terms of cells of correlated units. Local
coordinates are defined for different structural levels of each
molecule. Each coordinate is partitioned into discrete energy
wells. This gives rise to a vibrational term from the average
energy well and a topographical term from the probabilities of
each energy well. The total entropy is calculated as the sum of
the vibrational and topographical terms for each molecule type,
multiscale level and coordinate using

S ¼
Xmolecule

i

Xlevel
j

Xcoordinate

k

Svib
ijk þ S

topo
ijk

� �
(3)

Applied to the case of a solute in solvent, eqn (3) becomes

S ¼ S
pos
solute þ Sor

solute þ Sconf
solute þ

Xlevel
j

Xcoordinate

k

Svib
solute;jk

þ
Xsolvent
i

S
pos
i þ Sor

i þ
Xlevel
j

Xcoordinate

k

Svib
ijk

 ! (4)

where Spos
i , Sor

i and Sconf
i are positional, orientational and

conformational topographical terms, and Svib
ijk are the vibra-

tional terms. Next we explain what these terms are and how to
calculate them.

Molecule decomposition. MCC derives effective potentials
for each molecule in the mean field of its neighbours, justified
by the weak and diffuse nature of the multimolecular correla-
tions. This is made possible by calculating entropy from
molecular forces which may be partitioned in a mean-field
manner, as discussed later. This allows entropy to be conveni-
ently and intuitively decomposed according to each molecule.

Fig. 1 Structures of the 16 SAMPL9 log P drug molecules.
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The two types of molecule in a solution are the solute and
solvent. There is typically only a single solute which is the drug
molecule. Solvent entropies for solutions and pure liquids are
calculated by averaging over all solvent molecules but only the
contribution from the number of molecules in the first solva-
tion shell is included because the entropies over all solvent
molecules are not well-converged and have excessive noise.
Solvation shells for each solute are determined using the
relative angular distance (RAD) algorithm with the position of
each molecule being defined by its center-of-mass.42,43

Level decomposition. For each molecule, MCC uses a hier-
archical coordinate system, treating each molecule as a separate
rigid body and decomposing it into collections of smaller rigid
bodies. This enables an efficient and scalable calculation of entropy
because it separates out larger-scale motion from smaller-scale
motion that is difficult to include in the same single coordinate
system at one length scale. Moreover, it more naturally captures
multiscale motion and non-linear motion such as rotation. The two
levels used here are united-atom (UA) and monomer (M). A UA
comprises each non-hydrogen atom and its bonded hydrogens. A
monomer is defined as an assembly of covalently bonded UAs.
Water has only the UA level while toluene and the drugs, compris-
ing multiple UAs, have both levels. Along with previous work,42,43

we do not use the ‘‘molecule’’ level, which is inconsistent for
molecules having different numbers of levels. The more detailed
‘‘atom’’ level is not considered because this involves high-frequency
motion of light hydrogen atoms, which are strongly quantised to
essentially single energy levels at room temperature.

Coordinate decomposition. For a given molecule and level,
entropy is decomposed along the relevant coordinates. At the M
level the coordinates are three translations and three rotations,
which are defined using the principal axes with the origin at the
centre of mass of the molecule. Being orthogonal coordinates as
eigenvalues of a covariance matrix, in this case a force covariance
matrix, their entropy may be evaluated separately. At the UA
level, translation involves the collective motion of covalently
bonded UAs in the M coordinate frame, motion that can also
be regarded as internal motion at the M level. A non-linear
molecule with N UAs has 3N-6 coordinates of collective motions.
Again, entropy can be evaluated separately along each coordinate
because they are eigenvectors of a covariance matrix. Concerning
rotational motion, a UA with two or three hydrogens is non-
linear and has three degrees of freedom, with one hydrogen it is
linear and has two rotational degrees of freedom, and with no
hydrogens it is a point and has no rotational degrees of freedom.
The coordinate system for UA rotation has the origin at its heavy
atom and the axes are determined according to the covalent
bonds to neighbouring atoms as defined elsewhere.29

Vibrational entropy. The vibrational entropy relates to the
average size of the energy wells along a given coordinate k, level
j and molecule i. It is calculated for each vibration ijk in the
harmonic approximation using the equation for a quantum
harmonic oscillator

