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Data-driven tailoring of molecular dipole
polarizability and frontier orbital energies in
chemical compound space†
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Alexandre Tkatchenko *

Understanding correlations – or lack thereof – between molecular properties is crucial for enabling fast

and accurate molecular design strategies. In this contribution, we explore the relation between two key

quantities describing the electronic structure and chemical properties of molecular systems: the energy

gap between the frontier orbitals and the dipole polarizability. Based on the recently introduced QM7-X

dataset, augmented with accurate molecular polarizability calculations as well as analysis of functional

group compositions, we show that polarizability and HOMO–LUMO gap are uncorrelated when consid-

ering sufficiently extended subsets of the chemical compound space. The relation between these two

properties is further analyzed on specific examples of molecules with similar composition as well as

homooligomers. Remarkably, the freedom brought by the lack of correlation between molecular polariz-

ability and HOMO–LUMO gap enables the design of novel materials, as we demonstrate on the example

of organic photodetector candidates.

1 Introduction

Data-driven molecular design is an increasingly pursued strategy
in chemical physics and computational chemistry. The search for
novel molecules with tailored physicochemical properties for a
given functionality is continuously motivating the development of
a great variety of computer-aided molecular design approaches.1–3

The ultimate goal is to establish a feasible protocol that can be
used for exploring the chemical compound space (CCS) through
systematic targeting of physical properties. Physicochemical quan-
tities, such as color, conductivity, excited state lifetime, electron
affinity, ionization potential, and solubility, are commonly used
in the design of molecular photosensitizers or optoelectronic
devices, for instance.4–7 Given the complexity of a multi-property
design task, it is essential to first have a solid grasp of the physical
relationships between the various target properties.8

Within this context, two fundamental quantum-mechanical
(QM) electronic properties are the optical gap and the molecular
dipole polarizability (a). Optical gap is an experimental property
that measures the energy corresponding to the lowest observed
optical transition. Many computational studies use the HOMO–
LUMO gap DEHL (the difference between the energies of frontier

molecular orbitals in the ground state) as a starting point in
approximating experimental optical gaps. This approximation is
widely favored due to the computational challenges associated
with employing highly accurate quantum mechanical methods
incorporating orbital relaxation effects (e.g. time-dependent density
functional theory or multi-configurational self-consistent field
methods), especially, when investigating vast areas of the CCS,
macromolecules, molecular aggregates, or molecular junctions.9–11

Thus, the HOMO–LUMO gap plays a crucial role in understanding
various aspects of chemical reactivity, excitation energies, and
several key optical properties in these organic systems. For
instance, its calculation is essential for gaining insights into optical
absorption spectra, refractive indices, and conductivity.12–15 For
correctness of terminology, HOMO–LUMO gap obtained from
density functional calculations should be referred to as Kohn–
Sham (KS) gap. Although the relations between different gaps
(Kohn–Sham, fundamental, and optical) are subtle and have been
discussed in detail in the literature,16,17 in this manuscript we will
use the KS gap as a proxy for observable experimental properties.

The molecular dipole polarizability a (referred to simply as
polarizability in the manuscript), on the other hand, describes
the dipolar response of a molecule to an external electric field,
becoming a key quantity for understanding intra- and inter-
molecular interactions (e.g. dispersion interactions, substituent and
solvent effects as well as supramolecular structure formation) and
for determining spectroscopic properties of molecules (Raman,
Raman optical activity and sum frequency spectroscopy).18–25 These
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features make both polarizability and HOMO–LUMO gap essen-
tial in the derivation of structure–property/property–property
relationships and, consequently, in the development of design
strategies for molecules with a targeted array of QM properties
for applications such as molecular dyes,26 optoelectronic
devices,27 molecular junctions,28,29 heterogeneous catalysts30

and materials for non-linear optics.31,32

Various computational methods and predictive models have
been developed to estimate HOMO–LUMO gaps and polariz-
abilities for organic molecules with different levels of tradeoff
between accuracy and computational cost.33–36 Lately, it has
became feasible to access a plethora of highly-accurate QM
properties – including DEHL and a – for large swaths of the
chemical compound space (CCS).37–41 Comprehensive analyses
of these extensive datasets may help to understand the deeper
physical picture behind the inherent property–property rela-
tionships. With this motivation, we herein perform an exhaus-
tive investigation of the two-dimensional space defined by
HOMO–LUMO gap and polarizability (i.e. (DEHL,a)-space) for
small organic molecules with the aim to gain insights into the
intrinsic relationship between these two properties. We find
that while correlation might appear in homologous molecules
(that is, molecules differing by a constant increment meaning
that their physicochemical properties follow a general trend), if
a large enough subspace of CCS is considered, HOMO–LUMO
gap and polarizability are essentially uncorrelated and their 2D
space is represented as a structureless ‘‘blob’’. Through the
analysis of diverse molecular sets, it is shown that this lack of
correlation can be related to the fact that the polarizability is
primarily determined by the atomic composition, while the
HOMO–LUMO gap heavily depends on the arrangement of the
atoms into chemical functional groups. Hence, we expect that
our findings will assist the development of novel design prin-
ciples in which the control of multiple electronic properties is
relevant, as we finally demonstrate on the case of molecular
photodetectors.

