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Inexpensive machine learning (ML) potentials are increasingly being used to speed up structural
optimization and molecular dynamics simulations of materials by iteratively predicting and applying
interatomic forces. In these settings, it is crucial to detect when predictions are unreliable to avoid
wrong or misleading results. Here, we present a complete framework for training and recalibrating graph
neural network ensemble models to produce accurate predictions of energy and forces with calibrated
uncertainty estimates. The proposed method considers both epistemic and aleatoric uncertainty and the
total uncertainties are recalibrated post hoc using a nonlinear scaling function to achieve good
calibration on previously unseen data, without loss of predictive accuracy. The method is demonstrated
and evaluated on two challenging, publicly available datasets, ANI-1x (Smith et al. J. Chem. Phys., 2018,
148, 241733) and Transitionlx (Schreiner et al. Sci. Data, 2022, 9, 779.), both containing diverse
conformations far from equilibrium. A detailed analysis of the predictive performance and uncertainty
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To the best of our knowledge, the method presented in this paper is the first to consider a complete
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1 Introduction

Accurate and computationally inexpensive machine learning
(ML) potentials are increasingly being used to accelerate atomic
structure optimization and molecular dynamics simulations by
iteratively predicting and applying interatomic energies and
forces.” This development has the potential to revolutionise
disciplines of computational chemistry such as predicting
molecular properties and structures, predicting reaction
mechanisms and networks, as well as discovering new materi-
als, e.g., for energy conversion and storage of renewable energy.
In these settings, it is crucial to assess the confidence of
predictions and to detect when predictions are unreliable, to
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avoid wrong or misleading results by either ending the simula-
tion early or enabling recovery by falling back to higher fidelity
but also more computationally expensive methods, such as
density functional theory (DFT).> Uncertainty quantification
(UQ) methods can enable assessment of the confidence in
predictions and thus make applications of ML potentials more
robust and reliable. To ensure uncertainty estimates are useful
and informative, they need to be calibrated, i.e. there should be
an agreement between the predictive distribution and the
empirical distribution. Especially if the predicted uncertainty
is expected to indicate the range of plausible values. For
example in a screening application where candidate materials
are filtered for specific useful properties, instances with poor
point estimates but with high uncertainty could still potentially
be interesting and should not be discarded. Good calibration
thus ensures that ML-based uncertainty estimates are interpre-
table and actionable, and enable the selection of a suitable
confidence threshold for a given application on the original
unit scale of the quantity of interest.

When considering predictive uncertainty it is often useful to
distinguish between epistemic uncertainty and aleatoric
uncertainty.”® Epistemic uncertainty arises from uncertainty
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in determining the model parameters and can in principle be
reduced by observing more data. On the other hand, aleatoric
uncertainty can originate from random noise or inconsistency
in the data, or from inadequacy of the model to fit the data
precisely, and can therefore generally not be reduced by obser-
ving more data. A widely used method for estimating epistemic
uncertainty in ML potentials is to apply an ensemble of models
and use the agreement of the predictions of the ensemble
members as a measure of confidence in the prediction.® This
approach relies on the observation that randomly initialised
models will often provide increasingly different predictions
further away from the training data distribution. From a Bayesian
perspective, if the individual ensemble members are seen as
draws from the posterior distribution, the variance between
predictions of the ensemble members are a measure of the
posterior uncertainty.”° Other popular approaches for estimating
epistemic uncertainty with neural networks include Bayesian
neural networks'®"" that can directly learn a probability distribu-
tion over the neural network parameters, and Monte Carlo
dropout™ that estimates the predictive distribution through
multiple stochastic forward passes. However, UQ methods that
only account for epistemic uncertainty and thus ignore aleatoric
uncertainty are not inherently calibrated, which makes it difficult
to select an appropriate confidence threshold for a given applica-
tion. Methods for estimating the aleatoric uncertainty include the
mean-variance model,” that explicitly predicts the uncertainty
variance as an additional model output, and more recently
evidential learning'>"® that learns the parameters of a higher
order distribution over the likelihood parameters, and conformal
prediction,® a distribution-free approach that estimates a predic-
tion interval directly. The deep ensemble approach'” combines an
ensemble of mean-variance neural network models to estimate
both aleatoric and epistemic uncertainty in a unified model.

As discussed above, an important aspect of predictive uncer-
tainty is the concept of calibration, which implies an agreement
between the predicted uncertainty and the expected empirical
error. When evaluating calibration, it is important to consider the
asymmetric relationship between errors and uncertainties. By the
common assumption that errors are drawn from a distribution
(usually Gaussian), small uncertainties should be associated with
small errors and large errors should be associated with large
uncertainties, but large uncertainties can be associated with both
small and large errors. Therefore there is no direct correlation
between uncertainties and the magnitude of errors. However,
there should be a correlation between the uncertainties and the
expected magnitude of errors. Several works have proposed
methods for evaluating and validation calibration of regression
models. Kuleshov et al.'® proposed evaluating the coverage of the
errors by the predictive distribution averaged over the data using a
calibration curve. Later, Levi et al'® proposed checking the
correlation of uncertainties and expected errors computed in bins
of increasing uncertainty in a reliability diagram. Recently,
Pernot®® highlighted the limitations of the previous approaches
and proposed an additional analysis of z-scores (standard scores)
for variance-based UQ methods. UQ and calibration for molecular
property prediction and interatomic ML potentials has been
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explored in recent literature,">*'>* but often the training and
inference methods used do not inherently ensure good calibra-
tion. The method presented in this paper is, to the best of our
knowledge, the first to consider a complete framework for obtain-
ing calibrated epistemic and aleatoric uncertainty predictions on
both energy and forces.

