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Evaluating different deep learning models for
efficient extraction of Raman signals from CARS
spectra†

Rajendhar Junjuri, ‡*ab Ali Saghi, ‡a Lasse Lensu a and Erik M. Vartiainen a

The nonresonant background (NRB) contribution to the coherent anti-Stokes Raman scattering (CARS)

signal distorts the spectral line shapes and thus degrades the chemical information. Hence, finding an

effective approach for removing NRB and extracting resonant vibrational signals is a challenging task. In

this work, a bidirectional LSTM (Bi-LSTM) neural network is explored for the first time to remove the

NRB in the CARS spectra automatically, and the results are compared with those of three DL models

reported in the literature, namely, convolutional neural network (CNN), long short-term memory (LSTM)

neural network, and very deep convolutional autoencoders (VECTOR). The results of the synthetic test

data have shown that the Bi-LSTM model accurately extracts the spectral lines throughout the range. In

contrast, the other three models’ efficiency deteriorated while predicting the peaks on either end of the

spectra, which resulted in a 60 times higher mean square error than that of the Bi-LSTM model. The

Pearson correlation analysis demonstrated that Bi-LSTM model performance stands out from the rest,

where 94% of the test spectra have correlation coefficients of more than 0.99. Finally, these four

models were evaluated on four complex experimental CARS spectra, namely, protein, yeast, DMPC, and

ADP, where the Bi-LSTM model has shown superior performance, followed by CNN, VECTOR, and

LSTM. This comprehensive study provides a giant leap toward simplifying the analysis of complex CARS

spectroscopy and microscopy.

1. Introduction

The spontaneous Raman spectroscopic technique measures the
vibrational response of molecules and provides functional and
compositional information on the major chemical constitu-
ents. However, the acquired Raman signal strength is weak
and, combined with the fluorescence contributions, result in
longer acquisition times, limiting its applications. In contrast,
coherent anti-Stokes Raman scattering (CARS) is a nonlinear
analytical method that offers similar fingerprint information to
the spontaneous Raman technique, albeit orders of magnitude
faster.1,2 This characteristic property enabled it as a prominent
spectroscopic tool for the label-free imaging of cells3 and
tissues4 in biomedical applications.5 Also, it has been signifi-
cantly explored in other applications, such as materials science

and nanotechnology. The intensity of the CARS signal is
proportional to the susceptibility term and can be expressed as

ICARS p |w(3)
NR + w(3)

R (o)|2 (1)

Here, w(3)
NR and w(3)

R correspond to the nonresonant and resonant
third-order susceptibilities, respectively. As CARS is a coherent
phenomenon, the w(3)

NR and w(3)
R responses of the sample interfere

via eqn (1) and thus the nonresonant background (NRB) con-
tribution cannot be removed by simple subtraction. The NRB
serves as a stable homodyne amplifier which is responsible for
the signal strength of CARS. Nevertheless, this coherent con-
tribution simultaneously perturbs the measured CARS signal
that significantly distorts the spectral line shapes. It is an
inherent limitation in all CARS-based methods. In this milieu,
various optical-based techniques have been explored to tackle
the NRB, such as single-frequency CARS,6 frequency modula-
tion CARS,7 polarization CARS,8 interferometric CARS,9 and
pulse shaping CARS.10 All these experimental methods have
reduced the NRB contribution but at the cost of increasing
experimental complexity and price. With the NRB being a
coherent signal, all these alternatives also drastically reduced
the CARS spectral line intensities,11 thus cancelling the benefit
of the CARS approach.12 Furthermore, surrogate materials,
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such as coverslip–glass, salt, and water, have been traditionally
utilized to reduce the NRB effect. These materials contain
minimal or no vibrational peaks in a large spectroscopic
window and have mitigated some of the ramifications but
introduced errors in the measured amplitude.

Consequently, exploring for other methods to extract the
phase relationship without physically removing the NRB is of
paramount importance. In this context, numerical approaches
such as the maximum entropy method (MEM)13 and the
Kramers–Kronig (KK) relation14 have been widely utilized for
phase retrieval. Furthermore, other algorithmic methods such
as ‘‘phase-error correction’’,15 ‘‘factorized Kramers–Kronig and
error correction’’,16 and ‘‘wavelet prism decomposition analy-
sis’’17 are also reported in the literature to mitigate the experi-
mental artefacts and spectral line distortions in the CARS
spectra. Recently, Charles et al. have proposed discrete Hilbert
transform to remove the NRB.18 However, these numerical
techniques require a surrogate reference material, and/or the
other simulation parameters need to be tuned to get the best
results. All these complications can be overcome by utilizing
machine learning algorithms where the model learns from the
input CARS data and predicts the Raman signal.19 Deep neural
networks (DNNs) have been explored in several applications,
such as weather forecasting,20 natural language processing,21

and computer vision.22 Moreover, it is also utilized in different
spectroscopies, such as hyperspectral image analysis,23 vibra-
tional spectroscopy,24,25 molecular excitation spectroscopy,26

and laser-induced breakdown spectroscopy.27–29

Various deep learning (DL) approaches have also been
recently explored via CARS spectroscopy to tackle the NRB
removal problem.30–35 Valensise et al. have utilized a convolu-
tional neural network (CNN) model to retrieve the imaginary
part from the CARS spectral data.31 It is the first report on
utilizing DL methods for removing the NRB and is referred to
as SpecNet. Houhou et al. have used a long short-term memory
(LSTM) neural network model to retrieve the Raman signal and
their results are compared with the results of the MEM & KK.30

Wang et al. deployed very deep convolutional autoencoders
(VECTOR) for removing the NRB, and their model’s perfor-
mance is compared with that of SpecNet.32 They have also
shown that the VECTOR model with 16 layers has given
optimum results in less computational time.