The outline of the paper is as follows: in Section 2, we review
accurate and approximate models for polarizability and
HOMO–LUMO gap. In Section 3, we exhaustively examine the
polarizabilities (a) and HOMO–LUMO gaps (DEHL) of diverse
molecular sets. In doing this, we have extended the QM7-X
dataset41 with functional group information as well as polariz-
abilities calculated with the hybrid PBE0 functional. In assessing
our computational setting, we tested the predictive power of
this functional against coupled cluster LR-CCSD calculations,
and found an overall accuracy of 1.9%. As a first order approxi-
mation to predicting polarizabilities of small organic systems,
we consider a linear combination of atomic contributions in
Section 3.1. In Section 3.2, we then perform PBE0 calculations of
polarizability (see Section 6.1 for computational details) for
homologous molecules and explore the relationship with their
HOMO–LUMO gaps. A statistical analysis of the (DEHL,a)-space
using a subset of molecules contained in QM7-X dataset is
carried out in Section 3.3. Our proposed design principle is
further discussed and demonstrated on the case of organic
photodetectors, see Section 4. The computational methods as

well as the dataset used are presented in Section 6, following the
main conclusions of the manuscript in Section 5.

2 Models for polarizability and frontier
orbital energy gap

Since our main focus is to have a better understanding of the
relationship between polarizability and HOMO–LUMO gap in
organic molecules, we first revisit different qualitative and
quantitative models employed to compute them. In general, a
variety of electronic structure methods can be used to calculate
both of these quantities. The choice of a computational level
depends on the specific target property and the necessary
tradeoff between computational cost and accuracy. While cal-
culating the HOMO–LUMO gap is feasible using various mean-
field electronic structure methods, orbital relaxation effects
play a significant role in determining optical properties.42

However, in computationally expensive studies such as the
analysis of macromolecules or extensive datasets (e.g. QM7-X
considered in this manuscript), HOMO–LUMO gap is often
used as a first approximation to experimental quantities.
Polarizability (a) is typically obtained from finite field, coupled
perturbed Hartree–Fock or density functional perturbation
theory (DFPT) calculations.33,34,43 However, these electronic
structure methods need considerable computational resources
when dealing with larger molecules or significant swaths of the
CCS. Accordingly, we will next discuss alternative physical
models, empirical correlations, and approximate methods that
can be used to obtain these QM properties as well as to broaden
the comprehension of property–property relationships in CCS.
We will start with examining the polarizability, for which
analytical models (such as the quantum Drude oscillator, or
QDO) as well as empirical correlations and predictive semiem-
pirical methods are available. After this, the models for HOMO–
LUMO gap will be mentioned, before concluding the section by
analyzing what is known about the correlation between these
two quantities.

A connection between HOMO–LUMO gap and polarizability
can be anticipated starting from the perturbative expression for
polarizability using the dipole moment operator m̂ within
second order perturbation theory as20,44

a$ ¼ 2
X1
na0

C0jm̂jCnh i � Cnjm̂jC0h i
En � E0

; (1)

where C0 and E0 are the ground state wavefunction and energy,
respectively, and n is the index of the excited states. Indeed,
since DEHL = E1 � E0 is commonly much smaller than the
energy gap of higher excited states, the first term of the sum in
eqn (1) provides a first-order approximation to the infinite
series and, hence, there could exist an inversely proportional
relationship between DEHL and a, i.e. ap (DEHL)�1.

Eqn (1) can only be analytically evaluated for simple model
systems (such as the hydrogen atom or a quantum Drude
oscillator). For many-electron systems, the sum can only be
evaluated numerically and requires including bound-bound
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and bound-continuum transition dipoles.45 Modeling atoms or
larger coarse-grained fragments with QDOs and solving the
dipole–dipole screening equations is known to be an effective
method to predict polarizability, and it is also the basis for the
Many-Body Dispersion (MBD) method.46,47 Since the response
properties of all atoms and molecules can be represented by
QDOs by carefully setting the three parameters {charge q,
frequency o, mass m} of the model, the analysis of the polariz-
ability of the QDO Hamiltonian should generally be transfer-
able to any systems. Therefore, we devote some attention to
this model.

Due to selection rules of the dipole operator, only the first
excited state contributes to the dipole polarizability of a
QDO,44,48 making it effectively a two-state system

aQDO ¼ 2q2
C0jm̂jC1h i C1jm̂jC0h i

E1 � E0
¼ q2

mo2
; (2)

where q is the magnitude of the charge bound by a harmonic
potential with frequency o, having a mass m. The HOMO–
LUMO gap of a QDO in atomic units is DEHL = o, which indeed
appears in the denominator. However, a can be separately
controlled through the other two individual QDO parameters
{q,m}, independently from DEHL. This means that for the QDO
model, the polarizability and the HOMO–LUMO gap are
mutually related, yet they could be tuned separately from
each other.

The idea of approximating the polarizability using an effec-
tive two-state system (so-called Unsøld approximation)44,49 is
also useful for understanding qualitative trends. Within this
approximation, polarizability is written using an average excita-
tion DE as a fitting parameter

a$ ¼ 2

DE

X1
na0

C0jm̂mjCnh i � Cnjm̂jC0h i: (3)

Setting the average excitation to DEHL is therefore exact for the
QDO model, but the connection between these quantities for
many-electron systems is not known in general.50

Investigating correlations between polarizability and various
molecular properties can lead to useful relationships such as
the recent observation that polarizability scales with the fourth
power of the characteristic size of the system.44 The correlation
between polarizability and orbital energies is relevant from a
theoretical standpoint, as it forms the foundation of Pearson’s
hard-soft acid–base (HSAB) theory.51,52 Based on recent theore-
tical works, we can postulate that polarizability can be
expressed as a function of two factors accounting for (i) ground
state geometry (e.g. van der Waals radius or molecular volume)
and (ii) electronic structure (e.g. ionization energy or
hardness).31,44,53–58 While these correlations provide useful
conceptual insights, they have not been put to use for con-
structing accurate numerical predictions.

