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The interplay between size, shape, and surface
segregation in high-entropy nanoalloys†

Florent Calvo

The respective influences of particle shape and size on the energetic stability of five-component

multimetallic nanoparticles have been computationally investigated for AlCuFeCrNi and AuCuPdNiCo

mixtures at equiconcentration. Using available embedded-atom model potentials, exchange Monte

Carlo simulations possibly assisted with systematic quenching, we explore tools to approach ideal phase

equilibrium in such high-entropy nanoalloys. In particular, we show how deviations to ideal solid

solution behaviors can be characterized using percolation analyses, and how the contribution of alloying

fluctuations at finite temperature can be inferred to evaluate the entropy of mixing in such nonideal

cases. An approximation to the entropy of mixing based on pair correlations only is also found to

capture the behavior of the thermodynamical mixing entropy quite well, and can be used as an order

parameter of mixing. While the AlCuFeCrNi mixture appears to mix reasonably well in all cases

considered, cobalt and nickel segregate significantly in AuCuPdNiCo nanoparticles, deviating strongly

from ideal random mixtures. A simple Gaussian regression model applied to a coarse distribution of

concentrations is found to correctly predict conditions for optimising the mixing thermodynamical

properties of the miscible AlCuFeCrNi nanoparticle.

1 Introduction

Over the last couple of decades, the synergistic physical and
chemical effects resulting from the combination of two or more
metals together at the nanoscale have been evidenced by many
groups, and nanoalloys have emerged as a community of their
own, with interest ranging from purely basic to mostly applied
considerations.1–6 Recent progress in this field includes more
robust but also more diverse synthesis methods with convincing
efforts toward mass production, access to more colorful palettes
of characterization tools, but also more efficient plasmonic
nanostructures or versatile nanocatalysts. In parallel, computa-
tional advances have enabled the modeling of larger and more
complex nanoalloys, paving the way towards increasingly realistic
simulations over longer time scales and on a more statistical
ground.7

One way of increasing the complexity, and thus potentially
also the tunability, is to consider a larger number of elements
to be combined in the nanoparticles. In the bulk limit, such so-
called high-entropy alloys (HEAs) composed of 5 or more
metals8–17 have been found to exhibit enhanced mechanical

properties18–25 and a greater resistance against corrosion26 than
single metal materials, making them useful notably for the
nuclear industry.27–30 Low-dimensional HEA thin films have
further been shown to provide ideal coating materials31–35 owing
to their good thermal stability and slow diffusion,36,37 and some
HEA mixtures have also been suggested to exhibit enhanced
magnetic38–40 and superconducting41 properties.

Another field where HEA compounds have found potential
applications is that of energy, notably for hydrogen storage,42,43

as well as catalysis44–56 where it is hoped that catalytic efficiency
will be improved owing to the superior stability of electrodes
made from HEA under the harsh conditions of reactors. Addi-
tionally, it is hoped with HEA materials that a significant fraction
of expensive or rare elements used in conventional catalysts can
be eliminated in favor of more common metals.

Such promises of HEA materials have unsurprisingly led
several groups to explore them at the nanoscale, either as
nanowires57 or as nanoparticles.58–61 In recent years the synth-
esis of various high-entropy alloy nanoparticles, or high-entropy
nanoalloys (HENAs) made from AuCuPdNiCo,62 CoNiPtAuCu,63

AlCoCrCuFeNi,64 the so-called Cantor alloy FeCrMnNiCo,65–67

and even up to 8 different elements68 were successfully reported.
HENAs present various exciting challenges from a funda-

mental point of view. While in bulk HEA systems, kinetic
control often prevails over thermodynamic factors; at the
nanoscale the numerous surface atoms can diffuse much faster
and favor the latter, and there is experimental evidence that
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some metals segregate at the free surfaces of HEA materials, at
least for the Cantor alloy.69 In HEA nanoparticles, the sought
presence of chemical disorder, known to often favor face-
centered cubic crystals in the bulk limit, thus interferes here
with the presence of free surfaces of various types, as well as
edges and vertices whose relative contribution increases as the
size decreases. In classical thermodynamical models such as
the CALPHAD approach,70,71 HEAs are typically treated by
incorporating appropriate terms to describe the propensity
for mixing between unlike elements in the Gibbs free energy,
either as polynomials in the fractions xi or as xi log xi in the
mixing enthalpy and mixing entropy, respectively.72,73 Finite-
size corrections can also be incorporated into such models,
usually through appropriate surface energy terms that scale
linearly with the inverse particle size. However, surface energies
themselves depend on a number of factors, mainly the facet
orientation (Miller indices) but also the surface composition.
Besides surface composition, surface energies depend on size
through a curvature correction known as the Tolman length,
further dependent itself on composition.74

In the present contribution, we follow an atomistic point of
view and explore the very basic properties of HENAs from an
equilibrium perspective through finite temperature Monte
Carlo (MC) simulations. In particular, we aim at identifying
stable structural motifs as a function of size and characterize
the extent of chemical disorder using thermodynamical and
also topological indicators. Our approach is complementary to
earlier efforts in which molecular dynamics (MD) simulations
were performed to shed light onto the synthesis and relaxation
mechanisms in low-dimensional HEA systems,75–80 and also to
various works on HEAs under periodic boundary conditions.81–84

The level of modeling used here, which relies on known many-
body force fields, allows reasonably large statistics to be accumu-
lated over broad size ranges and even composition to be varied.

As our main findings, a roadmap is suggested to model
HENAs at finite temperature and address their expected equili-
brium thermodynamics, including the propensity for mixing of the
various elements and ways to determine the entropy of mixing
without assuming empirical interaction rules or correcting devia-
tions to ideal solid solutions, either from thermodynamic integra-
tion or more approximately from nearest-neighbor pair correlation
functions.85 Two types of mixtures were chosen to illustrate
contrasted behaviors arising from combining different metals
together. The AuCuPdNiCo set of metals has already been explored
at the nanoscale by the Yacaman group62 who highlighted the
importance of grain boundaries. The AlCuFeCrNi mixture has
previously been studied experimentally86 and found in MD simu-
lations to mix rather homogeneously.79,80 The Monte Carlo
approach we use here circumvents the time scale issue of mole-
cular dynamics to a significant extent, and allows us to approach
HENAs closer to their true equilibrium state.