Svib
ijk ¼

hvijk
�
T

ehvijk=kBT � 1
� kBln 1� e�hvijk=kBT

� �
(5)

where kB is Boltzmann’s constant, h is Planck’s constant, and
vijk is the vibrational frequency, which is derived from the
eigenvalue lijk of a covariance matrix using

vijk ¼
1

2p

ffiffiffiffiffiffiffiffiffi
lijk
kBT

s
(6)

For translation the matrix is the mass-weighted force covariance
matrix, with elements given by FijaFijb

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mijamijb
p

, where F is force,

m is mass, and a and b are indices over coordinates. At the M level
the matrix is 3 � 3 using the principal axes of M. At the UA level it
is 3N � 3N for the N UAs in the principal axes of M, and requires
the removal of the six lowest-frequency vibrations to avoid double-
counting translational and rotational entropy already determined
at the larger M level. We use the term ‘‘transvibrational’’ to denote
translational vibrations. For rotation the matrix is the moment-of-
inertia-weighted torque covariance matrix with elements given by

tijatijb
� ffiffiffiffiffiffiffiffiffiffiffi

IijaIijb
p

, where t is torque and I is moment of inertia. At

the M level the matrix is 3 � 3 and involves rotation about the
principal axes of M. At the UA level it is a matrix with dimension
calculated by summing over the number of rotations for each UA:
3 for non-linear UAs, 2 for linear UAs and zero for point UAs. We
use the term ‘‘rovibrational’’ to denote rotational vibrations. The
forces and torques in both M matrices and in the UA rotational
matrix are halved in the mean-field approximation29,30,37,38,44

because the interacting atoms are negligibly correlated. Full forces
are retained for the UA force covariance matrix because the
correlations of the covalently bonded UAs are strong and
accounted for in the covariance matrix.

Topographical entropy. The topographical entropy for each
coordinate depends on the probability of each energy well. At
the M level it comprises positional entropy for translation and
orientational entropy for rotation. The positional entropy arises
for a dilute solute distributed among identical solvent mole-
cules. For a molecule it is calculated by discretizing the volume
V1 available to the molecule at its concentration by the volume
of a solvent molecule Vsolvent

Spos
i ¼ kB ln

V�

Vsolvent
(7)

Vsolvent is calculated as the volume of the simulation box of pure
solvent divided by the number of solvent molecules. The
logarithm is thus taken of the number of solute positions, each
position has the same probability, and the larger the solvent
molecule, the smaller Spos

i . The choice of V1 is not important
and cancels in the calculation of log P, such that the change in
positional entropy for the transfer is DSpos

i = kBln(Vwat/Vtol) for
all solutes. Spos

i of a pure liquid is zero because V1 = Vsolvent, and
is negligible for solvent in a dilute solution for a similar reason.

To calculate the orientational entropy of molecule i, its
rotational volume is discretized by the number of neighbouring
molecules in the first solvation shell, Nc,29,30 weighted by the
probability, p(Nc), of each Nc

Sor
i ¼ kB

X
Nc

pðNcÞ ln max 1;Nð3=2Þc p1=2pcorr=s
� �h i

(8)
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where s is the symmetry number of the molecule, max ensures
there is at least one orientation, and pcorr is the probability of
the neighboring molecule having a compatible orientation. The
respective values of s for the solutes, water and toluene are 1, 2
and 2. pcorr is taken as 1 for toluene because of its weak non-
bonded interactions, and 0.25 for water because there is a 0.5
probability that each of the two hydrogen bonds per water
molecule are correctly aligned. Eqn (8) assumes that all orien-
tations have equal probability. Nc is calculated using the RAD
method.42

At the UA level, the only topographical entropy considered
here is the conformational entropy, which is tantamount to UA
positional entropy. For each dihedral, comprising the set of
four adjacent UAs, conformers are adaptively defined from the
maxima in their dihedral-angle probability distributions, how-
ever many there are.30 Probabilities pik are calculated for the
occurrence of all unique combinations of conformers k over all
dihedrals of molecule i in the MD simulation, and its confor-
mational entropy is calculated using

Sconf
i ¼ kB

X
k

pik ln 1=pikð Þ (9)

Only dihedrals that have more than one conformer contribute
to Sconf

i . This combinatoric approach is tractable for the 3 to 6
flexible dihedral angles found in the solutes here. Water and
toluene have no conformational entropy. Rotational topogra-
phical entropy of UAs is assumed to be negligible due to
rigidity, symmetry, or strong correlation with the solvent,
although this assumption may not hold so well for polar OH
groups in toluene.