There are two types of predictive models for polarizability
with lower computational burden than electronic structure
calculations. Firstly, approximations for polarizability can be
constructed based on the group contribution principle, which

divides polarizability into atomic or bond contributions.30,59

These models can offer somewhat accurate predictions with
minimal molecular information and computational effort, and
we will assess such models in this work. As a second approach,
machine learning (ML) models have been proposed as a cost-
effective solution with improved accuracy.35 However, the training
process and accuracy of the ML models are strongly dependent on
the features of the dataset (e.g. chemical diversity, molecular size,
number of samples) as well as on the ML method itself.

For the case of HOMO–LUMO gap, there is a well-
established underlying physical principle in determining this
property: it is known that the HOMO–LUMO gap of individual
functional groups (called chromophores in this context) is
transferable, with values documented in standard reference
texts.60 These chromophores also form the foundation for both
accurate ML models and earlier empirical rules for the prediction
of HOMO–LUMO gaps.61,62 The HOMO–LUMO gap of a single
functional group can be understood based on the molecular
orbital theory, the most common version of which is the Hückel
theory for conjugated systems. For instance, the inverse propor-
tionality between the number of monomers and the HOMO–
LUMO gap of polyenes is well-explained within this theory.63 In
the case of non-interacting functional groups, their optical spectra
are effectively independent and, consequently, the frontier energy
gap of a molecule is determined by the lowest value for the
constituent functional groups, making it an inherently size-
independent (intensive) property.

In agreement with the analysis of the QDO model, recent
studies relying on large datasets (7 k structures from the GDB-
13 dataset as well as the tmQM dataset of 86 k transition metal
complexes) suggest that there’s no overall correlation between
HOMO–LUMO gap and polarizability.64,65 Nevertheless, correla-
tion has been observed both experimentally and computationally
for different classes of structures (e.g. organic dyes and inorganic
clusters26,66–68), with notable exception of smaller systems where
the HOMO–LUMO transition is symmetry forbidden.24 In the
following section, we explore the source of such seemingly
contradictory results by showing that investigating a reduced
subset of the chemical compound space can lead to correlations
between quantities that are generally uncorrelated.

3 Results and discussion
3.1 First order linear atomic additive model for polarizability

To understand the correlation between polarizability and
HOMO–LUMO gap, we first show that polarizability can be,
up to a large degree, determined by knowing only the atomic
composition (i.e. the types and the numbers of atoms present
in a molecule). This analysis is done using the PBE0 polariz-
ability values calculated for the QM7-X molecules, contrasting
these quantum chemical results with a linear atomic additive
method. The simplest atomic additive method (motivated by
that of Bosque36) approximates the polarizability of a molecule
via a linear combination of the number of each atom-types
n weighted with a type-specific factor Ci, together with an
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intercept m

a ¼ mþ
X
i

Cini: (4)

Bosque’s model was fit directly using experimental data of
426 compounds. The fitted m and Ci values for C, Cl, H, N, O,
and S are listed in Table 1. Accordingly, we have here used the
QM7-X dataset41 (see Section 6) to validate the accuracy and
reassess the model parameters on a significantly larger swath of
the CCS. In doing so, we have considered the first conformer
for each entry in the QM7-X dataset; a total of E13 k structures.
The linear regression parameters optimized on QM7-X yield the
results listed in Table 1. Bosque’s parameters hold up relatively
well for QM7-X molecules, accounting for a correlation coeffi-
cient (R2 value) of 0.65 with a mean absolute percentage error
(MAPE) of 6.11%. However, the re-fitted parameters improve
the correlation coefficient to 0.72 and reduce MAPE value to
3.94%, i.e. the prediction accuracy is increased by a factor of
1.6. Note that the presence of the intercept m in eqn (4) is just
an artifact of the model, since the prediction should be zero
when no atoms are present. Inclusion or omission of m,
however, changes neither the goodness of the regression, nor
the numerical value of the atomic contributions to a mean-
ingful degree (the mean absolute error of the linear model goes
from 3.078 a.u. to 3.079 a.u.; similarly to what had also been
observed in the original paper36). Therefore, we decided to
include the intercept in our further analysis, to be consistent
with Bosque’s approach.

A shortcoming of atomic additive methods is that the same
polarizability is predicted for all structural isomers, since only
the total number of each atom-types is used in the prediction.
This is manifested in Fig. 1 as having a systematic error within
each possible apred value, and further demonstrated in the inset
on the case of molecules with the atomic composition C6H8O –
the reference polarizabilities for this chemical formula span a
range of 30 a.u., but the predicted value is 73.4 a.u. for all
molecules, irrespective of the chemical arrangement of the
atoms. From Fig. 1, it can also be inferred that such a simple
additive model will only become worse for molecules of increas-
ing size. Indeed, a trend appears where larger molecules exhibit
stronger deviations towards higher polarizabilities – a trend
that an additive model is unable to describe. This can be
especially the case for polymeric molecules which form long
chains, whose polarizability is highly anisotropic and behaves
increasingly non-additively with size.

