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Phase equilibria of symmetric Lennard-Jones
mixtures and a look at the transport properties
near the upper critical solution temperature†

Ivan Antolović, a Jens Staubach,b Simon Stephan b and Jadran Vrabec *a

This study investigates phase equilibria and transport properties of five symmetric binary Lennard-Jones

mixtures using molecular simulation and equation of state models. The mixtures are selected for their

representation of different types of phase behavior and the research contributes to the development of

simulation techniques, mixture theories and understanding of thermophysical mixture properties. A novel

method is introduced for determining the critical end point (CEP) and critical azeotropic end point (CAEP) by

molecular simulation. The van der Waals one-fluid theory is assessed for its performance in conjunction with

Lennard-Jones equation of state models, while addressing different phase equilibrium types simultaneously.

An empirical correlation is introduced to account for deviations between the equation of state and

simulation that arise when using the same binary interaction parameter. This study also investigates the

influence of the liquid–liquid critical point on thermophysical properties, which are found to exhibit no sig-

nificant anomalies or singularities. System-size effects of diffusion coefficients are addressed by extrapolating

simulation data to the thermodynamic limit and applying analytical finite-size corrections.

1. Introduction

For the fundamental understanding of fluid mixture properties
and the development of theories, Lennard-Jones (LJ) model
systems have been successfully studied for many decades. They
are an attractive tool because they are on one hand simple and
well-defined and, on the other hand, exhibit a large variety of
phase behavior types that can be found in real substances.

Consequently, LJ systems have been employed for the develop-
ment of theories, like for bulk phases via conformal solution
theory,1–4 interfacial properties5–7 or models for transport
properties.8–11 Moreover, binary LJ mixtures have been extensively
studied with molecular simulation to gain a better fundamental
understanding of the thermophysical properties of mixtures and
their relation to the molecular interactions, like excess
properties,12–14 phase equilibria,15–18 interfacial properties,19–24

entropic properties,8,25 Joule–Thomson inversion26 and transport
properties.27–29 Despite their simplicity, LJ mixtures exhibit a wealth
of phase behavior types, such as azeotropy and aneotropy,30

isopycnic inversion,31 barostatic inversion32 as well as different

types of criticality.33 Moreover, LJ mixtures are frequently used for
the development of simulation techniques.25,28

This work contributes to all three of the addressed aspects,
i.e. (i) simulation techniques, (ii) mixture theories and (iii)
fundamentals of thermophysical mixture properties. For these
purposes, five binary LJ mixtures were selected that exhibit
different types of phase behavior. These mixtures are throughout
symmetric, i.e. both components have identical size, energy
and mass parameters. The five mixtures only differ in their
cross-interaction parameter. Symmetric systems are a particu-
larly simple and well-defined mixture class so they were studied
occasionally.31,34,35

First, this work contributes to the development of simulation
techniques (i) for studying phase equilibria. Various methods are
available in the literature for determining vapor–liquid (VLE),
liquid–liquid (LLE), vapor–liquid–liquid equilibria (VLLE), azeo-
tropic points as well as liquid–liquid and vapor–liquid critical
points, cf. ref. 36.

However, to the best of our knowledge, no method has been
proposed yet for determining the critical end point (CEP) and
critical azeotropic end point (CAEP). These points bear sub-
stantial significance in the context of phase behavior, as they
refer to a specific combination of temperature, pressure and
composition where two distinct phases cease to exist. Moreover,
special thermodynamic and particularly characteristic condi-
tions hold at these points (see Section 2.2 for details). A binary
mixture may exhibit a single CEP and a single CAEP, which
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makes these points similarly characteristic as the critical
point of a pure fluid. A new method is presented here for
determining CEP and CAEP data by molecular simulation. For
the studied mixtures, VLE, LLE, VLLE and the azeotropic line
are also studied such that a comprehensive data set becomes
available.