Our recent works have demonstrated that retraining the
SpecNet with a combination of semisynthetic and synthetic
data improves its performance.33 We have also applied a
transfer learning approach to increase the CNN model efficacy
in retrieving the imaginary part of the CARS spectra.34 Further-
more, the noise is also varied at various levels to analyse the
sensitivity of the model after transfer learning. Very recently, we
have also explored three different NRB types to simulate the
CARS data.35 It has been revealed that considering the NRB as a
fourth-order polynomial function instead of a product of two
sigmoids improves the CNN model’s efficiency. These three
works have shown superior performance compared to the
SpecNet, where spectral lines with minimal intensities are also
predicted.33–35 Even though the CNN model trained with

polynomial NRB has predicted all the spectral lines of the
experimental data, the intensity of a few lines deviated from
the true one. Also, similar results were obtained with the
LSTM30 and VECTOR models,32 where the performance was
found to be sensitive when evaluating the experimental
CARS data.

Furthermore, estimating the mean square error (MSE)
throughout the spectral range can be considered as a critical
parameter for evaluating the model’s efficiency. However, no
other reports have presented it, excluding our works33–35 to the
best of our knowledge. It should be noted that the SpecNet has
given a high MSE while predicting the peaks at the ends of the
spectrum. It is observed because the model could not extract
peaks when it encountered the spectral line that only had a
rising or falling part instead of a full line shape. Even retraining
SpecNet with semisynthetic data,33 applying transfer
learning,34 and training with the CARS data simulated via
polynomial NRB35 could not avoid it and challenged the pre-
dictive ability of the models. These studies hint that exploring
other DL approaches in addition to the CNN, LSTM, and
VECTOR models can mitigate the aforementioned limitations.

Hence, in this work, we have explored the Bi-LSTM model
for the first time for extracting the imaginary part of the CARS
spectra. Also, the NRB is assumed to be a fourth-order poly-
nomial function while producing the CARS training data, which
has already shown optimum results.35 Furthermore, a compre-
hensive study is performed by comparing the performance of
four DL models, namely, (1) VECTOR, (2) CNN, (3) LSTM, and
(4) Bi-LSTM. This comparative study has been done for the first
time to the best of our knowledge, and critically evaluates the
trained model’s efficiency in retrieving the Raman signal from
the CARS data.

2. Experimental details
2.1 CARS spectra simulations

All the models have been trained on pure synthetic spectral
data with parameters of the number of peaks, intensity, fre-
quency, and linewidths to enable them to be generalized to the
different spectral shapes of NRBs. The CARS spectrum simula-
tion procedure can be found in our previous work.35 The
simulation parameter details are presented in Table 1.

In brief, the vibrational frequencies are sampled over a
normalized scale [0, 1]. The NRB is considered as a function
of fourth-order polynomial as given in eqn (2)

NRB = ao4 + bo4 + co4 + d + e (2)

Table 1 Details of the simulation parameters

S. no Simulation parameters Range

1 No of peaks (1, 15)
2 Peak amplitude (Ak) (0.01, 1)
3 Line width (Gk) (0.001, 0.008)
4 Noise Z(o) (0.0005, 0.003)
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The coefficients a, b, and d are randomly selected from the
range of values [�10, 10], whereas it is [�1, 1] for c and e
coefficients. The uniformly distributed noise Z(o) is added to
the chi3 data for generating CARS data. A total of 50 000
synthetic training spectra are generated in Python, where each
spectrum has 640 data points/wavenumbers. All the simulation
parameters are randomly selected from the given range for
generating each CARS spectrum, as shown in Table 1. The code
to simulate the synthetic spectra is available here.36 The
synthetic dataset used for training all the models is the same
(640 data points), except for the VECTOR, as its architecture
inherently requires a longer data length (1000 data points).
Hence, 1D cubic spline interpolation was used to generate
1000 points from 640 points of the synthetic dataset. This
technique ensures that there will be no modifications in inter-
polation data concerning the shapes and intensity, as shown in
Fig. S1 in the ESI.†

2.2 Details of the experimental CARS data

The CARS data are acquired from four samples, namely, ADP,
DMPC lipid, yeast, and a protein droplet of FUS-LC (low-
complexity domain of fused in sarcoma). The first three sam-
ples are recorded in one experimental configuration, and its

optical layout can be found here.37 ADP is an equimolar
mixture of AMP, ADP, and ATP in water with a total concen-
tration of 500 mM. DMPC is a small unilamellar vesicle (SUV)
suspension with a concentration of 75 mM. The third sample is
a living budding yeast cell (a zygote of Saccharomyces cerevi-
siae) measured from the mitochondria of the yeast cell.38 An
ultrabroadband CARS spectrum covering both the fingerprint
and CH-vibration regions of the FUS-LC droplet (protein) was
measured by Y. Kan et al. with a home-built broadband CARS
microscope.39 The protein sample is the low-complexity
domain of RNA-binding protein fused in sarcoma (FUS-LC).39

Furthermore, sample preparation details and the CARS mea-
surements are explained elsewhere.40 The CARS line shape (the
uppermost line shape) was denoised by the wavelet prism
procedure,17 and the corresponding Raman line shape was
computed by the MEM procedure.41