To differentiate between structural isomers, a descriptor
that accounts for different geometric properties (for example,
radius of gyration) might be constructed, since polarizability is
an extensive property.55,58 This extensivity is only partially
captured by atomic additive methods, insofar as increasing
the number of atoms in a molecule is inherently increasing the
size as well. More accurate models should also differentiate
between similar atoms based on their surrounding chemical
environments, as it is done for example in ref. 44, where the
environment is taken into account by Hirshfeld partitioning as
well as in the self-consistent screening approach used in the
Many-Body Dispersion (MBD) method.46,47 Therefore, while the
shown first-order linear model is limited by its accuracy, it can
serve as a baseline for more accurate methods involving cou-
pling between atoms in a molecule.

To summarize, a first-order approximation to polarizability
can be constructed just by using an atomic additive model
without explicit knowledge of the molecular spatial arrange-
ment or the local chemical environments. While the predictive
power of such a model is rather restricted (i.e. the chemical
environment of each atom is not described), its rough correla-
tion with reference electronic-structure calculations (see Fig. 1)
gives a clear evidence that a significant fraction of the polariz-
ability is determined by just the atomic composition.

3.2 Case studies for the relation between the HOMO–LUMO
gap and polarizability

Having shown that polarizability depends mainly on the atomic
composition of molecules, we now turn into exploring the
correlations between polarizability and HOMO–LUMO gap. In
doing so, we here discuss a set of case studies of select

Table 1 Revised linear regression parameters for the atomic additive
polarizability model of Bosque et al. Note that the values in the original
paper are presented in Å3, whereas the values here are in Bohr3. The
relatively low influence of the intercept can be seen by comparing the last
two rows; the rest of our manuscript uses the parameters presented under
‘‘’This work’’

Intercept C Cl H N O S

Bosque 2.14 10.20 14.60 1.17 6.95 3.85 20.20
This work 1.71 10.10 12.70 0.87 7.88 4.00 19.10
No intercept 0.00 10.37 13.00 0.88 8.11 4.24 19.37

Fig. 1 Performance of the atomic additive method. The linear regression
parameters are fit utilizing our dataset of 13 k molecules computed at the
DFT-PBE0 level of theory (subset of the QM7-X dataset,41 see Fig. S3 of
ESI†). The inset shows the inherent shortcoming of the model, predicting
the same polarizability for all molecules having the atomic composition
C6H8O.
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molecules, with all calculations being done using the PBE0
functional, as described in Section 6.

Experimental studies often focus on examining molecules
with similar electronic structures, leading to hidden correla-
tions between optical gap and polarizability. In our path
towards the general understanding of the relationship between
these QM properties, we now examine two different cases: (i)
molecules having the same atom-type composition but slightly
different chemical compositions and (ii) molecules with the
chemical properties fixed while increasing the system size
(e.g. oligomers).

Constitution isomers. In general, the functional groups in a
molecule govern the nature and order of the molecular orbitals,
determining the HOMO–LUMO gap and the orbitals involved in
the electronic transitions. To explore the relationship between
HOMO–LUMO gap and polarizability as a function of chemical
functionality, we present select examples of constitutional
isomers, i.e. molecules with the same atomic composition that
belong to different substance classes due to the presence of
different functional groups.

As a first example, two constitutional isomers with the
formula C5H8O, namely an a,b-(3-penten-2-one) and a b,g-
unsaturated enone (4-penten-2-one) is considered (see Fig. 2(a)). It
is noticeable that 3-penten-2-one has a smaller gap compared to
4-penten-2-one (by 1.12 eV) because delocalization results in a greater
mobility of p-electrons throughout the molecular structure. However,
both molecules present a similar polarizability coming from the
identical atomic composition as well as a similar total size.

A second set of constitutional isomers with the formula
C8H14O was constructed for molecules bearing a CQO (oxo-
group) and CQC (alkene-group) on an octane backbone. These
isomers are thus formed by the following substance classes:
one ketene, one conjugated aldehyde, four conjugated ketones,
five non-conjugated aldehydes and eight non-conjugated
ketones (see Fig. 2(b) as well as Fig. S5 of ESI†). While these
structures are chemically quite different, their orbital symme-
tries are largely similar, leading to a correlation between their
polarizability and HOMO–LUMO gap. Notice, however, that the
polarizabilities of the structures are all within 4% of each other,
whereas the variation of HOMO–LUMO gap is about five times
larger. As such, the statement that polarizability is mainly
determined by the atomic composition and HOMO–LUMO
gap by the chemical composition seems to hold, even though
some correlation between these two quantities is observed due
to the similarity of the structures.

Homologous series of molecules. As previously elaborated,
HOMO–LUMO gap and polarizability can seemingly correlate
for molecules that belong to a homologous series. This can be
explained by the fact that the electronic nature and order of the
frontier orbitals is often identical for structurally and electro-
nically similar molecules. Consequently, the decrease in the
HOMO–LUMO gap can correlate with the increase in polariz-
ability when considering molecules of a homologous series
with an increasing number of repeating units. To support this
assumption, we consider in the following a series of oligomers,
namely alkanes (CmH2m+2) and alkenes (CmH2m; see Fig. 3).

The example is taken from Afzal et al.,69 with polarizability and
HOMO–LUMO gap recalculated within our computational
setup (cf. Section 6).