In the next section, we briefly describe the set of computa-
tional tools employed to model the HENAs of the two metal
mixtures, the methodology chosen to address specifically the
influences of shape and size on their relative stability, and
especially the thermodynamical and structural probes used to

characterize chemical disorder at finite temperature. Section 3
presents our results at fixed equiconcentrations in the five
elements, discussing successively the energetic properties, sur-
face structure, connectivity analyses and the entropy of mixing.
Section 4 attempts to correlate two specific descriptors of the
propensity for mixing, this time for fixed nanoparticle size and
shape, but varying the composition. Section 5 finally provides
some concluding discussion and ends the paper.

2 Methods

Our approach to the modeling of high-entropy nanoalloys relies
on a fully atomistic, off-lattice description based on well-
established many-body interatomic potentials of the embedded-
atom model (EAM) type.87 Traditional approaches to the compu-
tational determination of nanoalloy structure88 based on such
potentials are likely to be poorly efficient in multi-element systems
with excessively rugged energy landscapes such as HENAs. Here
we thus refrain from attempting any systematic global optimiza-
tion, but instead turn to a more coarse-grained perspective already
used since the 1990s to identify stable structural motifs of
increasingly large nanoparticles.89–93

HENAs based on well-defined shapes and in the approxi-
mate size range 100–10 000 atoms were constructed, assigning
elements randomly in this initial lattice according to a pre-
scribed composition. Classical Monte Carlo simulations at finite
temperature T were then performed with translational moves
allowing the lattice to deform, and swap moves allowing the
chemical ordering to relax, the moves being accepted through a
conventional Metropolis–Hasting probability. In some cases
discussed below, multiple trajectories at different temperatures
were also carried out, with occasional swap moves between
configurations from random pairs of adjacent replicas.94 Such
parallel tempering Monte Carlo simulations allow a much faster
equilibration and convergence to thermal equilibrium, and also
suggest a means to evaluate the entropy of mixing (vide infra).

Our simulations at finite temperatures imply observables of
a statistical nature. We primarily considered the internal energy
U = hEi, where E(R) is the potential energy of configuration R, as
the main indicators of relative stability among structural
motifs. Structural probes were implemented as well, using a
simple connectivity criterion rij o rc to identify if atoms i and j
separated by the distance rij lie below the cut-off distance
rc = 3.1 Å. For each atom i, a coordination number Nc allows
us to identify whether this atom belongs to the surface of the
nanoparticle (Nc o 10) or else to the core (for which Nc = 12 for
the three chosen structural motifs). The average propensity for
each surface atom to be of any elemental type X can also be
determined, from which the corresponding surface fractions
psurf

X are obtained after cumulating the probabilities over the
entire set of surface atoms.

The Monte Carlo framework further allows us to look more
specifically into the influence of having a particular element at
the surface on the overall energetic stability of the nanoparticles.
Here we introduce two types of bias in the simulations, to
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explore energy landscape hypersurfaces in which either (i) all the
atoms of a given type X are constrained to be at the surface or (ii)
no atom of a given type X is allowed to reside at the surface. In
both cases, the Monte Carlo moves (translations and atom
swaps) are restricted in such a way as to preserve the desired
constraint: in case (i) atoms of type X can still move but they
must stay at the surface; in case (ii) atoms of type X cannot
migrate to the surface from the core. The two types of constraints
(i) and (ii) are extreme cases of a more general hypersurface
sampling in which the probability of having X atoms at the
surface of the nanoparticle is kept fixed. While they are straight-
forward to implement in the Monte Carlo procedure, it must be
kept in mind that the bias they introduce modifies the thermal
properties that could be determined at equilibrium. In the
present work, we use these biased simulations to explore the
underlying inherent structures of the energy landscape, and help
decipher the complex interplay between mixing and surface
segregation.

To quantify the propensity of the various elements towards
segregation or aggregation within the nanoparticles, a statisti-
cal approach was considered in which rigorous comparison can
be made to the behavior expected for an ideal (noninteracting)
solid solution on the same nanoparticle. Here a percolation
perspective, as already used in the physics of the Potts
model95,96 is followed by considering connected clusters of a
given elemental type. For any configuration R, the connectiv-
ities among all atoms of type X are first determined. Clusters of
this type are then identified,97 two atoms belonging to the same
cluster if they can be linked by successive chains of nearest-
neighbors, all being of type X. The analysis is repeated
for all atom types and the distributions of fragments are
obtained. We focus notably on two complementary properties,
namely the largest fragment of type X within the nanoparticle,
and the number of individual fragments irrespective of
their size.

In practice, only nanoparticles with complete shells with
icosahedral (ICO), Marks’ decahedral (DEC), and truncated
octahedral (TO) shapes were considered. For each HENA parti-
cle, the Monte Carlo simulations consisted of 106 Monte
Carlo sweeps following 106 equilibration sweeps, the connected
cluster analysis being performed as post-processing from 104

evenly spaced configurations only. Individual translational
moves were attempted with 90% probability, biparticle swaps
between random pairs of unlike elements being attempted with
10% probability. Additional MC simulations were performed
under periodic boundary conditions, at the same temperature
but zero pressure (variable cell size) to evaluate the specific
effects of dimensionality but also to provide limiting values for
the surface fractions of atoms in the limit of infinite slabs.

For the two mixtures considered, AlCuFeCrNi and AuCuPd-
NiCo, the same embedded-atom model proposed by Zhou and
coworkers87 and developed for multimetallic compounds was
used. This potential was specifically extended to chromium and
its alloys in a subsequent publication.98 This model has been
used by many authors in the recent years to simulate high-
entropy alloys.99–104

3 Shape and size effects

In this section we only consider high-entropy nanoalloys at equi-
concentration in the five AlCuFeCrNi or AuCuPdNiCo elements. We
present and discuss successively the results obtained on the two
types of HENAs, identifying the most stable structural motif, then
focusing on the structural analysis through the distribution of
surface atoms and elemental connectivity. We also describe how
simulations conducted at two different temperatures provide a way
to evaluate the contribution of fluctuations in chemical ordering to
the mixing entropy in the system.