3. Deep learning models

Four DL models, namely, (1) VECTOR, (2) CNN, (3) LSTM, and
(4) Bi-LSTM, are briefly discussed in detail in this section. The
typical schematic of the four models’ architecture is presented
in Fig. 1, and the complete details are given in Table S1 in the

Fig. 1 General schematic of the four models that are used, including (a) convolutional neural network model, (b) autoencoder model, (c) LSTM model,
and (d) Bi-LSTM model. The input for all four models is a CARS spectrum, while the output is the corresponding Raman signal that is predicted by the
models.
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ESI.† It is also worth considering that the Python code to train
the VECTOR model is available in the GitHub repository but not
the trained model weights.42 So, we have directly retrained it by
utilizing their code without modifying any of its model para-
meters. In the case of the CNN, the trained model weights are
directly taken from our previous work35 and can be accessed
from here.43 Houhou et al. have reported the LSTM model, but
the trained weights and the respective codes are not openly
available.30 Therefore, we have retrained it without modifying
the original model architecture. Finally, we have explored the
Bi-LSTM model for the first time for CARS data analysis. The
model architecture is inspired by ref. 44, where it was initially
explored for analysing spectroscopic data of Type Ia Super-
novae. However, we have modified the model parameters to
achieve better results on the CARS data. All the trained model
weights can be found in our GitHub repository.36 All the
computational details are given in Table S1 in the ESI.† Also,
the model learning curves are visualized in Fig. S4 in the ESI.†

3.1 Convolutional neural networks (CNN)

The CNN architecture consists of convolutional and fully con-
nected layers together with pooling and flattening layers. The
first part of the architecture includes a stack of convolution
layers extracting relevant features from the data and producing
new data representations called ‘‘feature maps’’. The main
advantage of convolutional layers is that they function as filter
banks where the parameters are learned, and the level of
abstraction related to the data representation increases layer-
by-layer. Another benefit is moderate invariance to spatial or
spectral translation enabled by the fact that each neuron in the
convolution layer is connected to a limited neighbourhood of
neurons of the preceding layer and the weights are shared by
the neurons. This is relevant in Raman spectroscopy applica-
tions where the spectral lines/peaks can be shifted within the
spectrum. In the second part of the architecture, fully con-
nected layers have no limitations concerning the connections
from the preceding layer and their respective weights. They are
used to learn the mapping from the feature representation to
the desired output of a specific type and dimensionality.

The CNN architecture used here is SpecNet.35 The
typical schematic of the CNN model’s architecture is presented
in Fig. 1(a). It is composed of five 1-dimensional CLs
(128,64,16,16,16) with filters of dimensions (32,16,8,8,8) and
three FCLs of (32,16,640) dimensions, all followed by ReLU
activation function, while Adam is applied as the optimization
function and the loss function is MSE. It aims to remove the
NRB, which produces different levels of spectral distortions,
from the input broadband CARS spectra.

3.2 Very deep convolutional autoencoders (VECTOR)

An autoencoder (AE) is an artificial neural network (ANN)
architecture that encodes high-dimensional input data to a
low-dimensional latent space and then learns how to recon-
struct the input from this low-dimensional vector. This archi-
tecture has been applied to different problems including facial
recognition,45 feature detection,46 and anomaly detection.47

Typically, an AE is constructed from a symmetrical encoder
and decoder with fully connected layers.48 The encoder receives
high-dimensional input data and during the training process
learns how to reduce its dimension. It can be considered as a
feature extractor that produces a feature representation of the
lowest dimensionality from the encoder. In addition to redu-
cing the dimensionality, this representation is unable to model
the noise and nonessential information from the input data.
The decoder learns how to reconstruct the input data from the
encoded representation.

In this work, we have used the VECTOR-16 architecture
proposed by Wang et al.32 We have retrained it without modify-
ing its architecture. It is composed of an eight-layer encoder of
fully convolutional (1D) and a symmetrical eight-layer decoder
of fully transposed convolutional (1D), and stochastic gradient
descent (SGD) was used as an optimizer. MAE is used as the
loss function between the input CARS spectra and the clean
Raman spectra. In addition, skip connections49 have been
used, which connect each layer from the encoder to the
corresponding paired layer from the decoder; they avoid the
padding phenomenon that usually happens in convolutional
layers. These skip connections speed up the training process
and improve the model’s performance in deeper networks
compared to the plain ones. They also help to mitigate the
overfitting problem when the model is too complex and there-
fore improve the model generalization.

3.3 Long short-term memory (LSTM) neural network

A recurrent neural network (RNN) is a type of ANN that allows
the modelling of temporal dynamic behaviour in the architec-
ture by containing loops between the layers. This characteristic
enables the data samples to be dependent on each other and
memorization of previous information – a feature that tradi-
tional ANNs suffer from. However, RNNs suffer from a problem
related to long-term dependencies, which means that if the
delay/distance between the depending input samples or
sequences increases, it cannot model such dependencies.50 As
a remedy for this problem, a long short-term memory (LSTM)
network has been introduced.51 The LSTM architecture is based
upon four neural network layers, including the forget gate,
input gate, output gate, and cell state.

The proposed LSTM architecture is adapted from this
work.30 Their code is not available for direct reuse, and its
architecture is simple. It contains one LSTM layer of 30 units
with ReLU as an activation function and sigmoid as a recurrent
activation function. The loss function is MSE, the optimizer is
Adam, and the learning rate is 0.005. They have simulated the
CARS spectra with NRB as weak and strong regions.