Fig. 3 shows a decreasing behaviour of HOMO–LUMO gap
for oligoethylene and oligoacetylene as a function of the
number of monomers n, in agreement with previous works as
well as qualitative predictions from the Hückel model.63,70

Indeed, we have found that the absence of a qualitative change
to the electronic structure within the ethylene oligomers leads
to a relatively small HOMO–LUMO gap change going from n =
1 - 7 (E1.5 eV) compared to the acetylene oligomers, where
every monomer modifies the conjugation, producing a more
significant change of E5.0 eV. Unlike HOMO–LUMO gap, the
behavior of polarizability in the molecular chains can not be
simply explained. The observation that polarizability monoto-
nously increases with n is in line with both the principles of
atomic additive models and the correlation with molecular size.
However, the absolute magnitude of the polarizability values is
significantly different for the two sets of oligomers, and this
difference increments with increasing the number of mono-
mers. This quantitative difference can neither be explained by
atomic additive models nor correlations using molecular size,

Fig. 2 (a) Two constitution isomers, i.e. molecules with the same atomic
composition but different chemical properties, showing similar polarizabil-
ities but different HOMO–LUMO gaps. (b) HOMO–LUMO gap and polariz-
ability of all possible linear structures having eight carbon atoms, an oxo
group and a double bond between two of the carbons. The numbering of
carbon atoms is shown on octane-3-one, with n representing the number-
ing of the carbon atom at the start of the double bond (see Fig. S5 of ESI,†
for the explicit structures). The polarizability and HOMO–LUMO gap values
are results of PBE0 calculations as described in Section 6.1.
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but it correlates with the reductions in HOMO–LUMO gap.
Notably, not even AlphaML35 can predict this behavior: the
model predicts 181 a.u. for oligoethylene and 227 a.u. for
oligoacethylene in the n = 7 case, with the DFPT results being
177 a.u. and 360 a.u., respectively. The difference due to
conjugation is therefore underestimated by a factor of four
even when using ML methods, and this error is expected to
increase with increasing the chain length. Up to now, we are
not aware of any other simple polarizability estimation method
that can accurately predict the values in Fig. 3. These findings
provide clear evidence that further work is necessary to
enhance our understanding and improve and accuracy of
computational methods used for calculating polarizability,
even for relatively simple molecules such as hydrocarbon
oligomers.

3.3 Clustering of structures in the (DEHL,a)-space

To draw more general conclusions about the relationship between
the properties in question, we analyse the two-dimensional (2D)
property space defined by HOMO–LUMO gap and polarizability
for a selected subset of QM7-X molecules8 (see Section 6.2).
HOMO–LUMO gap values were taken from the dataset, while
polarizability values were recalculated using the computational
setup explained in Section 6.1. All previously presented examples
might suggest that there is a correlation between HOMO–LUMO
gap and polarizability. However, these examples considered
similar molecules with respect to their functionality or chemical
composition – factors that essentially determine both the HOMO–
LUMO gap and polarizability. From optical spectroscopy, it is
known that the optical gap is primarily determined by the
functional groups in a molecule. This is reflected in characteristic
optical gaps (vertical excitation energies of the lowest electronic
transitions) per functional groups, e.g. the pp* absorption of
an isolated alkene-group as chromophore is between 7.51 and
6.70 eV. Since we are assuming that HOMO–LUMO gap is a good
starting point in determining the optical gap of a molecule, it
would be expected to find that DEHL values are also clustered by
certain functional groups. In contrast, our analysis has shown that
polarizability (a) is primarily determined by the atomic composi-
tion of a molecule. The QM7-X dataset enables us to study the

(DEHL,a) relationship more broadly because it covers a consider-
able number and variety of chemical compounds.

Fig. 4(a) shows the (DEHL,a)-space for the QM7-X molecules –
indicating no direct relationship between the two quantities
across the chemical compound space spanned by this dataset
(R2 = 0.13). Furthermore, the role of the two main factors that
determine DEHL (functionality) and a (atomic composition) are
highlighted in Fig. 4. The panels (b) and (c) exemplarily display the
distributions of DEHL and a for aldehydes and primary alcohols,
i.e., molecules that bear one of the respective functional groups.
The subplots (d) and (e) show the respective distributions for

Fig. 3 HOMO–LUMO gap (blue dots) and polarizability (red dots) of the oligomers of (a) ethylene and (b) acetylene. The calculations of both properties
were carried out as described in Section 6.1.

Fig. 4 (a) Polarizability (a) vs. HOMO–LUMO gap (DEHL) for molecules of
the subset of QM7-X under study (see text). Histograms of the HOMO–
LUMO gaps (b) for all non-conjugated aldehydes (blue) and primary
alcohols (pink) and (d) for structures having the atomic composition
C4H8O (black) and C4H9N (blue). Histograms of polarizabilities (c) for all
non-conjugated aldehydes (blue) and primary alcohols (pink) and (e) for
structures having the atomic composition C4H8O (black) and C4H9N
(blue). The difference between the clustering in the two quantities is
reflected in the degree of separation between the histograms.
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molecules with equal atomic compositions, namely with the mole-
cular formulas C4H8O and C4H9N, respectively.

Functional groups & HOMO–LUMO gap. In Fig. 4(b and c),
we highlight the frequency plots of DEHL and a values for all
non-conjugated aldehydes (blue) and primary alcohols (pink) of
our select dataset. Fig. 4(c) clearly reflects the common notion
of chromophores, namely that HOMO–LUMO gap is mainly
determined by the type of chromophore (e.g. aldehyde or
primary alcohol group) and the character of the lowest energy
electronic transition (e.g. np*- or ns*-transition). Thus, DEHL

values for aldehydes only show a value of circa 6.5 eV while, for
primary alcohol group, they extend from 7.2 eV to 7.8 eV.