In previous work, we have shown how to extend a graph
neural network model for predicting formation energy of
molecules to also provide calibrated uncertainty estimates that
can be decomposed into aleatoric and epistemic uncertainty.>’
The method works by combining an ensemble of models with
mean-variance outputs and applying post hoc recalibration with
isotonic regression on data not used for the training. In this
work, we further extend the approach to include calibrated
uncertainty on the force predictions. Specifically, we extend a
neural network potential with a probabilistic predictive distri-
bution on energy and forces, and consider a deep ensemble of
models'” to express the aleatoric and epistemic uncertainty
about the energy and force predictions. The uncalibrated pre-
dictive distributions are then recalibrated post hoc to fit the
error distribution on previously unseen data. An added benefit
of this approach is that ensemble models are generally known
to produce more accurate predictions than single models.®
Through computer experiments, we demonstrate that the
proposed method results in accurate and calibrated predictions
on two publicly available datasets, ANI-1x*° and Transitions1x>’
containing out-of-equilibrium and near-transition-state struc-
tures, respectively. The main contribution of the work is a
complete framework for training and evaluating neural network
potentials with accurate predictions and calibrated aleatoric
and epistemic uncertainty on both energies and forces.

The rest of the paper is structured as follows. The proposed
method including the extended graph neural network model
and the recalibration procedure is described in Section 2. The
datasets, experiments and results are presented in Section 3.
Finally, the main findings and perspectives are discussed in
Section 4 and we conclude in Section 5.

2 Methods

2.1 Graph neural network model

As the base model for our ensemble we use PaiNN,*® an
equivariant message passing neural network (MPNN) model
designed specifically for predicting properties of molecules and
materials. The model provides a mapping from sets of atomic
species and positions {(Z;,7;)} to potential energy E and intera-
tomic forces {F;}. The potential energy is modelled as a sum
over the atomic contributions E;:

E=)E, (1)

and the forces are computed as the derivative of the potential
energy with respect to the atomic positions, ensuring conserva-
tion of energy:

ﬁ‘i = —GE/G?, (2)
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Specifically, the model input is represented as a graph,
where there is an edge between a pair of atoms if the mutual
distance between the atoms is below a certain cutoff. The cutoff
distance is treated as a hyperparameter and is fixed at 5.0 A in
all of our experiments. The neural network architecture con-
sists of a number of interaction layers, where information, or
“messages”, are exchanged along the edges of the input graph
to update the hidden node states, followed by a readout
function represented by a fully connected neural network that
outputs the atom-wise quantities. The number of interaction
layers and the size of the node hidden states are hyperpara-
meters of the model.

2.2 Extended model with aleatoric uncertainty

We extend the base model with additional outputs representing the
aleatoric energy uncertainty 6> = >, 6,> and atom-wise aleatoric
force uncertainties {o;’}. The atom-wise quantities, 65> and
O'Fl,Z, are constrained to be positive by passing them through a
softplus activation function, log(1 + exp(-)), and adding a small
constant for numerical stability. Note that here we chose to
represent the atom-wise aleatoric force uncertainty by a single
scalar even though the force vectors are 3-dimensional. This
simplifying assumption means that we consider the noise scale
in the spatial dimensions to be isotropic, i.e., uniform in all
directions. Other options would be to represent the aleatoric
force uncertainty by a common scalar for all atoms or as atom-
wise vectors representing the uncertainty in each direction.
However we found the isotropic approach to be a reasonable
compromise and to work well in practice and did not study the
other solutions further.

2.3 Model training procedure

Each network in the ensemble is initialized with random
weight parameters 0 and trained individually on the same
training dataset using a loss function composed of a weighted
sum of the energy and force loss terms:

ff(@) = ),ED(ZE(H) + /lp.ffp(@), (3)

where the weight i is between 0 and 1 and Az = (1 — ig).

ML potentials are usually trained with mean squared error
(MSE) loss for both the energy and forces. Using a negative log
likelihood (NLL) loss function provides a natural way of train-
ing mean-variance models that also consider uncertainty."* The
MSE loss for the energy is straight forward. The MSE loss for
the forces is evaluated per atom and component-wise over the
spatial dimensions and is then averaged over the number of
atoms. The NLL loss for energy, assuming a normally distrib-
uted error, is given for a single instance by the following
expression where x = {(Z;,7,)} represents the model input and
the observed values of energy and forces are denoted by E°™
and F°°, respectively:

NLL(6) = —log p(E°*|x,0) ()
obs __ X 2
= %(% + log (;E2 (x) + log 21-[) . (5)
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The instance-wise energy losses are then averaged over the
number of instances.

Analogous to the MSE loss for forces, the NLL loss for forces
is evaluated per atom i and component-wise over the spatial
dimensions D (recall that the predicted atom-wise force uncer-
tainty UFI,Z is a single scalar applied over all spatial dimensions):

D
NLLy (0)=) - ~logp (FLF}x.0) ©
=1

(P —Fua)’
: logor2(x)+log2n |. (7
o2 +logar,~(x)+log2n (7)

The atom-wise force losses are then averaged over the total
number of atoms. Note that NLL with fixed variance is equiva-
lent to (scaled) MSE and the log 27 terms are constant and can
be omitted in training. Here, for models that are trained with a
combination of MSE and NLL loss on either energy or forces,
we scale the NLL loss by the expected uncertainty (determined
empirically) to avoid the NLL loss dominating.