3.4 Bidirectional long short-term memory (Bi-LSTM) neural
network

A bidirectional long short-term memory (Bi-LSTM)52 network
is a variant of the LSTM architecture that enables the input
data sequence to be modelled in both directions, forward
and backward. This is implemented by following the input
sequence backward through an additional backward LSTM
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layer. Then the outputs of both forward and backward layers are
combined through several ways, including average, sum, multi-
plication, and concatenation. Using two LSTM layers improves
the learning of the long-term dependencies, and this leads to
an improved final accuracy of the model.

The LSTM architecture is usually applied to ordered data
without time labels like text classification or to constant time-
sampling rates such as stock price predictions. All these are
usually observed in irregular time-sampling rates. Hence, a
preprocessing method named functional principal component
analysis (FPCA) was applied. Therefore, an additional dimen-
sion is needed to contain the phase information of the spec-
trum. Hence, the DL model should have an additional channel
to contain it as the input data as well. LSTM does not have this
channel, so as the solution, the Bi-LSTM model has been used
and the phase information was integrated as the input as well.
The proposed Bi-LSTM architecture was obtained from this
work.44 It consists of three bidirectional layers, each of them
having 30 units, and a time-distributed fully connected layer as
output, therefore achieving an output for each time step. MSE
and Nadam were used as the loss function and the optimizer,
respectively.44

4. Results and discussion

In the following sections, the results of the four models are
discussed. First, the models are evaluated on the simulated
data and later experimentally measured CARS data.

4.1 Prediction on synthetic data

Initially, the efficiency of the four-trained models is demon-
strated by retrieving the imaginary part from the 300 synthetic
test spectra. These test spectra were independently generated
apart from the training set where the spectral simulation
parameter values are randomly selected from the given range
of values as enumerated in Table 1. The NRB utilized for
generating training data is a 4th-order polynomial function.
However, three different NRBs were considered to simulate
these 300 test spectra. Here, the idea is to estimate the four
models’ performance when they encounter the spectra simu-
lated with NRB other than the 4th-order polynomial function.
Furthermore, the first hundred spectra (1–100) of the 300 test
spectra are simulated by considering the NRB as a ‘Product of
two Sigmoid’, whereas spectra 101–200 are generated by assum-
ing NRB as ‘One sigmoid’. The last hundred (201–300) spectra
were synthesized by adapting the NRB as a ‘4th order poly-
nomial function’. These 300 synthetic test spectra are available
here.43

4.1.1 Extraction of the imaginary part. Fig. 2(a)–(d) repre-
sents the predicted imaginary part of the 295th test spectrum
by the VECTOR, Bi-LSTM, CNN, and LSTM models, respectively.
This spectrum is arbitrarily considered as an example from the
entire test set only to visualize the efficacy of the four trained
models. In each plot, in the input, the CARS spectrum is
presented at the top in green. The true and predicted imaginary

Fig. 2 Comparison of the results obtained from the four models: (a)
VECTOR prediction, (b) Bi-LSTM prediction, (c) CNN prediction, and (d)
LSTM prediction. The labels ‘True’ and ‘Pred’ represent the true and
predicted imaginary parts, respectively.
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parts are shown in the middle, with black and green colors,
respectively. The error between the true and predicted values is
estimated; then the square of the error (SE) is presented at the
bottom with the blue line. This SE plot can be considered a
visualization tool for validating the performance of the models.
The four models extracted all the spectral lines, albeit their
intensity has deviated from the actual one for some models, as
shown in Fig. 2(a)–(d). The estimated SE is found to be higher
for LSTM, followed by the VECTOR, CNN, and Bi-LSTM,
respectively.

It is noticed that some peaks with lower intensity were
observed on either side of the spectra for CNN, which were
actually not present in the true Raman signal. These spurious
lines can degrade the performance of the CNN compared to
other models. In the case of LSTM, the predicted spectral line
intensities are a little higher; on the contrary, it is slightly lower
for the VECTOR prediction. Fig. 2(c) illustrates the Raman
signal retrieved from the Bi-LSTM model, where the extracted
imaginary spectrum closely resembles the true spectrum. Also,
it has not predicted any other spurious lines throughout the
spectral range.

The SE plot visualization (represented at the bottom of the
Figure, for example, see Fig. 2(a)) efficaciously demonstrates
the differences between the true and retrieved Raman signals
throughout the spectral range for a single test spectrum. Never-
theless, visualization for the entire test set would not be
feasible. Therefore, the mean square error (MSE) plot is con-
sidered for evaluating each trained model, as shown in
Fig. 3(a)–(d). The MSE is estimated by averaging the measured
SE over 300 test spectra. The black dots in Fig. 3(a)–(d)
represent the average SE, and the red line corresponds to
their standard deviation. For easy interpretation, the total
spectral window can be divided into three parts, the first region
(0–0.1 cm�1), midregion (0.1–0.9 cm�1), and last region
(0.6–1 cm�1), where the middle region itself accounts for 80%
of total data points, and the remaining 20% represents the first
and last regions.