To fully explore the role of functional groups on the (DEHL,a)
relationship, the QM7-X molecules were categorized into twelve
major classes based on the functional groups they are bearing
(see Section 6.2). Fig. S4 (ESI†) shows that the distribution of all
detected functional groups in the dataset, confirming that DEHL

is clustered along the chemical properties of the molecules.
Unlike DEHL, molecules containing aldehydes (blue) and

primary alcohols (pink) exhibit polarizabilities that extend
throughout the entire range of the dataset (cf. Fig. 4(b)). This finding
is further reflected in the average Kolmogorov-Smirnov-metric
(measuring the statistical distance between two general distribu-
tions, see Section II of ESI†) of the individual molecular classes in
the (DEHL,a)-space, which is 0.81 and 0.40 for DEHL and a, respec-
tively. Our analysis then demonstrates that functional groups
primarily affect HOMO–LUMO gap rather than the polarizability,
resulting in well-defined molecular clusters on the DEHL-axis.

Atomic composition & polarizability. According to the
Kolmogorov-Smirnov analysis in Section II of the ESI,† the func-
tional groups only indirectly influence the magnitude of the
polarizability in a given molecule, whereas the atomic composi-
tion is a crucial factor for the determination of the polarizability.
This finding is also in line with the fact that a good correlation is
achieved between the first-order atomic additive model and the
reference DFT data shown in Fig. 1. The DEHL and a values for a
set of two constitution isomers, namely with the chemical formula
C4H8O (including aldehydes, dialkyl ethers, enol ethers, as well as
primary and secondary alcohols) and C4H9N (including carboni-
triles and primary/secondary aliphatic amines) is also presented
in Fig. 4(d), showing a narrow polarizability distribution. These
results are another clear evidence that a, to a reasonable approxi-
mation, is independent of the actual chemical arrangement of the
atoms in the molecule but it mainly depends on the total number
of atom-types.

In summary, we can conclude that the lack of overall
correlation observed in (DEHL,a)-space is a consequence of
two main facts: (i) the HOMO–LUMO gap is determined by
the nature of the chemical composition (cf. Fig. 4c and e) and
(ii) the polarizability is largely determined by the atomic
composition (cf. Fig. 4b and d).

4 Case study: design of photodetectors

The possibility of an inverse correlation between the HOMO–
LUMO gap and polarizability was thoroughly examined in

Section 2. This specific correlation has been observed exclu-
sively when analyzing the electronic properties of homologous
series and isomers, as described in Section 3.2. However, when
investigating a chemically diverse set of molecules, such as
those found in QM7-X, we discovered that these two properties
are essentially uncorrelated. This lack of correlation offers a
flexibility in the (DEHL,a)-space to identify diverse molecules
with a targeted pair of properties, e.g. by fixing DEHL, one will
have a wide range of a values where we can select a molecule
with desired chemical features. Now, we present how this lack
of correlation can be exploited for molecular design purposes.
The property data used for this analysis is from the donor–
acceptor (DA) dataset,71 which was designed to enumerate
promising organic photodetector candidate molecules. The DA
dataset contains only molecular structures and HOMO–LUMO
gap values, while the estimation of polarizability was performed
using the revised Bosque model, as elucidated in Section 3.1.

A common challenge in materials science is the effective
design of photodetectors. These optoelectronic devices capture
light and convert it to electric signal, therefore playing an
important role in sensing, monitoring and optical communica-
tion. The wide range of physicochemical properties spanned by
organic molecules enables various design strategies, which ulti-
mately led to the emerging field of organic photodetectors.72,73

HOMO–LUMO gap is one of the key quantities that can be used to
approximate the coupling strength of molecules with light,
thereby any design strategy motivated by optics will be initially
based on this property.71,74 Since the fundamental function of
photodetectors is to convert light into electrical current, control-
ling the electrochemical behavior is also crucial. Specifically, the
electrochemical work function plays a critical role in the descrip-
tion of organic photodetectors,75,76 as opposed to organic semi-
conductors, where the focus is usually on the charge carrier
mobility.77 The work function f of an electrode is known to
change with the polarizability of the absorbed molecules as well
as the surface coverage, as described by the Topping equation78

(written for a square lattice)

eDf ¼ � emy
e0d2

1þ 9a0
y
d2

� �3=2
 !�1

: (5)

This expression highlights that the work function f also depends
on the the dipole moment m0 and polarizability a of the molecules,
besides the surface coverage y and the lattice constant of the
absorbate d. Notice that an effective polarizability a0 is used to
represent the properties of the absorbed molecules in eqn (5),
which is usually an order of magnitude larger than free molecular
polarizability.79,80 Despite being acknowledged to fluctuate with
the coverage rate, this equation can serve as a useful initial
reference to screen potential molecules for photosensitizers
according to the intended work function.75,76 Indeed, this rela-
tionship between both properties makes it important to regulate
the polarizability of molecules for achieving a desired electro-
chemical behavior. Through this connection, it can be seen that
molecules with higher polarizability tend to facilitate electron
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injection while those with lower polarizability tend to facilitate
hole injection.76