Second, this work contributes to mixture theories (ii) by
studying the applicability of van der Waals one-fluid theory to
different phase equilibrium types. In van der Waals one-fluid
theory, the properties of a mixture are estimated by considering a
hypothetical pure component with interaction parameters derived
from those of the individual pure components.3 For modeling the
thermodynamic properties of mixtures, conformal solution theory
in the form of the van der Waals one-fluid theory3,37–40 has
become a central element. Yet, for modeling more complex phase
behavior, problems often arise upon simultaneously modeling
different phase equilibrium types (i.e. VLE, LLE and VLLE). Hence,
it seems that describing such equilibria simultaneously poses
conflicting objectives. The origin of this issue is not fully under-
stood, i.e. it might be in general due to deficiencies of the
underlying equation of state (EOS) or due to the employed
mixture theory. The performance of conformal solution theory
in the form of van der Waals one-fluid theory is systematically
assessed in this work. Accurate molecular simulation data
obtained under (i) are taken as a reference. This information
is used to test the performance of this theory in conjunction
with several EOS. The deviations arising from this theory used
in the EOS are compensated by adjusting the binary interaction
parameter xEOS of the EOS models such that good agreement
with the simulation data is obtained. Based on this approach,
the conflicting objectives for simultaneously describing VLE,
LLE and VLLE are rigorously quantified for the first time. This
provides insights into the performance of the van der Waals
one-fluid mixing rule applied to mixtures exhibiting different
phase equilibrium types.

Under (iii), the influence of a liquid–liquid critical point on
thermophysical properties is investigated, cf. Fig. 1. At critical
points, a phase equilibrium terminates in a sense that two
coexisting phases become equal, which is closely related to
fluctuations.42,43 While there is a wealth of information on the
influence of vapor–liquid critical points on different thermo-
physical properties, cf. ref. 44 for a review, less is known about
this issue for liquid–liquid critical points.24,45 At vapor–liquid
critical points, the heat capacities exhibit a pole and the
thickness of fluid interfaces diverges. Also, the shear viscosity
and the thermal conductivity exhibit peculiarities in the vicinity
of vapor–liquid critical points.44

This work is structured as follows: the simulation and
modeling methods are introduced together with the specification
of the LJ mixtures studied in this work. The results section
consists of three parts: (i) the simulation results for the phase
equilibria and characteristic points are presented and discussed;
(ii) the van der Waals one-fluid theory is assessed in conjunction
with different EOS models; and (iii) the behavior of various
thermophysical properties in the vicinity of a liquid–liquid critical
point is investigated.

2. Modeling and simulation

Five symmetric binary LJ mixtures were considered in this work,
which are defined by the shared size (s1 = s2), energy (e1 = e2) and
mass (m1 = m2) parameters of their pure components, while
variations are introduced by different cross-interactions. Inter-
actions between unlike LJ particles were described with the
modified Lorentz–Berthelot combining rules46,47

s12 ¼
s1 þ s2

2
; (1)

e12 ¼ x � ffiffiffiffiffiffiffiffi
e1e2
p

; (2)

where x is the binary interaction parameter. Although the pure
components are identical, non-ideal thermodynamic mixture
behavior can be introduced through x a 1. This is common
practice in the study of binary LJ mixtures31 and is equivalent to
moving along the vertical axis in a global phase diagram.48,49

Table 1 provides an overview of the considered binary mixtures,
their classification according to van Konynenburg and Scott50

and the properties studied in this work.
Note that the size, energy and mass parameters of the LJ

interaction potential of the components were used to reduce all
thermodynamic properties to dimensionless numbers on the
order of unity, e.g. temperature T* = TkB/e, pressure p* = ps3/e or

Fig. 1 T–x diagram at constant pressure p = 0.0724 (a) and p–x diagram
at constant temperature T = 0.85 (b) of mixture C (x = 0.80). Transport and
equilibrium properties were studied in the vicinity of the upper
critical solution temperature (UCST). EOS:41 predictive (dashed line) and
adjusted (solid line), simulation data: LLE (circles), VLE (crosses: vapor,
diamonds: liquid).
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self-diffusion coefficient D�i ¼ Di= s
ffiffiffiffiffiffi
me
p
ð Þ. For brevity, the

asterisk is omitted in the following with the understanding
that reduced quantities are reported throughout.