3.1 AlCuFeCrNi mixture

Fig. 1 shows the variations of U/N, the internal energy per atom
at 300 K obtained for the N-atom AlCuFeCrNi mixtures at
equiconcentration with icosahedral (N = 147–10 179), decahe-
dral (N = 75–9062), or truncated octahedral (N = 201–9201)
shapes. For any structural type, these variations follow a generic
polynomial behavior in powers of N�1/3 well known in single-
component nanoparticle systems89–93

U/N = U0 � aN�1/3 � bN�2/3 + O(1/N) (1)

where the quantities U0, a and b depend on the shape type as
well as temperature. To better appreciate the effects of size and
shape, in Fig. 1 the lowest value U0 � aN�1/3 found here for
truncated octahedral HENAs was removed from all internal
energies, U0 being evaluated from the bulk simulations on the
fcc lattice. Relative to this common baseline, icosahedral
nanoparticles appear significantly higher in energy than TO
nanoparticles, with decahedral particles lying in between. The
lower stability of icosahedral particles is also manifested in the
difficulty of preserving them at large sizes: icosahedral HENAs
with 5000 atoms or more are found in the simulation to desorb
chromium atoms after accumulating them at the vertices. The

Fig. 1 Relative energies of AlCuFeCrNi nanoalloys at equiconcentration
and at 300 K, as a function of N�1/3 and for truncated octahedral (TO),
Marks’ decahedral (DEC) and Mackay icosahedral (ICO) shapes. Energies
are reported relative to the large-size limiting behavior E(N - N) C
�3.283 � 1.169N�1/3 eV per atom inferred from the results obtained from
the largest TO nanoparticle and the bulk fcc sample.
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faster diffusion of chromium in metal alloys has been reported
previously.105

Having identified truncated octahedral HENA particles to be
the most stable among the three considered motifs, we focus
on HENAs of this specific shape in the following. Fig. 2 shows
the proportions of surface atoms of each elemental type, again
as a function of inverse particle radius N�1/3. Additional simu-
lations of the bidimensional face-centered cubic slab with (111)
surfaces exposed under periodic boundary conditions were
performed to evaluate the same quantities in the N - N limit.
This figure clearly shows that the five elements behave differ-
ently regarding their propensity for surface segregation, and
that the trend between finite-size TO nanoparticles and the
extended slab seems smooth and essentially regular. While
aluminum avoids being exposed at the surface even in the very
small (201-atom) NPs, copper becomes increasingly prone to
surface segregation as size increases, at the expense of the three
remaining metals. In all nanoparticles simulated here, chro-
mium and iron are the next contributors of surface atoms, but
as will be shown below they occupy rather different sites as
copper does, explaining the trends towards larger sizes.

The statistical analysis in terms of connected fragments also
shows major differences among elements in AlCuFeCrNi
HENAs. In Fig. 3(a) we have represented the distributions of
the largest connected fragments, while panel (b) shows the
distributions of the number of connected fragments, irrespec-
tive of their size. In both panels, and in addition to the Monte
Carlo results, we have superimposed the predictions of lattice
sampling on the 2406-atom truncated octahedron in which
atomic interactions are neglected altogether. The corres-
ponding distributions should be understood as the results for
an ideal, noninteracting solid solution. Since a fixed number of
atoms has to be distributed into the same lattice, the largest
connected fragment and the number of connected fragments
are somewhat anticorrelated to one another: large numbers of
fragments necessarily imply that they must be small in order to

accommodate the amount of available material. Comparison
with the distributions predicted for the ideal solid solution
allows the mixing propensity of each individual element to be
quantified within the nanoalloy. For the present HENA particle,
and from the point of view of fragment distributions, chro-
mium thus appears as the element that behaves the most
similarly to the solid solution (many small fragments), while
both nickel and aluminum depart the most from ideality (few
but large fragments). Iron and copper appear as intermediate
cases, with particularly broad distributions of their largest
fragments that suggest significant fluctuations caused in parti-
cular by finite temperature effects.

From the Monte Carlo simulations, systematic local mini-
mizations were performed to identify particularly stable HENA
structures. For the present 2406-atom truncated octahedral NP,
the lowest energy minimum is depicted in Fig. 4 along with the
five elemental representations associated with hiding all other
elements from the structure. For this nanoparticle, chromium
atoms are clearly located at vertices and edges, this lower
coordination being consistent with their higher propensity for
desorbing. Copper occupies the (111) facets in priority, surface
impurities being mostly of the iron type. As the truncated
octahedral NP grows larger, the relative fraction of surface atoms
belonging to the (111) facets increases, explaining the mono-
tonic trend found for these two elements in Fig. 2. Aluminum
and nickel both strongly favor interior locations, and in this low-
energy structure only a few nickel atoms are occasionally found
at the surface, but strictly no aluminum atom.

Fig. 2 Proportion of surface atoms in AlCuFeCrNi truncated octahedral
nanoalloys, at equiconcentration and at 300 K, as a function of N�1/3. The
values at infinite size were obtained from periodic simulations on a 4000-
atom fcc slab with (111) surfaces.

Fig. 3 Connected fragments analysis of 2406-atom AlCuFeCrNi nano-
alloys with truncated octahedral shape, at 300 K. (a) Distribution of the
largest fragment size; (b) distribution of the number of connected frag-
ments. In addition to element-resolved distributions, the results obtained
for the ideal solid solution nanoparticle are superimposed as black curves.
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From a more statistical perspective, Fig. 5 shows the dis-
tributions of energies obtained by quenching configurations
sampled by the Monte Carlo simulations, and compared with
the corresponding distributions produced from the biased
Monte Carlo trajectories in which elements are constrained to

(a) all lie at the surface; or (b) all lie in the core. Imposing an
element to lie at the surface acts as a major energetic con-
straint, and Fig. 5 confirms the structural trends identified in
the previous figures. For example, copper and aluminum show
the most extreme opposite behaviors, leading to more favorable
or unfavorable minima, respectively, with respect to unbiased
sampling. The results obtained for copper, in particular, could
be interesting for a more realistic attempt at identifying con-
figurations lying deeper in the energy landscape. The similar
distributions found for chromium and iron are also consistent
with their partial occupation of surface sites, the case of nickel
lying again in between those of iron and aluminum.

When no atom of a given element type is allowed to be at the
surface, the resulting distributions are less contrasted, apart
from copper which definitely leads to the least stable minima.
More surprisingly, aluminum is not found to produce the
lowest-energy distribution in this case, while nickel does with
iron behaving similarly. The finding that, apart from copper,
the distributions obtained in the two panels (a) and (b) of Fig. 5
are not mirror images of each other as the elements are varied
was not anticipated. In particular, it suggests synergistic effects
between alloying and strain release that must operate at the
surface, involving especially the aluminum atoms.