In the preceding sections, we have postulated that polariz-
ability and HOMO–LUMO gap are uncorrelated if a large enough
subset of the CCS is considered. This law can now be translated
to the domain of organic photodetectors: since HOMO–LUMO
gap and polarizability are generally independent, it should be
possible to design a photodetector with a given detection peak
having an arbitrary work function. Alternatively, if matching of
electrochemical properties of different systems is the goal, it
should be possible to design organic photodetectors with each
having arbitrary optical detection windows, yet having the same
effect on the work function of electrodes. To demonstrate this
statement, we use a dataset generated by Xu et al.,71 who
employed a self-improving Bayesian search to predict possible
photodetector molecules in a large subset of CCS. The selection
criterion for possible photodetectors was based on both HOMO–
LUMO gap and singlet–triplet energy gap, which were evaluated
from ground state DFT and TD-DFT calculations, respectively.
From all predicted molecules having a donor and an acceptor
site (DA structures), we have only selected those cases which
have the same atom types as QM7-X molecules (see also in
Table 1), leading to a total of 5311 structures. Using the atomic
additive model described in Section 3.1, we have estimated the
polarizabilities of the selected structures; the plot of the polariz-
ability versus HOMO–LUMO gap is shown in the top panel of
Fig. 5. Here, one can see that most structures are found in a
relatively extended region having DEHL between 3 and 5 eV and a
between 200 and 400 a.u., with the possibility to find outliers in
all directions around this cluster. In particular, if a high shift in
the work function is desired, there appear to be several good
candidates with varying optical absorption ranges (see bottom of
the graph).

Moreover, our calculations show that the polarizability of
these structures can vary by a factor of up to six for specific
values of the HOMO–LUMO gap. To demonstrate this flexibility
in a, Fig. 5 also shows the four molecules corresponding to the
four quartiles having a HOMO–LUMO gap of 4 � 0.1 eV,
selected to correspond to the maximum density of data. For
this specific HOMO–LUMO gap, polarizability changes between
149.9 a.u. and 451.1 a.u. Taking the tenfold enhancement
between the polarizability of the free molecule and the
absorbed a0 into account and using approximate values of m =
4 D and d = 1.5 nm with a full surface coverage, this would
mean that changes in work function could range from 0.9 eV to
1.5 eV. These variations are larger than usually achievable by
modifications of a semiconductor structure or controlling the
surface coverage.80,81 Therefore, our analysis shows that work
function can be, for practical purposes, freely tailored, even
with a very specific design requirement on HOMO–LUMO gap.

This flexibility is also relevant in the task of designing
wavelength-selective detectors, which would imply hard con-
straint on HOMO–LUMO gap. If DEHL and a could not be
controlled independently, then optical design restrictions
would directly influence the electrochemical behavior. The
decoupling of DEHL and a means that the wavelength of

detection and the work function can be controlled indepen-
dently. Fine-tuning the work functions to achieve matching on
the metal–organic interface at the electrode is crucial for
efficiency. Thus, with the existent ‘‘freedom of design’’ in
(DEHL,a)-space, we have demonstrated that an efficient detec-
tion can be theoretically achieved for any detection wavelength.
Alternatively, since the work function can be tailored to match
any detection wavelength, it is also possible to design detectors
for different detection ranges having equivalent electrochemi-
cal properties such as sensitivity, dark current, adhesion beha-
vior as well as any other properties determined by the work
function.

5 Conclusions

Predictive molecular design is an emerging tool in modern
molecular physics and chemistry which heavily relies on the
understanding of relationships between key structural and
electronic properties. Identifying and explaining correlations
between properties necessitates either deep physical under-
standing or exhaustive data analysis. Herein, we have presented
a comprehensive investigation of the intricate interplay
between the HOMO–LUMO gap and dipole polarizability –
two central properties in designing molecules with tailored
optical properties and intermolecular interactions.

Despite the fact that both quantities have their root in the
molecular electronic spectrum, understanding their correlation
is quite complex. On one hand, the properties are essentially
uncorrelated when accounting for a vast chemical space. On the

Fig. 5 HOMO–LUMO gap and polarizability of the structures in the donor–
acceptor (DA) dataset of Xu et al.71 The maximum of the HOMO–LUMO gap
density (4 eV) is marked with a blue line. The four structures corresponding to
the four quartiles in the predicted polarizability (within �0.1 eV) are also
shown, together with the predicted values (in a.u.).
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other hand, when examining a small subset of the chemical
compound space with similar functionalities, such as homo-
logous series of molecules like oligomeric hydrocarbons, we
show that the properties can be observed as being correlated.

To perform a data-driven analysis, we extended the QM7-X
database with functional group labels and accurate polarizabil-
ities to explain the physical cause of this phenomenon. Our
results demonstrate that the atomic composition has a major
role in determining polarizability, while the arrangement of
these atoms into chemical functional groups dictates the
HOMO–LUMO gap. The physical origin of molecular polariz-
ability was elaborated by studying conceptual models as well as
interpreted with the help of a first order linear atomic additive
model. Finally, the ‘‘freedom of design’’ arising from the
interaction of HOMO–LUMO gap and polarizability was used
on the example of organic photodetectors, demonstrating that
the electrochemical properties of such molecules can be freely
tailored even with specific requirement on the optical proper-
ties. The theoretical insights gained from this work can give the
basis for expanding the understanding of the relationship
between HOMO–LUMO gap and polarizability by incorporating
additional descriptors such as molecular size and electronic
mobility. Additionally, the unraveled ‘‘freedom of design’’
could be applied to the development of new compounds with
tailored optical and electronic properties for use in applications
such as organic electronics, sensing or energy harvesting.