2.1 Simulation techniques for characteristic lines

Depending on the value of the binary interaction parameter x,
the LJ mixtures belong to varying types according to the
classification of van Konynenburg and Scott50 and have differ-
ent characteristic lines and points. Three mixture types were
considered in this work: type I-A, type II-A and type III-H, cf.
Table 1. The characteristics of these mixtures were investigated
with molecular simulation, which involved analyzing five specific
lines and points: VLLE line, critical LLE line, azeotropic line, CEP
and CAEP, cf. Fig. 2. Horizontal (a) and vertical (b) cuts in the p–T
plane were predominantly used to obtain these lines with simula-
tive means. The steep slope of the critical LLE line required
horizontal cuts in the T–x diagram, while the VLLE and azeotropic
lines were analyzed vertically in p–x diagrams as presented in Fig. 1.

While the characteristic lines and points can be obtained
rather straightforwardly from the EOS, the molecular simulation
tool ms2 used in this work does not allow for their direct
sampling. Therefore, dedicated techniques were required to
extract the characteristic lines and points from simulation data,
for which the symmetry of the mixtures was extensively utilized.

The three-phase VLLE incorporates both the VLE and LLE
and it is worth taking a closer look at the latter before moving
on to the VLLE conditions. In addition to thermal and mechan-
ical equilibrium, the equality of chemical potentials is required.
For LLE and VLE in a symmetric binary mixture, this require-
ment is expressed as follows:

mL1
1 = mL2

1 = mL1
2 = mL2

2 , (3)

mL
1 = mV

1, mL
2 = mV

2. (4)

Note that the conditions for LLE (3) and VLE (4) differ. Due to
the symmetry of the mixture, the LLE is a special case where the
equality of chemical potentials extends to the components as
well. The four chemical potentials under LLE (3) can thus be

summarized into a single value mLLE. Similarly, under VLE (4),
the chemical potentials can be summarized, but it has to be
differentiated between the components mVLE

1 and mVLE
2 . Moving

on to the VLLE, the necessary conditions are

mL1
1 = mL2

1 = mV
1, (5)

mL1
2 = mL2

2 = mV
2. (6)

Since all chemical potentials in the two coexisting liquid phases
are identical, eqn (5) and (6) can be combined to

mLLE = mV
1 = mV

2. (7)

Eqn (7) offers two separate, but equivalent routes to obtain the
VLLE. First, it is clear that the vapor phase must have an
equimolar composition (x1 = 0.5) due to the mixtures’ symmetry,
cf. Fig. 1. Equimolar vapor phase simulations yield the necessary
values for mV

1 = mV
2 = mV(x1 = 0.5). Second, it is known that the VLE

phase envelopes end at the three-phase line, cf. Fig. 1b. Since the
chemical potentials of the vapor and liquid phases are identical,
the equality of mV

1 = mVLE
1 and mV

2 = mVLE
2 holds at the VLLE. Now

both routes can be included in eqn (7), which leads to the
equation that was used here to determine the VLLE

mLLE = mVLE
1 = mVLE

2 = mV(x1 = 0.5). (8)

In summary, due to the symmetry of the mixtures, four otherwise
different chemical potentials must equalize under VLLE. All four
can be obtained for a given temperature through molecular
simulation runs with varying pressure and depicted in a m–p
diagram. Note that two of the four chemical potentials would
already be sufficient in any combination for determining the
VLLE. However, looking at all four chemical potential values
verifies the results and increases confidence in their correctness.
Fig. 3a shows the results for the four chemical potentials of the
LLE, VLE and vapor sampled with simulation. All four curves
intersect at a certain pressure, namely the vapor pressure ps of
the VLLE. The numerical results are listed in the ESI.†

Table 1 Mixtures and properties that were investigated in this work

Mixture A B C D E

Binary parameter x 0.60 0.75 0.80 0.85 1.20

Classification III-H II-A II-A II-A I-A

VLE

LLE

VLLE line

Critical line (LLE)

CEP

Azeotropic line

CAEP

Amn, cv, cp, . . ., G

Di, Ðij, Dij

Z, l
Fig. 2 Characteristic lines and points of mixture C in the p–T projection.
Horizontal (a) and vertical (b) cuts correspond to T–x and p–x diagrams
shown in Fig. 1. The labeled lines and points were the subject of this work –
lines: VLLE (blue), critical LLE (green) and azeotropic line (red) – points:
CEP (triangle down), CAEP (plus sign) and CP (star).
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The critical line of the LLE is constituted by the upper
critical solution temperature (UCST), which is a function of
pressure. Fig. 2 depicts the projection of this line on the p–T
plane, and it can be seen that it is very steep, almost parallel to
the pressure axis. At the critical point, the binodal and spino-
dal, which are characterized by a vanishing thermodynamic
factor G = 0, meet. For a binary mixture, the thermodynamic
factor is given by