Training directly with NLL loss can be unstable due to
interactions between the mean and variance in the loss func-
tion, so we apply a training procedure similar to previous
work,>® where the model is always trained with MSE loss for
an initial warmup period before linearly interpolating to the
NLL loss. Other more sophisticated methods for training with
NLL loss exist,?>*® but we found this simple approach to be
sufficient to achieve training stability in our experiments.

2.4 Ensemble model with epistemic uncertainty

To estimate the epistemic uncertainty, we follow the approach
of Lakshminarayanan et al.'” and make an ensemble approxi-
mation by combining the predictions of M individual models.
Using a Bayesian interpretation of deep ensemble models,”’
we can interpret the model weights 0™ of each ensemble
member m as samples from an approximate posterior distribu-
tion ¢(0) = p(0|2), where Z is the training data. For a regres-
sion model with input x and output y trained on a dataset ¥
we have:

(10)

The first approximation is to estimate the integral with M
samples from the distribution p(0|2) and the second approxi-
mation comes from approximating the true posterior p(0|2)
with the distribution g(#). The uncertainty arising from p(y|x,0)
is the aleatoric uncertainty, while the epistemic uncertainty is
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modeled as the uncertainty arising from the distribution of the
model parameters g(0).

When applying this interpretation to a ML potential energy
model, the underlying assumption of the model is that energy
and force observations are generated by first sampling 6 and
then sampling the normally distributed noise, i.e., for a single
molecular energy and atomic force we then have:

0 ~ ql0), (11)
EObs(x) ~ ./\/'(E(;(x)7 0'9‘52(){)) (12)
700~ 7 (G20 B2 ). (13)

We have two levels of stochastic variables, so to calculate the
variance we can use the law of total variance:

Var[Y] = E[Var[Y|X]] + Var[E[Y | X]]

aleatoric

(14)

epistemic

Using the law of total variance, we get the following expres-
sion for the observed energy variance:

Var[E°™] = E[Var[E®™|0]] + Var[E[E°™|0]] (15)

=1 [J()‘Ez(x)] + Vary [E()(’C)}

epistemic

(16)

aleatoric

Since the force observation is a vector, we compute the total
variance element-wise:

Var| Feg Pt | =E | Var ol Feir(o] |+ var [ [Foi10] [ Foilo)]
(17)

6E9 (x) _aEg (x))

_ 2 T a. o

aleatoric - "
epistemic

(18)

Treating the parameters of the ensemble member as sam-
ples from an approximate posterior g(f) and using the samples
to approximate the expectations, we get the following expres-
sions for the energy mean and variance:

() 1§M: (m)
E® — Em7
Mmzl

2 1 S 2 1 S (m) (%) 2
(TE(X) :MZGE(W) +MZ (E —F )
m=1 m=1

aleatoric

epistemic

Similarly, the mean and variance of the forces for a single
atom i are given by the following expressions:

M
() _ Fm)
FY = N F 21
; Mng:l P (21)
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M

ﬁi("") _ ﬁi(*) 2’ (22)

oo 1%6 2, 1xn 1
BT MR T M 44D

m=

aleatoric epistemic

where D denotes the spatial dimensions. With the assumption
of isotropic force variance, we average across the spatial dimen-
sion in (22) when estimating the epistemic force variance of
(18) using the sample variance. The mean energy and forces
represent the ensemble prediction and the energy and force
variances represent the ensemble total uncertainties, which can
be decomposed into aleatoric and epistemic components as
shown above.

When we want to evaluate the likelihood of an observation,
we need access to the predictive distribution and knowing the
mean and variance is not sufficient. Following Lakshminaraya-
nan et al,"”” we parameterize a normal distribution with the
mean and variance. With the mean and variance specified, the
normal distribution is the maximum entropy probability dis-
tribution, i.e., we make the least assumptions about the data by
using a normal distribution following the maximum entropy
principle.*'** However, to hold true, this would require all the
variance outputs of the ensemble members to be equal. If the
variances follow an inverse-gamma distribution, the predictive
distribution would be a student-¢ in the infinite ensemble limit,
which is the assumption used in deep evidential regression."*>°

2.5 Uncertainty calibration

Several methods exist for evaluating the calibration of regres-
sion models. NLL provides a standard metric for quantifying
the overall quality of probabilistic models by measuring the
probability of observing the data given the predicted distribu-
tion. However, NLL depends on both the predicted mean and
uncertainty (see eqn (5) and (7)) and it can be useful to evaluate
only the quality of the uncertainty estimates. For example, it is
often informative to visually compare the predicted uncertain-
ties with the empirical errors by plotting them. Since the total
uncertainty of the ensemble model (eqn (20) and (22)) can be
interpreted as a variance of a normal distribution, we expect
most of the errors to lie within 2-3 standard deviations of the
predictive distribution. The variance-based approach also
allows us to evaluate standard scores, also known as z-scores,
defined as the empirical error divided by the standard deviation
of the predictive distribution:*

7 ()

)

(23)