One natural issue of interest with multi-element alloys is
the contribution of mixing to the thermodynamical properties.
In ideal solid solutions with a fully random distribution of
elements, contributions to the entropy of the form xlnx, with x
the composition of a given element, are added to the Gibbs free
energy, polynomial corrections being further added to account
for interactions among elements that cause deviations
from ideality.72,73 In HEA nanoparticles, the free surfaces also
contribute to thermodynamical functions, typically through
1/R p N�1/3 contributions. In liquid alloys, the prefactor of
such contributions varies essentially linearly with the alloy
composition,74 however in the present case of solid nano-
particles with well-defined surfaces, the surface energies are
expected to depend non trivially on composition at least
through the preference of the various elements to alloy with
one another and occupy different surface or core sites.

To obtain further insight into the complex interplay between
alloying effects and surface energies, we next show that it is
possible to evaluate the contribution of mixing fluctuations to
the entropy for the present HENA particles, which we will refer
to simply as the mixing entropy in what follows. In bulk HEAs,
Gao and Widom have shown that the mixing entropy can be
evaluated from the pair correlation functions at equilibrium.85

This approach cannot be straightforwardly extended to low-
dimensional systems although useful approximations can be
implemented, as discussed below. Here we focus first on a
purely thermodynamical approach.

As our starting point, we show in Fig. 6(a) the variations with
temperature of the internal energy in the 100–500 K range, as
obtained from parallel tempering Monte Carlo simulations on
the 2406-atom truncated octahedral alloy, performed with or
without random particle swaps, configuration exchanges
being still allowed between random pairs of adjacent trajectories.

Fig. 4 Visual depiction of elemental distributions in the most stable
structure found for the 2406-atom truncated octahedral AlCuFeCrNi
nanoalloy.

Fig. 5 Distributions of inherent structure energies obtained from biased
Monte Carlo simulations of 2406-atom truncated octahedral AlCuFeCrNi
nanoalloys, at 300 K, in which (a) all atoms of a given elemental type are
prescribed to lie at the surface; (b) no atom of a given elemental type is
allowed to lie at the surface. The results of unbiased simulations are
superimposed as black curves.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 6
:5

7:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3cp01869e


18444 |  Phys. Chem. Chem. Phys., 2023, 25, 18439–18453 This journal is © the Owner Societies 2023

In both simulations, the initial configuration allocated for all
replicas is the lowest-energy structure identified in the previous
systematic local optimization step, as discussed above.

The internal energies are markedly different depending on
whether particle swaps are allowed, the slope that quantifies the
heat capacity being much higher when fluctuations in alloying
are accounted for. In Fig. 6(b) the probabilities of accepting such
particle swaps in the parallel tempering simulations are shown
as a function of temperature, for all elements involved. We note
that the absolute values of these probabilities depend on the
details of the Monte Carlo process of selecting atoms for
exchange, and here no attempt was made to use smarter select-
ing rules, as achieved e.g. in our previous work106 employing
preferential swapping.

The values obtained for the exchange probability of swapping
unlike elements are generally high (above 10%) for chromium,
iron, and nickel, lower for aluminum and copper but still
significant, indicating a clear tendency for alloying fluctuations
at room temperature and above, even for those elements. For
chromium, a minor drop in the acceptance probability is found
above 400 K as the manifestation of the increasing desorption of
this element.

The contribution of alloying fluctuations to the thermody-
namical properties, clearly seen in the internal energy of

Fig. 6(a), can be quantified also in the canonical entropy. In this
purpose, we first define the mixing contribution Cmix

v to the heat
capacity as the difference between the heat capacities Cv and
C(0)

v obtained for the fluctuating system and those for the non-
mixed system, as predicted by the parallel tempering Monte
Carlo simulations with and without particle swaps, respectively:

Cmix
v (T) = Cv(T) � C(0)

v (T). (2)

By ‘non-mixed’ we refer to a specific configuration of the HENA
particle in which the chemical ordering is kept fixed, despite
the elements being mixed to a large extent (see Fig. 4). From the
variations of the heat capacity, the corresponding contribution
DSmix to the mixing entropy can be determined from Cv(T) =
TqS/qT by simple integration as

DSmix ¼
ð
Cmix

v

T
dT : (3)

The variations found numerically for the internal energies in
Fig. 6(a) are rather smooth with increasing temperature,
encouraging Taylor expansions to be used as

U(T) C U(0)(T) + g + aT + O(T2), (4)

where g is an unimportant constant, and a a contribution of
mixing fluctuations responsible for the change in slope
between the two internal energies with and without element
swap. Temperature differentiation immediately leads to
a = Cmix

v , treated as a constant in our first-order approximation.
Integration of eqn (3) then leads to the contribution of alloying
fluctuations to the relative entropy between temperatures T1

and T2:

DSmix ¼ Cmix
v ln

T2

T1
; (5)

In practice, Fig. 6(a) shows that the internal energy at fixed
chemical ordering can be estimated reasonably well in the
harmonic approximation (and ignoring the unimportant but fixed
equivalent contribution from the kinetic degrees of freedom),

U(0)(T) = CkkBT/2, (6)

up to an unimportant constant and after denoting by k = 3N� 6
the number of independent degrees of freedom for an N-atom
isolated system, and by kB the Boltzmann constant. This
provides a practical way of determining Cmix

v for the mixed
system with alloying fluctuations as

Cmix
v ’ UðT2Þ �UðT1Þ

T2 � T1
� kkB=2; (7)

in which T1 and T2 are chosen in the appropriate temperature
range where the variations of the internal energy are approxi-
mately linear.