G ¼ xi

RT

@mi
@xi

� �
T ;p

: (9)

In this work, the values for G were obtained by Kirkwood–Buff
integration (KBI),51 as outlined in the ESI.† Despite its wide use,
the KBI method encounters limitations when applied in the
vicinity of the LLE.52 It is mathematically incapable to yield
negative values for the thermodynamic factor. The thermo-
dynamic factor was additionally obtained by utilizing the deri-
vative of the chemical potential data that were sampled with
Widom’s particle insertion, cf. eqn (9). By sampling chemical
potentials in the homogenous liquid phase around the target
composition xi = 0.5, it was possible to shed light on this region.

The composition at the UCST is generally unknown, but due
to the mixtures’ symmetry, it is clear that it must be equimolar,
cf. Fig. 1b. Therefore, the thermodynamic factor at the UCST
will vanish there

G(TUCST, x1 = 0.5) = 0. (10)

Eqn (10) can be used to extract the UCST from the LLE
simulations that were performed in this work. Simulations at
x1 = 0.5 in the LLE temperature range were not feasible since,
apart from the UCST itself, all equimolar simulations would be
in the center of the unstable region.

Due to this limitation that obstructs direct simulations, a
model-based approach was used instead. The NRTL model was
selected and fitted to the chemical potential data sampled with
simulation in the stable liquid region to obtain an analytical
expression for the chemical potential from which the thermo-
dynamic factor can be extracted. This approach not only allowed
for the determination of the LLE but also provided a solution to
the issue of glancing intersections, which may lead to inaccurate
results.52 After fitting the NRTL model to simulation data, values
for the thermodynamic factor at x1 = 0.5 were calculated. A
model-based approach generally raises concerns about model
dependence. However, the present findings indicate that such
concerns are unfounded here, as discussed below.

Fig. 3b shows a G–T diagram with an exemplary isobar at
equimolar composition. Inside the miscibility gap of the LLE,
the thermodynamic factor is negative and has a positive, linear
slope. The zero crossing of G as a function of temperature
marks the UCST because it satisfies condition (10). UCST data
calculated in this work are listed in the ESI.†

2.2 Simulation techniques for characteristic points

The CEP marks the point where the VLLE ceases to exist and
where the LLE and VLE phase envelopes start to diverge. This
point is also characteristic of a specific mixture, lending itself

Fig. 3 Overview of the techniques used to obtain the characteristic lines
and points. (a) VLLE (blue), (b) UCST (green), (c) CEP (orange) and (d) CAEP
(red). Simulation data: LLE (circles), VLE (crosses: vapor, diamonds: liquid),
homogenous vapor (pentagons), rectilinear diameter (�).
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as a reference point. Once the VLLE line and the critical line of the
LLE have been determined as discussed above, their stark slope
difference was utilized to identify the CEP. While the VLLE line
has a slight bend near the CEP, the critical line of the LLE is
locally linear, cf. Fig. 3c. Fitting both lines and finding their
intersection yields a reasonable approximation of the CEP. A
direct simulation of the exact CEP location might be possible
and was tried for mixture C (x = 0.8) once its approximate location
was determined. However, this trial and error approach was found
to be ineffective compared to the one followed in this work.

The CAEP marks the end point of the azeotropic line and is
the last contact point between the two symmetric VLE envelopes.
They separate and each exhibits a critical point. Approaching the
CAEP along the azeotropic line, the liquid and vapor phases
become increasingly indistinguishable as their densities con-
verge. In order to determine the critical temperature Tc, pressure
pc and density rc at the CAEP, the scaling law for density and the
rectilinear diameter were employed53,54

rL � rV = A � (Tc � T)b, (11)

rL þ rV
2

¼ rc þ B � ðTc � TÞ; (12)

where b = 0.326 is the Ising critical exponent55 and rL, rV are the
saturated liquid and vapor densities at a given temperature T.
The parameters A, B and critical values Tc, rc can be determined
by fitting eqn (11) and (12) to simulation data along the
azeotropic line. The critical pressure was calculated in a similar
manner using a correlation proposed by Lotfi et al.56 Fig. 3d
shows the results for the critical temperature and density. CEP
and CAEP data calculated in this work are listed in Table 2.