A z-score variance (ZV) close to 1 indicates that the predicted
uncertainty on average corresponds to the variance of the error
and thereby is an indication of good average calibration. The
same approach can be applied to subsets of the data leading to
a local z-score variance (LZV) analysis, for example by evaluat-
ing ZV in equal size bins of increasing uncertainty to test the
consistency of the uncertainty estimates.’® For plotting, we
found it useful to report the square root of the z-variance
(RZvV). Additionally, we can assess how well the uncertainty
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estimates correspond to the expected error locally by sorting the
predictions in equal size bins by increasing uncertainty and
plotting the root mean variance (RMV) of the uncertainty vs. the
empirical root mean squared error (RMSE), also known as an
error-calibration plot or reliability diagram. The error-
calibration can be summarized by the expected normalized
calibration error (ENCE),"® which measures the mean differ-
ence between RMV and RMSE normalised by RMV:

K
ENCE — % 3 [RMV — RMSE,| 4)
k=1

RMV,

where k = 1,...K iterates the bins. LZV analysis and the
reliability diagram provide two useful ways to evaluate the local
consistency of the uncertainty estimates. We use 15 equal sized
bins in all of our analyses.

Good average or local calibration is not sufficient to ensure
that individual uncertainty estimates are informative, i.e., if the
uncertainty estimates are homoscedastic, they are not very
useful. Thus it is generally desirable for uncertainty estimates
to be as small as possible while also having some variation,
which is also known as sharpness. To measure sharpness, we
report the root mean variance (RMV) of the uncertainty, which
should be small and correspond to the RMSE, and the coeffi-
cient of variation (CV), which quantifies the ratio of the
standard deviation of the uncertainties with the mean uncer-
tainty and thus the overall dispersion, or heteroscedasticity, of
the predicted uncertainty:

CV = \/]\77l Zi,vzlﬁ((f(xn) -5

; (25)

where n = 1,.. ,N in this case iterates the test dataset, o(x,) is
the predicted standard deviation (uncertainty) of instance n
and ¢ = N~! Z;V:l o(x,) is the mean predicted standard devia-
tion. If uncertainties are heteroscedastic while having good
local calibration, it is also an indication of good ranking ability
which is important in certain applications such as active
learning.®

2.6 Uncertainty recalibration

The model training procedure described above does not by
itself ensure good uncertainty calibration when the model is
applied to unseen data. The individual models may overfit to
the training data and the total ensemble uncertainties (eqn (20)
and (22)) are strictly greater than any of the individual model
uncertainties, and not fitted on any data. Therefore, following
the approach of our previous work, Busk et al.,>® we recalibrate
the ensemble uncertainty estimates post hoc by using a recali-
bration function that maps the uncalibrated predictive distri-
bution to a calibrated distribution. The recalibration function
is a non-linear uncertainty scaling function based on isotonic
regression fitted to predict empirical squared errors on the
validation set. Specifically, the recalibration function maps the
uncalibrated uncertainty estimates ¢> to scaled uncertainty
estimates s’¢”, where s” is the predicted scaling factor. In our
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experiments, both energy uncertainties o> and force uncer-
tainties o> are recalibrated in this way.

Because the recalibration function is a scaling function, the
recalibration procedure does not change the mean of the
predictive distribution and thus does not change the predic-
tion. Additionally, the isotonic regression results in a mono-
tonic increasing scaling function and thus preserves the
ordering of the uncertainty estimates and thereby the ranking.
We use the implementation of isotonic regression available in
the scikit-learn Python package.*?

3 Experiments and results
3.1 Datasets

The proposed method was evaluated on two publicly available
datasets designed specifically for the development and evalua-
tion of ML potentials, ANI-1x*® and Transitions1x.>” The data-
sets include out-of-equilibrium and near-transition-state
structures, respectively, and represent varied energy and force
distributions. The ANI-1x dataset consists of DFT calculations
for approximately 5 million diverse molecular conformations
with an average of 8 heavy atoms (C, N, O) and an average of 15
total atoms (including H) along with multiple properties
including total energy and interatomic forces computed at
the ®B97x/6-31G(d) level of theory. The dataset was generated
by perturbing equilibrium configurations using an active learn-
ing procedure to ensure conformational diversity with the aim
of developing an accurate and transferable ML potential. The
Transition1x dataset contains DFT calculations of energy and
forces, for 9.6 million molecular conformations with up to 7
heavy atoms (C, N, O) and an average of 14 total atoms
(including H), likewise computed at the ®B97x/6-31G(d) level
of theory. Here, the structures were sampled on and around full
reaction pathways, thus including conformations far from
equilibrium and near transition states. The dataset was gener-
ated by running a nudged elastic band (NEB)** algorithm with
DFT on a set of approximately 10 thousand organic reactions
with up to 6 bond changes while saving intermediate calcula-
tions with the aim of improving ML potentials around transi-
tion states. Transition1x is more varied in terms of interatomic
distances between pairs of heavy atoms than ANI-1x, but less
varied in terms of the distribution of forces, since forces are
generally minimised along reaction pathways.””**

3.2 Model hyperparameters

The same general model configuration was used in all experi-
ments. Each individual graph neural network model was con-
figured with 3 interaction layers, a hidden node state size of 256
and a 2-layer atom-wise readout network with 3 outputs repre-
senting E;, r;El_Z and apiz. The input molecular graphs were
generated with an edge cutoff radius of 5.0 A. Models were
trained using the Adam optimizer with an initial learning rate
of 107%, an exponential decay learning rate scheduler, a batch
size of 64 molecular graphs, force loss weight 4z = 0.5 and an
early stopping criterion on the validation loss to prevent
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overfitting. In each experiment, models were trained individu-
ally with the same hyperparameters on the same training data,
but with different random parameter initialisation and random
shuffling of the training data to induce model diversity in the
ensembles. For each ensemble model, after the training was
completed, a recalibration function was fitted using predictions
on the respective validation dataset following the procedure
described in Section 2.6 and applied to the predictions on the
test data. For ensemble models trained with MSE loss, only the
epistemic uncertainty is considered.