Evaluating the contribution of alloying fluctuations to the
mixing entropy thus requires two simulations to be performed at
different temperatures, both allowing particle swaps, and this
was achieved for the present systems by repeating the Monte
Carlo simulations at 100 K, for the same series of truncated
octahedral, decahedral, and icosahedral nanoparticles. The

Fig. 6 (a) Internal energy of the 2406-atom truncated octahedral AlCu-
FeCrNi nanoalloy as a function of increasing temperature, as predicted by
parallel tempering Monte Carlo simulations with (black symbols) or with-
out (red squares) particle swap moves. The dashed blue line highlights the
harmonic prediction; (b) element-resolved Metropolis acceptance ratios
of the swapping moves; (c) pair correlation entropy Spc. The dashed blue
line is the ideal solid solution value of kB ln 5.
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relative entropies of mixing obtained from these additional
simulations are represented in Fig. 7 as a function of inverse
particle size N�1/3. Here again one extra simulation was also
performed for the periodic system, at 100 K, to determine the
corresponding value in the bulk limit. The variations reported in
Fig. 7 are generally increasing with size, at least above 500–1000
atoms. In all cases the values obtained lie significantly below the
theoretical bulk limit of 5kB � (1/5)ln 5 C 1.61kB per atom
expected in the absence of interactions, but are much closer to
the corresponding value of about 0.75kB per atom found under
periodic boundary conditions. Low-entropy minima found for
the decahedral and icosahedral particles could suggest that
these structural motifs, at equiconcentration, can lock chemical
orderings more efficiently than their respective neighboring
sizes due to optimal allocation of surface and core sites.

While the mixing entropy can be evaluated using only
limited amounts of computational resources, a simpler alternative
can be designed based on the structural information contained in
the pair correlation functions.85 We thus introduce a pair correla-
tion entropy Spc as an order parameter defined from the prob-
abilities pij that elements i and j are nearest neighbors:

Spc ¼ �
kB

2

X
i;j

pij ln pij ; (8)

the probabilities pij being meant as the results over a finite
temperature sample. The quantity Spc is similar to the informa-
tion entropy discussed by Gao and Widom for liquid metals,
except that it is limited to nearest neighbors only, and thus does
not account for correlations beyond the immediate environment
of atoms. In the absence of correlations, Spc is equal to the
expected value for ideal solid solutions. Fig. S1 in the ESI,† shows
that the pair correlation entropy has variations with size that are
very similar to those of the thermodynamical mixing entropy, thus
enabling the use of Spc as a practical, lowest-order approximation
for the true mixing entropy.

Fig. 6(c) shows the variations of Spc of the 2406-atom
truncated octahedral AlCuFeCrNi mixture with increasing tem-
perature, as obtained from the parallel tempering Monte Carlo
simulations with and without atom swap. In the absence of
atom swap, the pair correlation entropy remains constant,
equal to its value in the starting minimum but lower than the
ideal solution value of kBln 5. However, when atom swaps are
allowed, much lower values are obtained at low temperatures,
that are indicative of a lesser degree of mixing.

One virtue of Spc is that this quantity can also be defined for
any static configuration R, and can thus play the role of a
mixing order parameter, phase separated systems being asso-
ciated with lower values relative to randomly mixed systems.
However, it should be kept in mind that the pair correlation
entropy is strongly nonlinear in the probabilities pij, hence the
value of Spc from the probabilities accumulated over a sample
is not the average of individual values associated with each
member of the sample.

3.2 AuCuPdNiCo mixture

The very same tools used in the previous section for the
AlCuFeCrNi mixture were used for the high-entropy nanoalloys
made of the AuCuPdNiCo metals, still at equiconcentration,
and we follow here the same line of presentation and discus-
sion of the results. Fig. 8 thus shows the variations with inverse
particle radius of the internal energy at 300 K for the three
different structural motifs considered. The baseline connecting
the values obtained for the largest truncated octahedral particle
and for the periodic fcc sample was again chosen to shift the
internal energies, however for the present metals TO particles
are found to be significantly higher in energy than both
decahedral and, especially, icosahedral particles.

The variations of the surface proportions with inverse particle
radius, obtained for all icosahedral particles, are represented in
Fig. 9. The values obtained for the (111) slab, superimposed in

Fig. 7 Relative entropies of mixing of AlCuFeCrNi nanoalloys at equicon-
centration and at 300 K, as a function of N�1/3 and for truncated
octahedral (TO), Marks’ decahedral (DEC) and Mackay icosahedral (ICO)
shapes. The dashed line highlights the results obtained from the largest TO
nanoparticle and the bulk sample.

Fig. 8 Relative energies of AuCuPdNiCo nanoalloys at equiconcentration
and at 300 K, as a function of N�1/3 and for truncated octahedral (TO),
Marks’ decahedral (DEC) and Mackay icosahedral (ICO) shapes. Energies
are reported relative to the large-size limiting behavior E(N - N) C
�3.283 � 1.169N�1/3 eV per atom inferred from the results obtained from
the largest TO nanoparticle and the bulk fcc sample.
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the N - N limit, are also shown and connected to the
corresponding data predicted for the largest, 9201-atom trun-
cated octahedral particle. The discontinuities found between
the values obtained for the largest icosahedral and truncated
octahedral particles generally emphasize the role of the different
surfaces, and in particular the presence of surfaces other than
(111) in the TO particle, on the propensity of the various
elements to occupy such surface sites. For this mixture, the
surface ratios obtained for the slab are also quite at variance with
those obtained for the largest nanoparticles, especially for
copper which displays a strong segregation towards the (111)
surface, occupying about 95% of it. In nanoparticles, the surface
is much more mixed in copper, gold and palladium, cobalt and
nickel exhibiting a stronger preference towards the subsurface
positions.

Focusing now on the 2057-atom icosahedral HENA of the
AuCuPdNiCo mixture, we show in Fig. 10 the distribution of
connected fragments obtained at 300 K obtained from the
Monte Carlo simulation, once again in comparison with the
reference distributions found for an ideal solid solution on this
icosahedral lattice. As was the case for the AlCuFeCrNi mixture,
the percolation analysis reveals that the various metals can behave
quite differently regarding their mixing or segregation propensi-
ties. Here nickel and especially cobalt tend to form few but large
fragments, while gold makes numerous but very small fragments
with 10 atoms or less. Copper and palladium provide intermediate
cases, both with a stronger segregation tendency than the ideal
solid solution, i.e. with fewer but larger fragments too.

Systematic local optimization of the Monte Carlo configura-
tions was then conducted, the lowest-energy structure being
depicted in Fig. 11 with the allocation of each individual element
being highlighted using their own specific color. These plots show
that, at this size, copper occupies all edges and vertices sites,
palladium the centers of the (111) facets, nickel forms a tightly
connected core, cobalt prefers subsurface positions but also as a
highly connected cluster, and gold distributes itself much more

homogeneously than all other atoms as many diluted small
fragments, also lying at the surface.