2.3 Model setup

The SMILES strings of the 16 drug molecules were taken from
the SAMPL9 challenge website.45 Hydrogen atoms were added
using Dimorphite-DL46 with the molecules having a neutral
charge as instructed, as drawn in Fig. 1. Each molecular
structure was optimized using autodE47 in the Orca v-5.048

software with the PBE0/6-311G* level of density functional
theory (DFT).49 The lowest energy conformer was selected and
converted to pdb format using RDKit.50 The topology and
coordinate files for each system were prepared using LEaP in
AmberTools22.51 The toluene and drug molecules were modelled
using the second generation general Amber force field (GAFF2)52

with AM1-BCC charges, and TIP3P53 was used for water. GAFF2
parameters were generated using the Antechamber54 and
Parmchk2 modules of AmberTools20. Four kinds of MD simula-
tion were set up and run: (i) 1500 water molecules, (ii) 500 toluene
molecules, (iii) a single drug molecule solvated in 1500 water
molecules, and (iv) a single drug molecule solvated in 500 toluene
molecules. This gives 34 different simulations in total. Solvent was
added using Packmol55 in a periodic cubic box with side B38 Å.

2.4 Molecular dynamics simulations

All MD simulations were carried out using the Particle Mesh
Ewald Molecular Dynamics (PMEMD) module of the AMBER 22
software. The systems were minimized using 2000 steps of

steepest decent minimization. They were heated to 298.15 K
for 400 ps in the NVT ensemble (constant number, volume,
temperature) using a Langevin thermostat56 with a collision
frequency of 5 ps–1, followed by 1 ns of NPT simulation
(constant number, volume, pressure) using the Berendsen
barostat.57 Three production runs of 200 ns NPT were carried
out to provide an estimate of the standard error of the mean,
which contrasts with triplicates of shorter 20 ns NPT simula-
tions in our original SAMPL9 submission. Altogether this gives
a total of 102 simulations. All simulations used a 2 fs time step,
SHAKE to constrain hydrogen atoms, and a 10 Å non-bonded
cut-off. Output forces and coordinates were stored every 100 ps,
giving 2000 frames. The internal entropies of the solutes were
evaluated with the CodeEntropy software.58 The entropy of the
solvent and orientational entropy of the solutes were evaluated
with the same in-house C++ code used previously for liquids.59

This code only allowed for averaging solvent entropy over all
solvent molecules. This two-part analysis was necessary
because CodeEntropy does not currently include the orienta-
tional entropy for solutes or have capability for solvents other
than water.

2.5 Error analysis

Standard errors of the mean (SEM) are calculated from the
standard deviation s using the n = 3 MD simulations as

SEM ¼ sffiffiffi
n
p (10)

The mean unsigned error (MUE) for all drugs with respect to
the experimental values is calculated using

MUE ¼ 1

n

Xn
i¼1

DGEE-MCC
i � DGexpt

i

�� �� (11)

where n = 16 is the number of drugs.

3. Results and discussion
3.1 log P prediction versus experiment

The toluene–water log P values calculated using EE-MCC for the
16 drug molecules are plotted versus experiment in Fig. 2. The
MUE for log P is 0.82, the SEM is 0.97, and the slope of the line
of best fit is 0.75.

Compared to the log P results contributed by other methods
in the SAMPL9 Challenge,45 our results are extremely promising
and would lie at the top of the list for SEM and second MUE.
Other methods contributed include MM/PBSA (molecular
mechanics/Poisson Boltzmann surface area), empirical meth-
ods, various electronic structure methods,60 non-equilibrium
fast growth,61 free energy perturbation and RISM. Our results
here use the same method as in our origional submission but
with longer 200 ns simulations compared to 20 ns, which had
given a larger SEM of 2.1 and MUE of 1.8.