6 Computational methods

Generally, molecular design is a multi-property optimization
problem and requires an exhaustive analysis of diverse struc-
ture–property and property–property relationships.1,6 In this
contribution, we have opted to focus on the two-dimensional
property space defined by DEHL and a (i.e. (DEHL,a)-space), as
motivated in the introduction (see Section 1). To calculate the
polarizability, two approaches were used: (i) the revised linear
additive atomic model of Bosque (introduced in Section 3.1)
was utilized for the prediction of polarizability of the organic
photodetector candidates in Section 4 and (ii) density func-
tional perturbation theory (for the case studies in Section 3.2 as
well as to analyze the QM7-X molecules in Section 3.3). The
HOMO–LUMO gap was always obtained from DFT calculations,
either by calculating it ourselves or utilizing the values provided
in the QM7-X dataset.

6.1 Target molecular property space

To perform a purely data-driven study, we utilize the QM7-X
dataset41 containing 42 physicochemical properties of E 4.2 M
(equilibrium and non-equilibrium) organic molecules with
up to seven heavy (non-hydrogen) atoms (including C, O, N, S
and Cl), spanning a practically important subset of CCS.
Accordingly, a subset of QM7-X considering only one equili-
brium constitutional isomers and stereoisomers per unique
molecular graph is selected for further analysis (E13 k molecules).
In QM7-X, the molecular structures were optimized using the

third-order self-consistent charge density-functional tight binding
method (DFTB3)82 supplemented with a treatment of many-body
dispersion/van der Waals interactions via the MBD approach.47,83

However, for our studies concerning polarizability, a was com-
puted directly, employing density functional perturbation theory
(DFPT)33 by means of the PBE084 functional as implemented in the
FHI-aims code85 (version 190205). To ensure the transferability of
the values, we store the molecular (mean) polarizability (denoted
as a and simply referred to as polarizability in other parts of the
manuscript)

a ¼ 1

3
a$xx þ a$yy þ a$zz
� �

; (6)

which is independent of the molecular orientation. A second
orientation-independent observable, the polarizability anisotropy
(Da) is also often reported, defined as

ðDaÞ2 ¼ 3 a$xy2 þ a$xz2 þ a$yz2
� �

þ 1

2
a$xx � a$yy
� �2

þ a$xx � a$zz
� �2

þ a$yy � a$zz
� �� �2

:

(7)

This quantity is mainly used in the description of macromole-
cules and supramolecular systems, and since our focus is
small organic molecules, we don’t analyze the anisotropy in
this manuscript.

It is known that polarizability is sensitive both to the choice
of functional as well as the basis set size.25,86,87 To converge our
computational setup, the respective mean polarizabilities
were compared with the highly accurate values of the QM7b
database.88,89 This comparison ensures an accurate assessment
of the prediction error due to the following two reasons:
(i) there is a large overlap between the structures in the
QM7b and QM7-X databases, and (ii) QM7b provides highly
accurate a values obtained at the linear-response coupled
cluster singles and doubles (LR-CCSD) level of theory.35,57

Then, we computed the polarizabilities of 300 randomly
selected structures of QM7b employing the same DFPT compu-
tational setup described above. We have found that the PBE0
hybrid functional using the default light basis set for all
elements amended with three additional functions from the
tight level predicts a with a mean average error of 1.9% and a
standard deviation of 1.1% (cf. Fig. S1 of the ESI†). The accuracy
of our chosen computational setup is higher than to common
DFT methods, and slightly better than the 2.84% found by Hait
and Head-Gordon87 for the PBE0 functional, which can be
attributed to the fact that our study is concerned only with
organic molecules. Polarizability anisrotropy is predicted with a
mean average error of 10.2% with a standard deviation of 5.1%,
which is in line with previously reported values.90,91 In general,
the mean polarizability is slightly underestimated, whereas the
anisotropy is almost always overestimated by PBE0.

6.2 Molecular classification: functional groups

A workflow has been implemented to identify chemical func-
tional groups from the molecular structure in two steps: firstly,

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 5
/2

2/
20

25
 4

:5
0:

10
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp02256k


22220 |  Phys. Chem. Chem. Phys., 2023, 25, 22211–22222 This journal is © the Owner Societies 2023

we save the Cartesian coordinates of molecules in a MDL
Molfiles format using the standard implementation in Open
Babel.92 Secondly, Checkmol93 is employed to detect the func-
tional groups (204 tags) based on the connectivity tree. In total,
61 unique functional groups were detected for the subset of the
E13 k QM7-X-molecules,41 demonstrating that the dataset
covers a considerable sector of CCS (cf. Fig. S2 of the ESI†).
Since Open Babel predicts valencies only based on the distance
between pairs of atoms, the functional group detection scheme
is prone to errors for molecules with rare functional groups.
Moreover, the functional group definitions of Checkmol have
significant overlaps, e.g. the molecules detected as alkylamines
are also detected as primary amines. To ensure that these
shortcomings do not influence our conclusions, we base our
analyses only on the subset of the 14 k molecules that have
certain functional groups. These groups are chosen to be
chemically important, non-overlapping, and each of these
categories contain at least 500 entries. The number of struc-
tures containing one of these functional groups is 9604. For the
analysis in Section 3.3, only molecules containing a single
functional group are considered, i.e. 1626 entries of our dataset
(see Fig. S3, ESI†). Based on these constraints, the following
eleven classes of molecules are identified: aldehydes, carboni-
triles, dialkyl ether, enol ether, hydrazones, ketones, oximes,
primary alcohols and amines, as well as secondary alcohols and
amines (see labels in Fig. 4(a)).
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