Repeating the Monte Carlo simulations with additional
biases on the surface allocations of atoms leads to contrasted
results relative to the previous alloy. Fig. 12 shows the corres-
ponding distributions of local energy minima obtained without
any bias, (a) imposing that a given element always occupies

Fig. 9 Proportion of surface atoms in AuCuPdNiCo icosahedral nanoal-
loys, at equiconcentration and at 300 K, as a function of N�1/3. The values
at infinite size obtained from simulations on a 4000-atom slab are
connected by dashed lines to the data found for the largest truncated
octahedral nanoparticle with 9201 atoms.

Fig. 10 Connected fragments analysis of 2057-atom AuCuPdNiCo
nanoalloys with Mackay icosahedral shape, at 300 K. (a) Distribution of
the largest fragment size; (b) distribution of the number of connected
fragments. In addition to element-resolved distributions, the results
obtained for the ideal solid solution are superimposed as black curves.

Fig. 11 Visual depiction of elemental distributions in the most stable
structure found for the 2057-atom Mackay icosahedral AuCuPdNiCo
nanoalloy.
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surface sites or (b) that this element never lies at the surface.
For this alloy, either constraint appears to deteriorate the overall
energetic stability of the nanoparticle, and such global surface
biases are thus not expected to ease the global optimization
problem. All distributions in Fig. 12(a) are rather sharp and
are ordered consistently with the surface preferences seen in
Fig. 9, with palladium (high) and cobalt (low) providing the
two extremes on the scale expressing the preference towards the
surface. Preventing an element from occupying the surface
sites comparatively has little effect, except for gold and copper
which are the most disfavored elements under this constraint.
Interestingly, and as was the case for the AlCuFeCrNi mixture,
the distributions obtained after applying the two opposite con-
straints on the surface atoms do not mirror one another in their
positions relative to the unbiased reference distribution.

To further validate our approach for evaluating the contri-
bution of alloying fluctuations to the mixing entropy, we have
represented in Fig. 13(a) the variations of the internal energy of
the 2057-atom icosahedral HENA with increasing temperature,
as predicted by parallel tempering Monte Carlo simulations in
the 100–500 K range, again allowing or disabling swap moves
between unlike atoms. Fig. 13(b) shows the corresponding
probabilities of accepting such swap moves and involving each
of the five elements individually. Finally, Fig. 13(c) displays the
pair correlation entropy Spc obtained from the nearest-neighbor
probabilities, atom swap moves being again either allowed or
disabled. The generic behavior of the internal energy is similar
to that found in the AlCuFeCrNi HENA, namely that alloying

fluctuations increase the slope and are thus associated with a
higher heat capacity. However, the pair correlation entropy is
generally much lower than in the AlCuFeCrNi mixture, consis-
tently with the lesser extent of segregation of the AuCuPdNiCo
nanoparticles. We use the same procedure as above to evaluate
the contribution of alloying fluctuations to the mixing entropy
using eqn (5) with Cmix

v estimated from eqn (7), noticing
however that the variations in U(T) seen in Fig. 13(a) are more
prone to anharmonicities, with not just a higher slope but also
some second-order contribution.

With respect to the AlCuFeCrNi alloy, the success of swap-
ping moves is comparatively much less likely, probabilities
falling below 10% even at the highest temperature considered
of 500 K. This finding is consistent with the greater disparity
amongst elements seen, e.g. in the percolation analysis of
Fig. 10, thus underlying that the present alloy departs even
more from the ideal solid solution.

The contribution of alloying fluctuations to the mixing
entropy was determined for all AuCuPdNiCo HENAs following
the same procedure as in the previous section, repeating the
Monte Carlo simulations but at 100 K, using the most stable
low-energy structure identified from the periodic quenches at
300 K to speed up convergence. The results are represented in
Fig. 14 as a function of inverse particle radius N�1/3 for

Fig. 12 Distributions of inherent structure energies obtained from biased
Monte Carlo simulations of 2057-atom Mackay icosahedral AuCuPdNiCo
nanoalloys, at 300 K, in which (a) all atoms of a given elemental type are
prescribed to lie at the surface; (b) no atom of a given elemental type is
allowed to lie at the surface. The results of unbiased simulations are
superimposed as black curves.

Fig. 13 (a) Internal energy of the 2057-atom Mackay icosahedral
AuCuPdNiCo nanoalloy as a function of increasing temperature, as pre-
dicted by parallel tempering Monte Carlo simulations with (black symbols)
or without (red squares) particle swap moves. The dashed blue line high-
lights the simple harmonic behavior; (b) element-resolved Metropolis
acceptance ratios of the swapping moves; (c) pair correlation entropy
Spc. The dashed blue line is the ideal solid solution value of kB ln 5.
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nanoparticles of the three structural motifs. The values
obtained for the mixing entropy are markedly lower than those
reported in Fig. 7, which is another manifestation of the lower
tendency of the AuCuPdNiCo mixture towards random alloying,
even in the bulk limit, and consistently with the lower values
exhibited by the pair correlation entropy. While the variations
found for the TO and ICO nanoparticles are again mostly
monotonic with only shallow minima, a more complex beha-
vior is found for the decahedral particles, with a maximum at
N = 389 and a deep minimum for N = 3274–4371 atoms.
Intriguingly, and unlike the results for icosahedra shown in
Fig. 9, the surface ratios for the decahedral motif do not display
any particular non-monotonicity in their variations with size,
for any of the five elements (results not shown). The mixing
entropy found here for the decahedral motif thus appears to be
extremely sensitive to the structural details of the nanoparticle,
and the present results are confirmed by the pair correlation
entropy, as shown in Fig. S2 in the ESI.† Here it would probably
be useful to identify appropriate descriptors to interpret to
which extent is the feature found near 4000 atoms caused by
specific chemical orderings.

4 Mixing energy versus mixing entropy

High-entropy alloys are usually designed near equiconcentra-
tion in the various elements in order to maximize the likelihood
of synergistic effects. In this section we explore the effects of
alloy composition on the relative stability of HENA particles,
fixing the size and the shape to be those suggested at equicon-
centration. It would be clearly cumbersome to vary the compo-
sitions of the five elements continuously, and we follow instead
a coarse-grained perspective by considering only variations in
individual concentrations by steps of 20%. For five elements,
this leads to 126 possible combinations, including monome-
tallic cases, for which individual Monte Carlo simulations were
also performed.