Most drugs in Fig. 2 have SEMs close to the line of best fit,
the worst outlier being amitryptiline (3) whose predicted log P
of 5.8 makes it too hydrophobic. Nonetheless, the slope being
smaller than 1 implies that MCC does not capture the full
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spread of log P. This could be because the solvent entropy was
only included for the first shell and averaged over all solvent
rather than for all the solvent molecules, a step taken because
of the poor convergence over so many molecules and limita-
tions in the software used. It is known that the second solvation
shell and beyound can make a small but non-negligible con-
tribution to entropy.36,62–64

The values of DGtransfer
tol–wat , DHtransfer

tol–wat , and TDStransfer
tol–wat calculated

by EE-MCC are listed in Table 1 with their SEMs, together with
the corresponding log P values by EE-MCC and experiment.
Enthalpy generally contributes more to log P than entropy. This
is reflected in the correlation coefficient, which is 0.99 for
DHtransfer

tol–wat versus DGtransfer
tol–wat but only 0.35 for TDStransfer

tol–wat versus
DGtransfer

tol–wat . Both plots for these correlations are illustrated in Fig.
S3 (ESI†). The greater contribution of energy to log P may reflect
the comparatively strong performance in SAMPL9 of the MM/
PBSA method,65 which also has an energy term. This indicates

that solute partitioning between water and toluene is governed
primarily by enthalpy and that the overall entropy change is
small. What changes there are in the entropy components tend
to cancel out, especially between vibrational and topographical
components for both solute and solvent. Nonetheless, the
solvent entropy calculation could still be improved, as dis-
cussed earlier.

Most DHtransfer
tol–wat values are negative, indicating that these

molecules form stronger interactions with the non-polar sol-
vent, being more non-polar themselves and more disruptive to
the hydrogen-bond network of water than they are to toluene-
toluene interactions. The exceptions to this trend are epinephr-
ine (6), paracetamol (12) and sulfamethazine (15), which have
positive DHtransfer

tol–wat values, presumably because these more polar
molecules lose more polar interactions with water. TDStransfer

tol–wat

values are smaller but roughly correlated with DHtransfer
tol–wat (Pear-

son correlation coefficient 0.53), being positive for more polar
drugs and negative for less polar drugs. The average SEM
over all drugs for DGtransfer

tol–wat is 1.3 kcal mol�1, for DHtransfer
tol–wat is

1.3 kcal mol�1 and for TDStransfer
tol–wat is 0.2 kcal mol�1. The major

contribution to the error in log P comes from enthalpy rather
than entropy. While the energies of the systems appear well
converged over 200 ns of MD (Fig. S1 and S2, ESI†), these errors
emphasise that EE methods require a high level of convergence
to be quantitatively accurate, requiring longer simulations and
more frequent data collection to bring these errors down.

3.2 MCC entropy components

The changes in the MCC entropy components for each drug are
illustrated in Fig. 3.

They give a better understanding of how the entropy
changes are distributed in the system. Fig. 3a shows the
components of the drug molecule. Note that the colouring
scheme in Fig. 3 according to level is different to that in
previous work,59 which coloured according to molecule level
and smaller levels. Most solute entropy components are seen to
increase in toluene, especially the vibrational components,
which is in line with the weaker molecular interactions in
toluene that would permit greater flexibility. This increase is
greatest for the more polar solutes which are more confined in
water than in toluene, explaining the positive TDStransfer

tol–wat values
observed earlier in Table 1. The main exception to these
component increase is DSpos

i which is a constant negative value
for all drugs because there are fewer solute positions in toluene
owing to the larger size of the toluene molecule (175.6 Å3 versus
30.4 Å3 for water). DSor

i of the drugs is positive and moderately
sized, indicating more toluene molecules are included in the
drug solvation shell. DSconf

i is small for most drugs but does
have large increases for fluphenazine dihydrochloride (7) and
trazadone hydrochloride (16) and a large decrease for glyburide
(8), suggesting the former two are more compact in water and
the latter, being more polar, is more compact in toluene. Fig. 3b
and c indicate the respective total contributions from water and
toluene. The water contribution for solute removal is fairly
uniform, comprising a decrease in vibrational entropy and
stronger interactions and an increase in orientational entropy,

Fig. 2 EE-MCC toluene–water log P versus experiment with solid line of
best fit and with error bars equal to the standard error of the mean (SEM).