It is also observed that the error is less in the midregion
compared to the other two regions of the spectra. The mea-
sured MSE is the highest in the first region compared to the
remaining two regions, as shown in Fig. 3(a)–(d). It is true for
all four models, irrespective of their architecture. The standard
deviation is found to be a maximum of B0.06 for the VECTOR
and CNN, and it is slightly less for the LSTM B0.055. However,
a drastic change is observed in the case of the Bi-LSTM model,
which has shown a 60 times lower standard deviation contrary
to the other models, that is, only B0.0012. Also, the deviation is
approximately the same throughout the spectral range, except
for a few points for the Bi-LSTM. However, the scenario is
entirely different for the other three models. The deviation in
the first region is more than 15 times compared to the
midregion for the VECTOR model, whereas it is 5 and 10 times
for the LSTM and CNN models, respectively.

In the last region, the maximum deviation is observed for
the CNN model, that is, B0.035, whereas the minimum is for
the Bi-LSTM, that is, B0.001. In the case of VECTOR, it is

Fig. 3 (a)–(d) The mean square error estimated for VECTOR, Bi-LSTM,
CNN, and LSTM models, respectively. The black dots represent the mean
value, whereas the red line corresponds to the standard deviation mea-
sured from the 300 test spectra.
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B0.025, and it is B0.005 for the LSTM model. Also, the
deviation is nearly the same in the mid and last regions for
the LSTM. Overall, the MSE plot visually demonstrated that the
Bi-LSTM model has a superior capability in predicting the
imaginary part from the CARS spectra among all four models.
The same behaviour is noticed for the mean absolute error (MAE),
as shown in Fig. S5 in the ESI.† In the following section, Pearson
correlation analysis is performed. It provides a unique numerical
parameter for each test spectrum, that is, a correlation coefficient.
Hence, it can be utilized as a performance metric for validating the
predictions of the four different models.

4.1.2 Pearson correlation analysis. It is a statistical
approach that estimates the strength of the linear relationship
between two sets of continuous variables and provides a unique
numerical value, that is, Pearson correlation coefficient
(PCC).53 In this context, it represents a similarity percentage
between the true and predicted imaginary parts of the CARS
spectra. The measured PCC values can lie in the range of �1
and 1, which correspond to negative and positive linear correla-
tions, respectively.54 Overall, PCC value 1 represents the best
match, that is, true and predicted spectra are identical, whereas
0 corresponds to no similarity at all. Finally, the correlation
analysis is performed on the imaginary parts predicted by the
four models, and the results are presented in Fig. 4(a)–(d),
respectively. Two data points in the parathesis in Fig. 4 repre-
sent the test spectrum number and its measured PCC value,
respectively.

The PCC values estimated for the Bi-LSTM model have given
higher coefficients compared to the other models for more than
97% of test spectra, as shown in Fig. 4(b).

Only one spectrum has given a PCC value of B0.80 out of
300 spectra; all others have given PCCs of more than 0.92. In
the case of CNN and VECTOR, four spectra have a PCC value
less than 0.8, and it is five spectra for the LSTM model.
Furthermore, a histogram plot is drawn to graphically visualize
the distribution of the estimated PCCs for the 300 test spectra,
as shown in Fig. 5. This plot presents the number of spectra
that have the PCCs in a specific range, that is, frequency count
in the selected PCC range. For example, seven spectra have PCC
between 0.9 and 0.92 for the LSTM. Cumulatively, 273, 299, 264,
and 273 spectra have PCCs 4 0.9 for the VECTOR, Bi-LSTM,
CNN, and LSTM models, respectively, which account for more
than B90% of the test spectra. Hence, their distribution (on
the x-axis) is presented only in the range of 0.9–1 instead of 0–1,
which ascertains the best visualization of the PCC distribution.

Also, it is noticed that 282 spectra have PCC values 40.98 for
the Bi-LSTM model, which corresponds to the B94% of total
test data. It demonstrates that the Raman signal extracted
using the Bi-LSTM model is in better agreement with the
ground truth. On the other hand, only 102 and 131 spectra
have PCC values 40.98 for the CNN and LSTM models,
respectively, which account for less than B50% of the total
data. The CNN and LSTM models’ performances were found to
be almost the same when comparing their PCC values. Hence,
the frequency count in most of the bins is approximately the
same for the LSTM and CNN models. Furthermore, their

estimated PCC difference is less than 0.05 for 253 spectra and
less than 0.1 for 285 spectra, as shown in Fig. S2 in the ESI.†

Furthermore, it is observed that the maximum PCC value
obtained is close to 1 for all the models. Nevertheless, the
minimum values have shown a notable variation when

Fig. 4 Pearson correlation coefficient (PCC) values estimated on pre-
dicted imaginary part by the (a) VECTOR, (b) LSTM, and (c) CNN, and (d)
LSTM models. The data points in the parentheses represent the test
spectrum number and its PCC value, respectively. A red asterisk denotes
the lowest PCC value in the entire dataset. The blue asterisk represents the
second-lowest PCC value.

Fig. 5 Histogram plot of the measured PCC values of the four models.
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compared with the predictions of the Bi-LSTM model. The lowest
predicted PCC value is B0.81 for the Bi-LSTM; meanwhile, it is
B0.58, B0.62, and B0.67 for the LSTM, VECTOR, and CNN
models, respectively. The test spectrum with the lowest PCC value
in each model is marked with a red asterisk (*) for easy representa-
tion. For example, it is the 257th spectrum for the VECTOR
prediction, the 108th spectrum for CNN, and the 172nd spectrum
in the case of Bi-LSTM and LSTM models.