2.3 Equations of state

For modeling purposes, four LJ EOS were used that were found
to yield a reasonable overall agreement with pure fluid refer-
ence data.57–59 These EOS were developed by Johnson et al.,60

Kolafa and Nezbeda,41 Lafitte et al.61 and Stephan et al.58 The
EOS of Johnson et al.60 is of modified Benedict–Webb–Rubin
(MBWR)62,63 type, whereas the remaining ones41,58,61 are based
on the perturbation theory of Barker and Henderson (BH).64,65

All four are formulated in terms of the Helmholtz energy41,58,61

or can be transformed into it.60

MBWR-type EOS are based on an empirically modified virial
expansion. For the three perturbation theory-based EOS, the
Helmholtz energy per molecule is split into a reference aref and
a perturbation term apert

a = aref + apert, (13)

which depend on temperature T and density r. BH-type EOS
uses the ideal gas contribution aid and a hard sphere contribu-
tion ahs as the reference

aref = aid + ahs. (14)

The dispersive interactions are captured within the perturba-
tion contribution apert and are calculated by BH theory64,65 in
case of the EOS of Lafitte et al.61 and Stephan et al.58 The EOS of

Kolafa and Nezbeda41 covers the dispersive interaction with a
combination of virial expansion and semi-empirical terms.

All four EOS were extended to mixtures using the van der
Waals one-fluid mixing rule.1,66 The binary interaction parameter
xEOS was introduced through the modified Berthelot combination
rule46,47 in the same way as for the force fields, cf. eqn (1) and (2).
The p–T diagrams of the binary mixtures were calculated with an
algorithm proposed by Deiters and Schneider.38,67

In the first step, all four EOS were applied to one mixture.
Based on these results, the most suitable EOS was chosen for
subsequent steps.

3. Results and discussion

Simulation results for phase equilibria and transport properties
are presented, discussed and compared to EOS results. First, it is
focused on the characteristic lines and points, which serve as a
‘‘fingerprint’’ for a given mixture and are particularly useful for
comparison purposes. The results are presented in the following
order: (1) simulation data are evaluated in terms of phase
equilibria which served as a benchmark for EOS. (2) The critical
point is then approached by simulation with a focus on transport
properties while incorporating an EOS for equilibrium properties.

3.1 Simulation results for characteristic lines and points

Three characteristic lines and two characteristic points were
investigated for five mixtures, cf. Table 1. Each line is com-
prised of several points that in turn were obtained through a
series of simulations and calculations involving numerous state
points and intermediate steps. For example, the VLLE line con-
sists of individual three-phase points that were derived from
preceding VLE, LLE and vapor phase simulations. The critical
LLE line consists of several UCST, each obtained by the thermo-
dynamic factor route. The azeotropic line consists of individual
azeotropic points as well. The critical points CEP and CAEP
require all of the above. Therefore, the presentation of these
characteristic lines and points in a p–T projection provides a
highly condensed summary of the available data and allows for a
thorough comparison between simulation and EOS. The number,
curvature and location of the characteristic lines and points
provide distinguishing features of each investigated mixture,
allowing both for classification into mixture types and differentia-
tion within a particular mixture type.

Fig. 4 presents the results for the mixtures B, C and E
according to Table 1, as well as the results obtained from the
EOS by Kolafa and Nezbeda.41 The variation of the binary

Table 2 Temperature and pressure values for the critical end points (CEP)
and critical azeotropic end points (CAEP) of mixtures B to E

Mixture B C D E

x 0.75 0.80 0.85 1.20

TCEP 1.000 0.904 0.776 —
pCEP 0.049 0.022 0.006 —

TCAEP 1.153 1.181 1.211 1.439
pCAEP 0.111 0.112 0.114 0.135
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interaction parameter x causes the characteristic lines and
points to shift along the pressure and temperature axes, either
above or below the pure component vapor pressure curve
(for x o 1 or x 4 1, respectively). For x = 1, all lines and points
coincide with the pure component vapor pressure curve. The
CEP and CAEP exhibit opposing trends, approaching each other
as x decreases. Below a certain threshold, CEP, CAEP and the
connecting azeotropic line disappear, leaving only a tricritical
point (TCP). This threshold is known as the ‘‘shield region’’,
within which CEP, CAEP, TCP and a quadruple point can coexist,
as demonstrated by Garrido et al.31 The values of x were chosen
in this study such that all mixtures fall outside of the shield
region, with mixture A being below and mixtures B to E above it.