3.3 ANI-1x results

Ensembles of graph neural network models were trained on
ANI-1x using the data splits from Schreiner et al.,”” where the
validation and test datasets consist of approximately 5% of the
data each and the training set consists of the remaining 90% of
the data. The splits are stratified by chemical formula to ensure
different splits do not contain configurations made up of
exactly the same atoms and selected such that all splits include
all species of heavy atoms. Individual models were trained for
up to 10 million gradient steps (approximately 144 epochs) with
an initial warmup period of 2 million steps where the model
was trained only with MSE loss followed by an interpolation
period of 1 million steps, where the loss was interpolated
linearly to NLL loss (only NLL models). The ensemble predic-
tions were then recalibrated post hoc using a recalibration
function fitted using the validation dataset. The trade-off
between validation performance and ensemble size M using
models trained with NLL loss on both energy and forces is
illustrated in Fig. 1. Using a larger ensemble size results in
lower error, as expected, but comes at the cost of additional
computations. We observe that a reasonably low error is
obtained at M = 5 and only small improvements are gained
beyond that, which is similar to what we found in previous
work.?®

0.017
0.016 - '\
0.015 -

0.014 A

—o— MAE
NLL

MAE
|
N
©
NLL

0.013 A1

0.012 A —o—9—o [ 29
0.011 - 3.0
0010 — +"+—"+—+—+—+—+—++1-31

1 2 3 4 5 6 7 8 9 10
Ensemble size

Fig. 1 Trade-off between performance and ensemble size on the ANI-1x
validation dataset using ensembles of models trained with NLL loss on
both energy and forces.
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Test results for M = 5 ensembles trained with different
combinations of MSE and NLL loss on energy and forces are
presented in the first four rows of Table 1. The ensemble
trained with MSE loss on both energy and forces is a standard
ensemble model with post hoc recalibration. The other three
ensembles show the effect of training with NLL loss on either
energy or forces or both. All four ensembles achieved a low
error on energy and forces in terms of MAE and RMSE com-
pared to the results reported by Schreiner et al.>” using a PaiNN
model similar to the base model of our ensembles (MAE = 0.023
on energy and MAE = 0.039 on forces). Importantly, training
with NLL loss on either energy or forces or both did not result
in worse performance in terms of prediction error.

All four ensemble models achieved good average calibration
on ANI-1x in terms of NLL and RZV after recalibration, but
ensembles trained with NLL loss performed slightly better
which is observed both on energy and forces and the ensemble
trained with NLL on both energy and forces performs best
overall. Additionally, all ensembles scored a high CV indicating
uncertainty estimates are heteroscedastic and thus informative.
Calibration plots for the ensemble trained on ANI-1x with NLL
loss on energy and forces are presented in Fig. 2. The uncer-
tainty vs. error plots show that in general large errors are
associated with large uncertainties and most errors are within
2-3 standard deviations of uncertainty as desired. For the
energy, the model appears to be biased for some examples with
large errors, but these are relatively few and are correctly
identified as problematic by high uncertainty. For the forces,
the distribution of errors looks more symmetrical around zero.
This is also clearly shown by the local z-score analysis plots
where for the energy, the variance of the z-scores is slightly off
for very low and very high uncertainties, although still centered
around 1, whereas for the forces the variance of the z-scores is
close to 1 for all uncertainties which indicates high consistency.
Finally, the reliability diagrams show the relation between
predicted uncertainty and expected error for the energy and
forces, respectively. Both plots show a clear correlation between
the uncertainty and the expected error as the curves lie close to
the identity line. Again, the model very slightly underestimates
the expected error of the energy at low and high uncertainties,
and the curve for the forces is near perfect. The reliability
diagrams are summarised by ENCE scores in Table 1. Addi-
tional calibration results are included in the ESI.f

3.4 Transitionlx results

Analogous to the first experiment, ensembles of graph neural
network models were trained on Transition1x using data splits
from Schreiner et al.*” based on the same splitting criteria as
ANI-1x described above. Models were trained for up to 3 million
gradient steps (approximately 21 epochs) with an initial
warmup period of 2 million steps followed by an interpolation
period of 2 million steps (training was stopped before finishing
the full interpolation period). When training for longer on this
dataset, we observed severe overfitting. We believe this is
because the data was generated from a relatively small set of
chemical reactions making the models prone to overfit the
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Table 1 Test results after recalibration of ensemble models (M = 5) trained on the ANI-1x (Alx) and Transitionlx (T1x) datasets with different
combinations of mean squared error (MSE) and negative log likelihood (NLL) loss functions on the energies and forces. Energy errors are averaged over
molecules, while force errors are computed component-wise and averaged over the spatial dimensions and atoms