Table 1 EE-MCC energies (kcal mol�1) and log P versus experimental
log P for the 16 drugs

Drug DGtransfer
tol–wat DHtransfer

tol–wat TDStransfer
tol–wat log PEE–MCC

tol–wat log PExpt
tol–wat

1 �3.8 � 1.5 �4.2 � 1.5 �0.4 � 0.1 2.8 � 1.1 3.8
2 �3.3 � 1.4 �3.5 � 1.5 �0.2 � 0.1 2.4 � 1.0 2.4
3 �5.8 � 0.2 �5.9 � 0.3 0.0 � 0.1 4.3 � 0.2 5.5
4 �6.5 � 0.6 �6.8 � 0.5 �0.3 � 0.2 4.8 � 0.5 5.5
5 �5.1 � 0.7 �5.4 � 0.7 �0.3 � 0.1 3.7 � 0.5 3.6
6 0.5 � 1.2 1.3 � 1.3 0.9 � 0.1 �0.3 � 0.9 �1.2
7 �7.9 � 0.8 �7.4 � 0.9 0.6 � 0.3 5.8 � 0.6 4.4
8 �2.6 � 1.8 �3.3 � 1.4 �0.7 � 0.8 1.9 � 1.3 2.8
9 �5.7 � 1.2 �5.4 � 1.3 0.3 � 0.3 4.1 � 0.9 5.1
10 �2.5 � 1.1 �2.1 � 0.9 0.4 � 0.2 1.8 � 0.8 2.5
11 �2.9 � 2.9 �3.0 � 2.9 �0.1 � 0.1 2.1 � 2.2 1.5
12 0.6 � 1.7 1.1 � 1.7 0.5 � 0.1 �0.5 � 1.3 �1.6
13 �0.2 � 0.7 �0.2 � 0.9 0.0 � 0.2 0.1 � 0.5 0.4
14 �0.8 � 2.8 �0.4 � 2.8 0.4 � 0.2 0.6 � 2.0 1.4
15 �1.0 � 1.0 0.2 � 0.9 1.2 � 0.1 0.7 � 0.7 �0.7
16 �3.8 � 1.4 �3.5 � 0.9 0.3 � 0.1 2.8 � 1.0 3.8
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with the exception of the two small polar drugs epinephrine (6)
and paracetamol (12), although changes in orientational
entropy are smaller in size compared to previous work,33–36

likely because of averaging first-shell values over the whole
solution, as discussed earlier. The toluene contribution for
solute transfer has a negligible loss of vibrational entropy and
a moderate gain in DSor

i except for albendazole (1), glyburide (8)
and trazadone hydrochloride (16).

Absolute values of the entropy components are listed in
Tables S1 and S2 (ESI†) and illustrated in Fig. S4 (ESI†) for

drugs in water and toluene, except for Spos
i which is

concentration-dependent, a dependence that cancels for log P
because the concentrations are the same in each liquid. Solute
UA entropy scales with drug size as expected while M entropy is
similar for all drugs. They also show how vibrational entropy is
generally smaller for more polar drugs because of their stronger
interactions.

Conclusions

The EE-MCC method has been applied to calculate the toluene–
water partition coefficients of 16 drug molecules in the SAMPL9
log P Challenge. For this dataset MCC is able to predict log P
values with an average SEM error of 0.82 and of 1.3 kcal mol�1

for the corresponding DGtransfer
tol–wat . This is comparable to the best

methods entered in SAMPL9 once it makes use of simulations
of sufficient length, namely 200 ns versus 20 ns that we had
used in our original submission. The main causes of error are
likely the force-field, the neutral protonation states, large
statistical fluctuations over many molecules, and the approx-
imations used in MCC such as the harmonic approximation, or
using solvation-shell entropy that is averaged over all the
solvent. Addressing these causes will be helped in future by
more frequent data saving, longer simulations, the inclusion of
conformational entropy for OH and other asymmetric UAs,
noise reduction, and software that enables better selection of
solvent perturbed by the solute. Given that the EE-MCC method
requires the difference of large numbers with non-negligible
statistical errors and that there are inevitable approximations
in the entropy theory, it may not always be as accurate as
alchemical or knowledge-based methods. However, its ability to
explain the value of the entropy from a single MD simulation of
in principle any molecular system in terms of all its atomic
degrees of freedom can greatly enhance the utility of simulation
methods beyond what is experimentally measureable to explain
molecular behaviour and guide system design.
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