The second lowest PCC value is presented with a blue asterisk.
These test spectra, along with their Raman line shapes extracted by
the four models, are shown in Fig. 6. These visualizations inher-
ently represent the limitations of each model in retrieving the
imaginary part from the CARS spectra. It also investigates the route
cause for attaining the lowest PCC value for each trained model.

Fig. 6(a1)–(a4) illustrates the results obtained from the 257th
test spectrum using VECTOR, Bi-LSTM, CNN, and LSTM

Fig. 6 Comparison of the results obtained from the four models. (a1)–(a2) Raman signal extracted from the 257th test spectra using VECTOR, Bi-LSTM,
CNN, and LSTM models, respectively. (b1)–(b4) Results of the 172nd spectrum. (c1)–(c4) Results of the 108th spectrum. ‘Pred’ is the predicted Raman
signal, and ‘True’ represents the actual Raman signal. Squared error corresponds to their difference.
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models, respectively. The input CARS spectrum has four spec-
tral features in the entire spectral range where all the lines have
a higher intensity, except for the peak at 0.66 cm�1. Among
four lines, one is located near the right extrema, that is, at
0.99 cm�1, and it could not be extracted by the VECTOR,
whereas the other three models predicted it, but a huge error
is found in the case of CNN. A similar observation was noticed
in our previous work,33 where the CNN prediction capability is
poor at the edges. The LSTM and Bi-LSTM models have
predicted all the lines, including the line at 0.99 cm�1, and
the predictive performance was found to be the same for both
models. Furthermore, this inefficient extraction of the Raman
line at 0.99 cm�1 has given an SE of B0.19 for the VECTOR and
led to the minimum PCC value in the entire test dataset, that is,
B0.62. The SE for the Bi-LSTM, LSTM, and CNN is B0.005,
B0.01, and B0.08, respectively.

Fig. 6(b1)–(b4) shows the results of the 172nd test spectrum
obtained from the VECTOR, Bi-LSTM, CNN, and LSTM models,
respectively. The input CARS spectrum has one strong line at
B0.86 cm�1 and three very faint spectral lines in the remaining
spectral range. These faint lines’ intensities are close to the
noise level. Also, the maximum spectral line intensity is only
B0.062, and due to this, the spectrum looks noisy compared to
other test spectra where the intensities are higher by more than
order. All four models predicted only one line at B0.86 cm�1,
and the rest of the lines were not extracted properly. Further-
more, the predicted intensities are matched with the true one
for the Bi-LSTM where the lowest SE is noticed, that is, B0.001,
and the SE is 4, 48, and 18 times more for the VECTOR, LSTM,
and CNN models, respectively. It is also observed that all the
models have predicted some spurious lines with minute inten-
sities throughout the spectral range. These observations
affected the PCC measurements, and hence, the lowest coeffi-
cients, B0.81 and B0.58, are achieved for Bi-LSTM and LSTM
models, respectively.

Fig. 6(c1)–(c4) illustrates the 108th test spectrum results
obtained from the VECTOR, Bi-LSTM, CNN, and LSTM models,
respectively. The input CASRS spectrum has several vibrational
spectral features with different peak intensities. Nevertheless,
the first spectral line at B0.006 cm�1 (on the left extreme) has
only half part, that is, the spectral line is started with the
trailing part instead of the rising part. It is observed because of
considering the spectral line/peak generation anywhere on the
entire spectral range (0–1) during the CARS spectra simulation.
So, the lines generated close to the extremes sometimes have
either a rising or trailing part depending on the peak position
and width. Hence, the error may also occur on the right side of
the spectrum, as reported in our previous study.33 The CNN and
VECTOR models have predicted all the Raman lines except for
the first line at B0.006 cm�1, which is because of considering
only half part of the spectral line. Similar observations were
also noticed in the previous studies where the CNN model
performance deteriorated when it encountered the spectral
lines, with only having either a rising or trailing part.33 This
inherent constraint has given a high SE of B0.15 and affected
the PCC measurements, where its value is minimum (B0.67)

for the CNN model and the second lowest PCC value (B0.70)
for the VECTOR model. This could be a reason for the high MSE
observed on either side of the extrema for the VECTOR and
CNN models, as shown in Fig. 3(a) and (c), respectively.
Furthermore, the Bi-LSTM and LSTM have predicted all the
lines, including the first one on the left end. However, the
LSTM model has given a high error compared to the Bi-LSTM
model, which is of more than order.

Furthermore, the test spectra corresponding to the second
lowest PCC value are presented in the ESI,† Fig. S3. It is the
84th spectrum for the CNN (B0.69), the 111th spectrum for the
LSTM (B0.65), and the 129th spectrum for the Bi-LSTM
(B0.93) model. The results of the 111th spectrum are presented
in the ESI,† Fig. S3(a1)–(a4), where the two spectral features are
not predicted by the four models. These two spectral lines are
very faint. Also, the predicted intestines have deviated, and the
error is the highest for the LSTM, which is reflected in PCC
measurements, and the error is minimum for the Bi-LSTM. The
results of the 129th test spectrum are shown in the ESI,† Fig.
S3(b1)–(b4), where the input CARS spectral line intensity is low.
The SE of the spectral line at B0.97 (on the right extreme) is
only B0.004 for the Bi-LSTM, whereas it is more than 20 times
for the other three models. However, the Bi-LSTM could not
predict the two lines, which led to the second lowest PCC value.
Furthermore, the other three models also did not retrieve three/
four lines. In the case of the 84th spectrum, four models have
predicted all the lines. Nevertheless, the retrieved peak inten-
sities are deviated for all the models, except for Bi-LSTM, as
shown in the ESI,† Fig. S3(c1)–(c4). The deviation is found to be
maximum for the CNN, followed by the LSTM, VECTOR, and Bi-
LSTM, respectively. The SE of the spectral line at B0.97 (on the
right extreme) is only B0.002 for the Bi-LSTM, whereas it is 30,
22, and 13 times more for the CNN, LSTM, and VECTOR
models, respectively. These visual findings clearly demonstrate
that the Bi-LSTM model has superior capability in predicting
imaginary parts compared to the other three models.