Loss Energy (eV) Forces (eV A™)
Data Yg Lr MAE| RMSE| NLL| RZV ENCE| CV RMV MAE| RMSE| NLL| RZV ENCE| CV RMV
Alx MSE MSE 0.0123 0.0278 —2.81 097 0.0773 1.27 0.0283 0.0180 0.0362 —2.56 0.98 0.0243 1.24 0.0386
NLL MSE 0.0118 0.0256 —3.04 1.00 0.0411 1.00 0.0209 0.0179 0.0364 —2.56 0.98 0.0229 1.22  0.0381
MSE NLL 0.0117 0.0305 —-2.91 097 0.0928 1.53 0.0305 0.0175 0.0399 —2.77 1.00 0.0099 1.51 0.0410
NLL NLL 0.0105 0.0296 —3.26 1.02 0.0600 1.51 0.0237 0.0171 0.0402 —2.79 1.00 0.0093 1.56 0.0409
Tix MSE MSE 0.0344 0.0612 -1.79 0.89 0.1144 0.82 0.0682 0.0370 0.0743 —1.94 0.99 0.0292 1.21  0.0804
NLL MSE 0.0318 0.0578 —1.94 0.92 0.1383 0.86 0.0655 0.0366 0.0744 —1.97 0.98 0.0293 1.27 0.0831
MSE NLL 0.0332 0.0600 —1.84 0.95 0.1108 0.83 0.0628 0.0369 0.0745 —1.99 0.94 0.0615 1.18 0.0817
NLL NLL 0.0303 0.0574 —2.09 0.98 0.0906 0.96 0.0562 0.0359 0.0751 —2.05 0.94 0.0645 1.15 0.0773
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Fig. 2 Calibration results on the ANI-1x dataset of energy (top row) and forces (bottom row) for an ensemble of M = 5 models trained with NLL loss on
both energy and forces. To illustrate the effect of recalibration, the transparent curves show results before applying recalibration (energy ENCE = 0.2650,
forces ENCE = 0.2964) whereas the solid curves show results after recalibration (energy ENCE = 0.0600, forces ENCE = 0.0093). The LZV analyses and
reliability diagrams are generated using 15 equal sized bins. All curves in each plot use the same bins based on sorting by total uncertainty.

many similar configurations associated with the same
reactions in the training data. The ensemble predictions were
recalibrated post hoc using a recalibration function fitted using
the validation dataset. Varying the ensemble size yielded
similar results to the first experiment (Fig. 1) and M = 5 was
selected as a good compromise between performance and
computational cost.

Test results for M = 5 ensembles are presented in the last
four rows of Table 1. As in the first experiment, all ensembles

25834 | Phys. Chem. Chem. Phys., 2023, 25, 25828-25837

achieved a low error on energy and forces in terms of MAE and
RMSE compared to the results reported in Schreiner et al.>”
(MAE = 0.048 on energy and MAE = 0.058 on forces) and
training with NLL loss did not decrease performance in terms
of prediction error in any case. All four ensembles achieved
acceptable average calibration in terms of NLL and RZV on the
Transition1x test data. Surprisingly, ensembles trained with
MSE loss were as well or better calibrated than ensembles
trained with NLL loss on this dataset. All ensembles score
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Fig. 3 Calibration results on the Transitionlx dataset of energy (top row) and forces (bottom row) for an ensemble of M = 5 models trained with NLL loss
on both energy and forces. To illustrate the effect of recalibration, the transparent curves show results before applying recalibration (energy ENCE =
0.3339, forces ENCE = 0.4502) whereas the solid curves show results after recalibration (energy ENCE = 0.0906, forces ENCE = 0.0645). The LZV
analyses and reliability diagrams are generated using 15 equal sized bins. All curves in each plot use the same bins based on sorting by total uncertainty.

similar high CV indicating uncertainty estimates are hetero-
scedastic and thus informative. Calibration plots for an ensem-
ble trained on Transition1x with NLL loss on energy and forces
are presented in Fig. 3. The uncertainty vs. error plots show that
in general large errors are associated with large uncertainties as
desired. For both energy and forces some errors extend beyond
2-3 standard deviations of uncertainty indicating the error
distributions have wider tails and may not be Gaussian in this
case. Similar to the ANI-1x experiment, it looks like the model is
biased for some instances with large energy errors, but these
cases are correctly identified as problematic by high uncer-
tainty. For the forces, the error distribution appears more
symmetrical around zero but with wide tails. The local z-score
analysis plot for the energy indicate some inconsistencies in the
energy uncertainties. Plotting the root variance of the z-scores
as a function of the observed molecular energies (Fig. 4) shows
a tendency of the model to underestimate the uncertainty for
low energies and overestimate the uncertainty for high energies
on average. This is a problem with the model that can not be
corrected by scaling the uncertainties in the recalibration step.
Taking a closer look at the energy distribution reveals signifi-
cant differences between the training, validation and test sets
that is likely a consequence of splitting the data on chemical
formula which could be the reason for this problem. The
variance of the local z-scores for the forces are more consistent,
but values below one indicate that the model generally

This journal is © the Owner Societies 2023

overestimates the uncertainty on the forces. The reliability
diagram for the energy also shows signs of some inconsisten-
cies, as the curve does not form a straight line along the
diagonal, but overall the uncertainties are correlated with the
expected error. The corresponding reliability diagram for the
forces shows a more consistent result, only with a tiny over-
estimation of the force uncertainty. The reliability diagrams are
summarised by ENCE scores in Table 1. Additional calibration
results are included in the ESL{