Nanoparticles in the size range N = 2000–3000 with complete
shells were chosen to address compositional effects for the AlCu-
FeCrNi and AuCuPdNiCo sets of metals, namely truncated octahe-
dra with 2406 atoms and Mackay icosahedra with 2057 atoms,
respectively. To quantify the effects of alloying on the thermodyna-
mical properties of those HENAs, we use the entropy of mixing that
measures the contribution of alloying fluctuations, as defined
above in eqn (5). As explained in the previous section, evaluating
the mixing entropy DSmix requires performing two Monte Carlo
simulations with particle swaps allowed at two temperatures. In
practice the simulation at 300 K is carried out first, followed by
systematic local optimization, and the simulation at 100 K is then
performed, initiated at the lowest-energy configuration determined
from quenches of the 300 K trajectory.

An internal energy of mixing, Umix is also introduced by
subtracting from the internal energy of the alloyed nanoparticle
the weighted contributions from the pure systems,107

Umixð~xÞ ¼ Uð~xÞ �
X
i

xiUi; (9)

in which, for concision purposes, we have denoted by the vector
-
x = {x1,. . .,x5} the set of compositions (with x1+� � �+x5 = 1), U(-x)
being the internal energy at composition -

x and Ui the internal
energy of the pure nanoparticle with element of type i. Negative
values for the energy of mixing indicate that alloying stabilizes
the nanoparticle.

The correlations between the energy of mixing and the
relative entropy of mixing are shown in Fig. 15(a) and (b) for
the AlCuFeCrNi and AuCuPdNiCo HENAs, respectively. From
these scatter plots, we have tried to make sense of specific
patterns by highlighting the monometallic and bimetallic sys-
tems. By definition, monometallic particles have a zero energy of
mixing, and should also be characterized with a zero mixing
entropy since atom swaps do not operate for them. The slightly
positive values obtained for DSmix originate from anharmonicity
effects and provide an estimate for the residual error obtained by
applying eqn (7). From Fig. 15 we can thus estimate that the
mixing entropies due to alloying fluctuations are accurate only
up to about 0.1kB per atom due to anharmonicities.

A striking difference between the results obtained for the
two sets of alloys is the much lower energies of mixing (in
magnitude) of the AlCuFeCrNi compounds, but this is
obviously related to the stronger binding energies of the heavier
elements having more electrons.

In their vast majority, binary alloys display lower mixing entro-
pies than arbitrary alloys with 3 or more elements, with the notable
exception of some Cu–Cr systems lying on the energetically defa-
vorable side Umix 4 0. In general, we find that these low mixing
entropies are associated with strong phase segregation of the core–
shell type, with little or no thermal fluctuation in chemical ordering
at the interface. Examples of such behavior are the Al–Cu and Au–
Co alloys in Fig. 15(a) and (b), respectively. We note that the
energies of mixing are not always correlated to the mixing entro-
pies, due to the size mismatch between the different metals that
can produce core–shell structures that are energetically strongly
stabilized (Al–Cu and Au–Co) or only marginally (Fe–Ni).

Fig. 14 Relative entropies of mixing of AuCuPdNiCo nanoalloys at equi-
concentration and at 300 K, as a function of N�1/3 and for truncated
octahedral (TO), Marks’ decahedral (DEC) and Mackay icosahedral (ICO)
shapes. The dashed line highlights the results obtained from the largest TO
nanoparticle and the bulk sample.
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The more frequent occurrence of core–shell structures in the
AuCuPdNiCo compounds, at least for the binary cases, is
consistent with the lowest degree of mixing found in the
previous section at equiconcentration. We have attempted to
rationalize compositional effects using ideas from unsuper-
vised machine learning, predicting the energies and entropies
of mixing of similar HENA particles but with arbitrary composi-
tion, through a simple Gaussian regression on the numerical
data at the coarse-grained scale. More precisely, we denote by
{-xi} the 126 composition vectors that map the entire composi-
tion space by steps of 20% and by xi;a the proportion of element
a in composition vector -

xi, such that
P
a
xi;a ¼ 1. The property

A(-x) at arbitrary composition -
x is taken as a linear combination

over the values known at the coarse compositions -xi, using
composition itself as the sole descriptor:

Að~xÞ ’1

Z

X
i

A ~xið ÞK ~x; ~xið Þ;

Z ¼
X
i

K ~x; ~xið Þ

K ~x; ~xið Þ ¼ exp � ~x�~xik k2
d2

� �
:

(10)

In the previous equations, K(-x,-xi) is the kernel measuring the
degree of similarity between the two compositions, the para-
meter d entering the Gaussian function being taken as 0.15.

Applying this simple regression rule to the dataset of the
AlCuFeCrNi HENAs, the energy of mixing is found to be
minimized for -

xe = (xAl = 0.58, xCu = 0.21, xFe = 0, xCr = 0.21,
and xNi = 0), while the mixing entropy is maximized for -

xs =
(xAl = 0.18, xCu = 0.36, xFe = 0, xCr = 0.23, and xNi = 0.23).
Additional Monte Carlo simulations were performed for these
specific ternary and quaternary compositions, the results of
which are superimposed in Fig. 15(a). The outcome of these
simulations agrees with the expectations in both cases, indicat-
ing that these specific HENA particles have optimal energies or
entropies of mixing with respect to the coarse dataset. The
results obtained by considering the pair correlation entropy
instead of the thermodynamical mixing entropy, shown in Fig.
S3 of the ESI,† are essentially similar. Spc appears here particu-
larly sensitive to the number of chemical elements present in the
mixture, the correlation plots showing clear progressions in Spc

as the number of elements increases. Here again, the Gaussian
regression model performs well, and predicts that the pair
correlation entropy is maximized exactly at equiconcentration.

The regression model was also applied to the AuCuPdNiCo
alloy, but at the compositions predicted to minimize Umix or to
maximize DSmix, the results of the additional simulations do
not agree that well, finding energies of mixing that lie off the
range of Fig. 15(b), on either side. However, when the pair
correlation entropy is used, the model works satisfactorily
(see Fig. S4 in the ESI†), and predicts that Spc is maximized
slightly off equiconcentration, namely for -

xs = (xAu = 0.22, xCu =
0.20, xPd = 0.20, xNi = 0.19, and xCo = 0.19), the mixing energy
being minimized for the ternary mixture with -

xe = (xAu = 0.26,

xCu = 0.16, xPd = 0.0, xNi = 0.0, and xCo = 0.58). The latest result is
close, but not exactly identical, to the direct simulations. The
poor ability of the regression model for this alloy provides
another interesting clue about the different behaviors of the
two alloys, and especially the much stronger compositional
effects at play in the AuCuPdNiCo mixture with its greater
tendency towards phase separation.