In conclusion, Fig. 4, 6 and the ESI,† Fig. S3, have visually
demonstrated the imaginary part prediction capability of four
models where the performance of the Bi-LSTM model was found
to be best. Numerically, it performed well on more than 97% of the
total test dataset (i.e., it has a higher PCC value than the other three
models). It also revealed that the Bi-LSTM model has better
capability when extracting spectral lines at the ends, even though
they only have either a rising or trailing part which led to the lowest
MSE even at the edges, as shown in Fig. 3(b).

Furthermore, the efficiency decreased when only it encoun-
tered the noisy CARS spectrum with a very low intensity. The
results of the experimental CARS spectra are discussed in detail
in the next section.

4.2 Prediction on experimental CARS spectra

This section critically examines the four trained models’
potential by retrieving the Raman signal from the experimen-
tally recorded CARS spectra. This detailed interrogation pro-
vides a comprehensive overview of the model’s performance
when working with the real CARS data, namely, ADP/AMP/ATP
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mixture, DMPC, yeast, and protein samples. These biological
samples have different resonance vibrational bands with var-
ious backgrounds. The sample preparation details and experi-
mental setup overview are presented in Section 2.2.

Fig. 7 shows the results obtained from the four models on
these experimental CARS data. Each plot in Fig. 7 is a three-

stacked plot (see Fig. 7(a) for reference). The first row repre-
sents the input CARS spectrum (green line), and the second row
shows the true (black line) and predicted (red line) imaginary
parts. The labels ‘True’ and ‘Pred’ in the Figure correspond to
the imaginary part extracted by the maximum entropy method
and trained DL models, respectively. Furthermore, the third

Fig. 7 Results of the experimental CARS spectra. (a1)–(a4) The imaginary parts predicted by the VECTOR, Bi-LSTM, CNN, and LSTM models for the
protein sample in the spectral range of 800–1800 cm�1, respectively. (b1)–(b4) Prediction of the protein sample in the spectral range of 1830–3100
cm�1. (c1)–(c4) Predictions on yeast sample.
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row represents the square of the error (blue line), that is, the
square of the difference between the predicted and true ima-
ginary parts. In each sample, the y-axis scale is considered to be
the same for all four models for better visualization.

Fig. 7(a1)–(a4) represents the results of the protein sample in
the fingerprint region (700–1900 cm�1) obtained from the
VECTOR, Bi-LSTM, CNN, and LSTM models, respectively. It
has various resonance vibrational bands, including tyrosine
peaks at 850, 1210, and 1616 cm�1; amide I bands (B1220–
1250 cm�1); amide III bands (B1600–1700 cm�1); and CH2
band at 1445 cm�1. Here, the prediction of the Bi-LSTM model
is in good agreement with the true one, where the SE is only
B0.02. In contrast, the LSTM model prediction is poor, where
the extracted line shapes are very broad, and intensities deviate
from the true ones. The other two models also predicted the
spectral lines, albeit the intensities differed from the actual
signal. Hence, the SE is found to be 6 times more for the
VECTOR model compared to the Bi-LSTM, and it is 20 times for
the LSTM and 5 times for the CNN. These observations are
reflected in PCC measurements as shown in Fig. 9(a), where the
highest value is obtained for the Bi-LSTM, that is, B0.95, and
the minimum is for the LSTM B0.42. The other two have given
the same value, B0.89.

Fig. 7(b1)–(b4) represents the results of the protein sample
in the range of 1830–3100 cm�1 from the VECTOR, Bi-LSTM,
CNN, and LSTM models, respectively. The predicted line shapes
match with the true one for the Bi-LSTM, but the peak inten-
sities have slightly deviated. In contrast, the CNN and VECTOR
models have correctly extracted the peak intensities; however,
the line shapes have deteriorated. Similar behaviour is noticed

for the LSTM, and in addition, a broad spurious peak is also
observed in the spectral range of 2200–2400 cm�1. An overall
minimum SE of B0.032 is noticed for the Bi-LSTM, and a
maximum of B0.059 is noticed for the LSTM.

Fig. 7(c1)–(c4) illustrates the imaginary part retrieved from
the yeast sample by these four models, respectively. All the
models except for the LSTM have extracted major resonance
spectral features (a C–H bend of the aliphatic chain at 1440
cm�1, an amide band at 1654 cm�1, a CQC bending mode of
phenylalanine at B1590 cm�1); nonetheless, the predicted
intensities have deviated for the VECTOR and CNN models
compared to the Bi-LSTM. In the case of LSTM, an intense
ringing structure has appeared throughout the spectral region,
excluding resonance peak positions that are not present in the
true Raman spectra. The maximum estimated SE for Bi-LSTM is
B0.04, and it is more than two times for the LSTM and CNN.
The error is more than an order for the LSTM due to the
deteriorated spectral line shapes. The measured PCC values
also conveyed the same information, where the predictive
performance is superior for the Bi-LSTM (B0.96) model, fol-
lowed by the VECTOR (B0.92), CNN (B0.89), and LSTM
(B0.41), as shown in Fig. 9(a).