4 Discussion

The proposed method achieved good predictive performance as
well as calibrated and consistent uncertainty estimates in
experiments on two challenging, publicly available molecular
datasets. A major advantage of the approach is that it considers
both epistemic and aleatoric uncertainty through an ensemble
approximation of mean-variance models. We believe that con-
sidering both aleatoric and epistemic uncertainty is critical to
ensure good calibration in and out of the training data dis-
tribution. Often the training procedures of uncertainty aware
models do not inherently ensure good calibration on unseen
data. For example, ensemble members trained on the same
data will often fit the same mean prediction without accounting
for errors caused by random noise or inconsistency in the data
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on the Transitionlx test dataset (top). Energy distribution in the Transi-
tionlx data split (bottom).

or model inadequacy and mean-variance methods will estimate
the expected error on the training data but do not guarantee
good extrapolation of the uncertainty estimates to unseen data.
Therefore, the post hoc recalibration procedure is key to achieve
good calibration on unseen data in our experiments, but is not
commonly applied by other UQ methods in the literature.

The computational overhead of training and evaluating
ensemble models is sometimes pointed out as a major dis-
advantage of using ensembles. However, it is important to note
that most of this computation can be performed in parallel and
thus only leads to a small overhead of computing the ensemble
approximation and recalibration in real time. Some works have
proposed methods for speeding up the training of ensemb]es,
such as snapshot ensembles,*>*® which could also be applied
in this case. Another widely accepted advantage of ensembles is
that they often improve prediction accuracy (see Fig. 1 as an
example), which can be considered a positive side effect of the
proposed method. Here, we have used ensembles of size 5, but
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larger ensembles can be expected to further improve perfor-
mance (up to a limit) at the cost of more computation. The
approach could also potentially benefit from other recent
extensions to ensembles such as using randomized priors®”
to improve the quality of especially the epistemic uncertainty
estimates.

Evaluation of uncertainty calibration for regression models
is an active area of research.'®?' Standard procedures for
assessing the quality of uncertainty estimates are necessary
within the field to establish confidence in individual UQ
methods and ensure fair comparison. We recommend recent
work by Pernot*® which provides a good overview of calibration
assessment methods and a detailed approach for evaluating
uncertainty. Our experiments show that the uncertainty esti-
mates obtained with the proposed method are largely consis-
tent with the expected error for varying size of the uncertainty
(Fig. 2 and 3). However, we observed indications that uncer-
tainties are not equally well calibrated along different molecu-
lar energies (Fig. 4). The current recalibration method only
considers the magnitude of the predicted uncertainty. It would
be an interesting direction for future work to design a recali-
bration function that can account for additional input features
such as the (predicted) energy, while remaining a monotonic
increasing scaling function, with the aim of achieving equally
good calibration throughout the input space. Applying the
calibration evaluation framework proposed by Pernot*® could
help provide additional insights into the consistency and
adaptivity of predictive uncertainty.

5 Conclusion

In this work, we have presented a complete framework for
training neural network potentials with calibrated uncertainty
estimates on both energy and forces. The proposed method was
demonstrated and evaluated on two challenging, publicly avail-
able molecular datasets containing diverse conformations far
from equilibrium. In all cases, the proposed method achieved
low prediction error and good uncertainty calibration. On the
ANI-1x dataset training with NLL loss improved the calibration
over training with standard MSE loss. On the Transition1x
dataset, the same improvement was not observed and good
calibration was achieved by training with standard MSE loss
and applying post hoc nonlinear recalibration. This could be
because the validation and test data are more out of distribu-
tion in this case. The proposed method does not depend on the
particular architecture of the neural network model, and can
thus easily be adapted to new models in the future. We hope
that this work will contribute to better calibrated ML potentials
and enable more robust and reliable applications.

Author contributions

JB and PBJ: conceptualization, methodology, software, valida-
tion. JB: writing - original draft, visualization. MNS, OW, TV
and PBJ: writing - review & editing.

This journal is © the Owner Societies 2023


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp02143b

Open Access Article. Published on 18 September 2023. Downloaded on 1/18/2026 11:30:40 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors acknowledge support from the European Unions
Horizon 2020 research and innovation program under grant
agreement no. 957189 (BIG-MAP) and 957213 (BATTERY2030-
PLUS) and from the Novo Nordisk Foundation under grant no
NNF220C0076658 (Bayesian neural networks for molecular
discovery).

References

1
2

10

11

12

13

14

15

16

P. O. Dral, J. Phys. Chem. Lett., 2020, 11, 2336-2347.

0. A. von Lilienfeld and K. Burke, Nat. Commun., 2020,
11, 4895.

A. A. Peterson, R. Christensen and A. Khorshidi, Phys. Chem.
Chem. Phys., 2017, 19, 10978-10985.

E. Hillermeier and W. Waegeman, Mach. Learn., 2021, 110,
457-506.

A. Kendall and Y. Gal, Proceedings of the 31st International
Conference on Neural Information Processing Systems, Red
Hook, NY, USA, 2017, pp. 5580-5590.

C. Schran, K. Brezina and O. Marsalek, J. Chem. Phys., 2020,
153, 104105.

A. G. Wilson and P. Izmailov, Proceedings of the 34th
International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, 2020, pp. 4697-4708.