5 Concluding remarks

The inherent chemical complexity associated with bringing
together numerous metals, combined with the presence of free
surfaces with different orientations, constitutes an unprece-
dented challenge for nanoalloys. In practical syntheses and
applications of such nanoparticles, it is obvious that kinetics
plays a key role in stabilizing certain structures under experi-
mental conditions. However, the thermal equilibrium point of
view adopted in the present work should be seen as a necessary
step on the (likely bumpy) road towards understanding HENA
particles. Ignoring kinetics is not only a simplifying assumption,

Fig. 15 Correlation between the mixing energy and the relative entropy
of mixing obtained at 300 K for nanoalloys with compositions varying by
steps of 20%. (a) 2406-atom truncated octahedra of AlCuFeCrNi mixtures;
(b) 2057-atom Mackay icosahedra of AuCuPdNiCo mixtures. In both cases,
the binary alloys are depicted with colored symbols, while the results for
the pure nanoparticles are circled. In (a) the predictions of a simple
Gaussian regression model maximizing the entropy of mixing or minimiz-
ing the energy of mixing are also highlighted.
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it is actually rather common practice in metallurgy with the
classical approaches to alloy phase diagrams such as the CAL-
PHAD community, in which phases are identified by minimizing
free energy, irrespective of the material preparation.

The computational approach followed here rests on atomistic
simulations and follows previous efforts combining semi-empirical
models with well-established Monte Carlo frameworks, including
the occasional use of the parallel tempering strategy.106 In the size
range of interest, covering 100–10 000 atoms, solving the global
optimization problem is probably hopeless and we restricted our
investigation to specific structural motifs. To obtain insight into the
interplay between alloying, surface segregation, and the essential
effects of thermal fluctuations, a number of analysis tools were
specifically introduced. The distributions of monometallic frag-
ments for a fixed nanoparticle lattice can be compared to the
reference distributions expected for ideal (noninteracting) solid
solutions, which in turn allows the various elements to be classified
according to their propensity towards alloying or segregation. Such
a percolation analysis could be extended to identify more specifi-
cally the locally ordered arrangements, as a complement to more
conventional tools such as common neighbor analyses, by specifi-
cally looking for pairs between specified elements, possibly assisted
by robust geometrical descriptors such as the smooth overlap of
atomic positions.108

Besides percolation analyses, the interplay between alloying
and surface segregation could be addressed by introducing
biases into the Monte Carlo process, enabling the investigation
of potential energy hypersurfaces in which atoms of a given
element are constrained to reside at the surface or in the core of
the nanoparticle. Systematic local minimizations performed to
remove lattice fluctuations generally confirm the strong influ-
ence of surface allocations on the relative stability of the
nanoparticle, especially for the least miscible AuCuPdNiCo
alloy. For the more miscible AlCuFeCrNi system, such hypersur-
face constraints were found as a possible way to facilitate the
global optimization problem. Here also the bias introduced in
the Monte Carlo simulations could be generalized, e.g. to
examine separately the various contributions of vertices, edges,
subsurface atoms, or facets with different Miller indices.

The extent of alloying and, even more importantly, of the
associated thermal fluctuations on the relative stability of the
nanoparticles, could also be discussed by extracting the specific
contribution of alloying fluctuations to the mixing entropy,
through a simple computational procedure involving Monte
Carlo simulations at two temperatures. The mixing entropy was
generally found to be lower than the limiting value expected for
noninteracting solid solutions, and to exhibit rather smooth
size effects for the AlCuFeCrNi mixture, and more puzzling
variations in the case of the AuCuPdNiCo compound under the
decahedral arrangement. An approximation to the true mixing
entropy based on the probabilities of nearest-neighbor ele-
ments was found to capture the thermodynamical data rather
well, and could find some additional use as a mixing order
parameter for static configurations.

Finally, we considered the effects of alloy composition, for a
fixed size and shape of the HENA particles, by mapping the

coarse-grained composition space. The two thermodynamical
indicators of energy and entropy of mixing generally appear poorly
correlated to one another, although simpler compositions such as
binary alloys are usually associated with lower mixing entropies. A
simple regression model was found to perform satisfactorily in
predicting compositions that optimize either the energy or the
entropy of mixing, but only for the AlCuFeCrNi miscible case.

The importance of mixing was addressed here for individual
nanoparticles, but could of course be also evaluated in other
nanostructures such as nanowires or thin films. In addition, it
could also be of interest in the interaction between nanostruc-
tures, which are responsible, e.g. for their self-assembly. One
natural extension of the present work could thus consist in
assessing the role of the mixing entropy on the effective potential
of mean force between two HENAs, using Monte Carlo methods
already established for conventional nanoparticles109 and natu-
rally extended here to account for mixing fluctuations.

The main limitation of the present exploratory work lies in
the underlying embedded-atom model employed for the present
HENAs, which despite a long and successful history in the field
of bulk alloys may not be accurate enough for compounds with a
high surface/volume ratio. However, here also the challenge for
modeling is quite significant, as surface energies of alloys, for
which measurements are scarce, are likely to depend on the
composition itself. The EAM potential used here as the main
engine of our simulations covers many metals but relies on a
functional form with dedicated combination rules that allow any
alloy of the fitted element to be represented, without introducing
dedicated parameters between unlike elements. A greater trans-
ferability, but also at a much heavier cost, could be achieved by
treating pair combinations separately. Alternatively, the increas-
ingly popular machine learned potentials110 could offer a valu-
able alternative, but only provided that surfaces are also treated
appropriately, and even possibly on a comparable footing as bulk
properties. This effort would naturally fit along the same lines as
the recent, growing interest in using ideas from data-driven
science towards improving the design and understanding of
HEAs,39,111–114 including at the nanoscale.115–117 Irrespective of
the functional form, the training set has to be significantly large
to account for the various, low-symmetry configurations of
nanoscale systems. The major computational effort associated
with building this training set might be better addressed in a
distributed form or at the scale of the community. In any case, it
would probably be useful to first evaluate the performance of
first-principles methods for such systems.118
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41 S. Vrtnik, P. Koželj, A. Meden, S. Maiti, W. Steurer,
M. Feuerbacher and J. Dolinšek, J. Alloys Compd., 2017,
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