The VLLE and azeotropic lines show a good agreement
between EOS and simulation results in terms of temperature
and pressure, with only minor deviations. However, the mole
fraction along these lines does not match well, as can be seen in
Fig. 1b for the three-phase line. To address these deviations, a
modified binary interaction parameter xEOS was introduced
into the EOS that differs from the force field parameter x. This
topic is discussed below in more detail.

For mixture B, the simulation matrix used for the LLE
calculations is provided as an example in Fig. 4a. The results of
numerous trial simulations have shown that a 4 � 4 grid is
sufficient to accurately obtain the VLLE, critical LLE lines and the
CEP through horizontal and vertical cuts. In addition, further VLE
simulations were carried out at constant temperature to accurately
locate the three-phase point and the azeotropic points.

It was observed that the critical LLE line is very sensitive to
variations of the binary interaction parameter x. This is demon-
strated by the significant difference in the rate with which it
propagates through the p–T plane compared to the VLLE and
azeotropic lines.

The results presented in Fig. 5 demonstrate that the CEP
and CAEP exhibit opposing trends. As x increases, the tempera-
ture of the CEP falls progressively, while the temperature of the
CAEP rises linearly. The simulation results suggest that the EOS
overestimates the temperature of these points, but the general
trends are in good agreement. The systematic overestimation of

simulation results by the EOS could be attributed to its failure
in exhibiting an appropriate scaling behavior near a critical
point. It should be noted that it is not possible to simply shift
the EOS to match one of these points without causing the other
to move in the opposite direction. The data indicate that the
CEP and CAEP may converge for some value x o 0.70. Extra-
polating the simulation data leads to an estimate of x E 0.68
for the intercept. However, this estimate should be viewed with
caution because the accurate location of the shield region was
not the focus of this work. CEP and CAEP data of the investi-
gated mixtures are listed in Table 2.

3.2 van der Waals one-fluid theory

The five mixtures studied in this work were modeled with four LJ
EOS, which were carefully selected among the large number of
such models available in the literature.58 For pure components, a
systematic evaluation of LJ EOS using a comprehensive compu-
ter experiment database57 showed that the one of Kolafa and
Nezbeda41 presently provides the best compromise of robustness
and accuracy.58,59 It exhibits a reasonable behavior in the vapor–
liquid two-phase region, i.e. it has a single van der Waals loop

Fig. 4 p–T projection of the phase behavior of mixtures B, C and E compared to the EOS of Kolafa and Nezbeda41 in predictive mode. Characteristic
lines and points: VLLE (blue), critical LLE line (green), azeotropic line (red), CEP (triangle down), CAEP (plus sign). EOS (solid lines and markers), simulation
data (empty markers). LLE simulation matrix (+).

Fig. 5 Temperature of the critical points as a function of the binary
interaction parameter x. Comparison between EOS41 in predictive mode
(solid lines) and simulation results for the type II mixtures B, C and D: CEP
(orange, triangles down) and CAEP (red, plus signs).
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and extrapolates well to extreme temperature and pressure con-
ditions with respect to Brown’s characteristic curves.59

As can be seen in Fig. 4, the UCST along the critical LLE line
was consistently overestimated by the EOS of Kolafa and
Nezbeda41 when using the same binary interaction parameter x.
Fig. 6 shows the adjusted binary interaction parameter xEOS that
was optimized with respect to the molecular simulation results for
mixture C. Results are shown for the EOS of Johnson et al.,60