The results of the ADP/AMP/ATP mixture obtained by the
VECTOR, Bi-LSTM, and LSTM are presented in Fig. 8(a1)–(a3).
The CNN model prediction can be found here.35 The adenine
vibrations are observed in the range of 1270 to 1400 cm�1, and
the strongest one is noticed at B1330 cm�1, as shown in
Fig. 8(a1)–(a3).55 All four models have retrieved these adenine
vibrations, albeit the extracted line intensities do not match
with the true intensities. The measured SE in this spectral

Fig. 8 Results of the experimental CARS spectra. (a1)–(a3) The imaginary parts predicted by the VECTOR, Bi-LSTM, and LSTM models for the ADP/AMP/
ATP mixture, respectively. (b1)–(b3) Predictions on DMPC sample.
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range is noticed maximum for the VECTOR models (B0.003),
followed by the LSMT (B0.04), Bi-LSTM (B0.004), and CNN
(B0.001).56 Furthermore, the symmetric stretching vibration of
the triphosphate group of ATP (B1123 cm�1) is retrieved by all
the models except for the LSTM. Hence, the highest SE is
observed for the LSTM (B0.36) and the minimum is observed
for the CNN (B10�5). In the case of Bi-LSTM, the SE is B10�4,
and it is B10�2 for the VECTOR. A similar behaviour is noticed
for the diphosphate resonance band (B1100 cm�1). The mono-
phosphate resonance band of AMP (979 cm�1) is only extracted
by Bi-LSTM and CNN. The LSTM and VECTOR models could
not predict it and led to high SE. Here also, the PCC values
measured for all four models with the Bi-LSTM and CNN are
the best among all as they have the highest coefficient of
B0.93, followed by VECTOR (B0.85) and LSTM (B0.42).

Fig. 8(b1)–(b3) depicts the results of the DMPC sample
retrieved from the VECTOR, Bi-LSTM, and LSTM models,
respectively. The results of the CNN can be found here.35

Prominent vibrational bands such as the CH stretch mode,
symmetric and antisymmetric stretching modes of methylene
groups, and overtone of the methylene scissoring mode
appeared in the range of 2600–3000 cm�1.57,58 All four models
have extracted these vibrational bands except for the LSTM. It
could not predict the vibrational mode at 2946 cm�1 and led to
a high error. Also, a strong spurious line appeared on the right
extreme for the LSTM prediction. These observations have
affected the PCC measurements, where the PCC values are
B0.8, B0.93, B0.89, and B0.42 for the VECTOR, Bi-LSTM,
CNN, and LSTM models, respectively, as shown in Fig. 9(a).
The Bi-LSTM model performance was found to be the best
among all, where the highest average correlation coefficient is
obtained for the Bi-LSTM, followed by CNN, VECTOR, and
LSTM models, respectively, as shown in Fig. 9(b). However, a
relatively higher computational time is required for Bi-LSTM, as
presented in Table S1 in the ESI.†

Overall, the BLSTM model predictions are optimum not only
on the synthetic data but also on the experimental data.
However, a few limitations were noticed when evaluating it
on the spectra with low spectral line intensities and higher
noise levels where it could not find some peaks. These observa-
tions suggest that modification of the spectral simulation
parameters is required. Especially, we are planning to train

the model with data generated by different noise levels in our
future work. It would also be interesting to train the model with
data generated by different simulation parameters (number of
peaks, frequencies, amplitudes, etc.) to fit specific applications
in different spectral regions.59 Also, fine-tuning or transferring
learning mechanisms can be explored to circumvent these
limitations, which positively impacts model performance.

5. Conclusions

We have systematically evaluated four DL models, namely,
CNN, LSTM, VECTOR, and Bi-LSTM, to retrieve the Raman
signals from the CARS spectra. These four algorithms funda-
mentally differ from each other and provide a comprehensive
overview in the context of applying them to CARS data analysis.
All the models were trained with CARS simulated with the NRBs
as a fourth-order polynomial function. The test dataset (300
spectra) is independently generated, where three different
NRBs (a fourth-order polynomial function, a product of two
sigmoid, and a single sigmoid) are considered for every
100 spectra. The predictions of the test spectra revealed that
Bi-LSTM performance is superior, where the measured mean
square error is 60 times less compared to the other three
models. Also, it predicted the spectral lines on either end of
the spectra, but the other three models could not extract the
same. Furthermore, the correlation analysis revealed that 97%
of test data have a higher correlation coefficient for the Bi-LSTM
model than the other three models. Also, B94% of total test
spectra have PCC values 40.98 for the Bi-LSTM model, whereas
the value is 57% for the VECTOR, 34% for the LSTM, and 44%
for the CNN model. Finally, the predictions on four experi-
mental samples (protein, DMPC, ADP, and yeast) also con-
firmed the same, where the predictive capability is best for
the Bi-LSTM model compared to the other three. This systema-
tic study shows that the Bi-LSTM model has great potential and
provides a giant leap toward analysing the CARS data.
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Fig. 9 (a) The PCC values measured on the experimental CARS predictions using four trained models. (b) The average value of the PCCs estimated from
the five experimental CARS data.
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