L. Hoffmann and C. Elster, Deep Ensembles from a Baye-
sian Perspective, arXiv, 2021, preprint, arXiv:2105.13283,
DOI: 10.48550/arXiv.2105.13283.

F. K. Gustafsson, M. Danelljan and T. B. Schon, 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), Los Alamitos, CA, USA, 2020, pp. 1289-1298.
R. Neal, Advances in Neural Information Processing Systems,
1992.

C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra,
Proceedings of the 32nd International Conference on Inter-
national Conference on Machine Learning - Volume 37,
2015, pp. 1613-1622.

Y. Gal and Z. Ghahramani, Proceedings of The 33rd Inter-
national Conference on Machine Learning, New York, New
York, USA, 2016, pp. 1050-1059.

D. A. Nix and A. S. Weigend, Proceedings of 1994 IEEE
International Conference on Neural Networks (ICNN’94),
1994, vol. 1, pp. 55-60.

A. Amini, W. Schwarting, A. Soleimany and D. Rus, Advances
in Neural Information Processing Systems, 2020, pp. 14927-
14937.

A. P. Soleimany, A. Amini, S. Goldman, D. Rus, S. N. Bhatia
and C. W. Coley, ACS Cent. Sci., 2021, 7, 1356-1367.

Y. Hu, J. Musielewicz, Z. W. Ulissi and A. J. Medford,
Machine Learning: Science and Technology, 2022, vol. 3,
p. 045028.

This journal is © the Owner Societies 2023

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

View Article Online

PCCP

B. Lakshminarayanan, A. Pritzel and C. Blundell, Advances
in neural information processing systems, 2017, vol. 30,
pp. 6402-6413.

V. Kuleshov, N. Fenner and S. Ermon, Proceedings of the
35th International Conference on Machine Learning, 2018,
pp. 2796-2804.

D. Levi, L. Gispan, N. Giladi and E. Fetaya, Sensors, 2022,
22, 5540.

P. Pernot, J. Chem. Phys., 2022, 157, 144103.

K. Tran, W. Neiswanger, ]J. Yoon, Q. Zhang, E. Xing and
Z.W. Ulissi, Machine Learning: Science and Technology, 2020,
vol. 1, p. 025006.

L. Hirschfeld, K. Swanson, K. Yang, R. Barzilay and
C. W. Coley, J. Chem. Inf. Model., 2020, 60, 3770-3780.

G. Scalia, C. A. Grambow, B. Pernici, Y.-P. Li and
W. H. Green, J. Chem. Inf. Model., 2020, 60, 2697-2717.

A. Nigam, R. Pollice, M. F. D. Hurley, R. ]J. Hickman,
M. Aldeghi, N. Yoshikawa, S. Chithrananda, V. A. Voelz
and A. Aspuru-Guzik, Expert Opin. Drug Discovery, 2021,
16(9), 1009-1023.

J. Busk, P. B. Jorgensen, A. Bhowmik, M. N. Schmidt,
O. Winther and T. Vegge, Machine Learning: Science and
Technology, 2021, vol. 3, p. 015012.

J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev and
A. E. Roitberg, J. Chem. Phys., 2018, 148, 241733.

M. Schreiner, A. Bhowmik, T. Vegge, J. Busk and O. Winther,
Sci. Data, 2022, 9, 779.

K. Schiitt, O. Unke and M. Gastegger, International Con-
ference on Machine Learning, 2021, pp. 9377-9388.

N. Skafte, M. Jorgensen and S. Hauberg, Advances in Neural
Information Processing Systems, 2019.

M. Seitzer, A. Tavakoli, D. Antic and G. Martius, Interna-
tional Conference on Learning Representations, 2022.

E. T. Jaynes, Phys. Rev., 1957, 106, 620-630.

D. D. J. Blower, Information Processing: The Maximum
Entropy Principle, CreateSpace Independent Publishing Plat-
form, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot
and E. Duchesnay, J. Mach. Learn. Res., 2011, 12, 2825-2830.
D. Sheppard, R. Terrell and G. Henkelman, J. Chem. Phys.,
2008, 128(13), 134106.

G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft and
K. Q. Weinberger, Snapshot Ensembles: Train 1, get M for
free, arXiv, 2017, preprint, arXiv:1704.00109, DOI: 10.48550/
arXiv.1704.00109.

F. Wang, G. Wei, Q. Liu, J. Ou and H. Lv, et al., Advances in
Neural Information Processing Systems, 2021, vol. 34,
pp- 19719-19729.

I. Osband, J. Aslanides and A. Cassirer, Advances in Neural
Information Processing Systems, 2018, pp. 8617-8629.

P. Pernot, Validation of uncertainty quantification metrics:
a primer based on the consistency and adaptivity concepts,
arXiv, 2023, preprint, arXiv:2303.07170, DOI: 10.48550/
arXiv.2303.07170.

Phys. Chem. Chem. Phys., 2023, 25, 25828-25837 | 25837


https://doi.org/10.48550/arXiv.2105.13283
https://doi.org/10.48550/arXiv.1704.00109
https://doi.org/10.48550/arXiv.1704.00109
https://doi.org/10.48550/arXiv.2303.07170
https://doi.org/10.48550/arXiv.2303.07170
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp02143b