Kolafa and Nezbeda,41 Lafitte et al.61 and Stephan et al.58 Both
VLE and LLE data from simulation were considered in the fitting
procedure for lower temperatures T r 0.92. For higher tempera-
tures, only VLE data were used for the fit. For each temperature
studied by molecular simulation, the xEOS value was fitted indivi-
dually. Thereby, the temperature dependence of xEOS(T) was
obtained, which can be taken as a measure for the deficiencies
of the mixture model. The values of xEOS close to the true value
x = 0.8 indicate a good predictive capability of the mixture model.
All studied EOS show the same qualitative behavior of xEOS: in the
low-temperature regime, it increases linearly with rising tempera-
ture and the slope is approximately the same. The EOS of Johnson
et al.60 and Kolafa and Nezbeda41 require very similar xEOS values,
which are significantly lower than those for the EOS of Lafitte
et al.61 and Stephan et al.58 in the low temperature regime. The
EOS of Stephan et al.58 exhibits the largest xEOS values.

In the temperature range where only VLE data were considered
in the fitting procedure (T 4 0.92), only a minor temperature
dependence of xEOS was observed. For the EOS of Stephan et al.,58

there is hardly any temperature dependence of xEOS. The EOS of
Lafitte et al.61 exhibits the largest xEOS values in the high tem-
perature regime, whereas the smallest xEOS values were obtained
for the Kolafa and Nezbeda41 EOS.

Important differences were observed for the xEOS values in the
low temperature regime (fitted to VLE and LLE data) and the high
temperature regime (only fitted to VLE data). In particular, xEOS

values obtained from the fit to the simulation data exhibit a
discontinuity in the vicinity of the CEP. This is the case for all four
considered EOS and might indicate deficiencies of the van der Waals
one-fluid mixing rule, which is reminiscent of EOS not consistently
describing VLE and LLE with a given parameter set. Subsequently,
only the EOS of Kolafa and Nezbeda41 was used as its binary
interaction parameter xEOS required the smallest adjustments.

Fig. 7 shows the results for the xEOS fit for all five mixtures
studied in this work. Results are shown for one type III mixture
(A), three type II mixtures (B, C, D) and one type I mixture (E). For
mixtures of type I and III, only a minor temperature dependence
of xEOS is observed. The binary interaction parameter xEOS for the
type II mixtures, on the other hand, was fitted to VLE and LLE
data, but shows no temperature dependence. The average offset
of xEOS from x is much larger for the mixture of type III than for
the mixture of type I. For all type II mixtures, a discontinuity was
observed in the vicinity of the CEP.

3.3 Equilibrium properties near the UCST

The attention is now turned to the Helmholtz energy deriva-
tives, which have been obtained with the formalism of Lustig,68

and the thermodynamic factor, which serves for conversion
between transport diffusion coefficients. The details of these
methods are outlined in the ESI.†

For the study of the critical point, one binary mixture and
one EOS were selected, namely mixture C and the EOS of Kolafa
and Nezbeda,41 cf. Table 1. In particular, it was focused on the
UCST as depicted in Fig. 1. The UCST was previously located
from the two-phase region (Go 0) and is now approached from
the homogenous region (G 4 0), yielding a value of TUCST =
0.9084 in both cases.

The partial derivatives of the reduced Helmholtz energy,
denoted as Amn, can be used to determine all thermodynamic
equilibrium properties, such as the isochoric heat capacity cv,
speed of sound w or the Joule–Thomson coefficient mJT. For
additional information on the subject, the reader is referred to
the ESI.† Fig. 8 shows the results for the residual contributions
Ar

mn to the reduced Helmholtz energy derivatives. The respec-
tive ideal gas contributions for the same states are given in the
ESI.† EOS and simulation results indicate that the derivatives
Ar

mn exhibit a linear trend with respect to temperature. Upon
the approach to the UCST, no notable changes were observed.
When comparing the simulation results and the EOS for the
given mixture, it was found that the slopes of the derivatives
are similar, but there are offsets. This deviation is more
pronounced for derivatives that are associated with caloric
properties Ar

10, Ar
20 than for the ones associated with thermal

properties Ar
01, Ar

02. The application of the adjusted binary
interaction parameter xEOS to the EOS resulted in curves that
are much closer to the simulation results. No significant system
size dependence was observed for the Helmholtz energy
derivatives.

Fig. 6 Binary interaction parameter of the EOS xEOS for mixture C (x = 0.8)
adjusted to simulation data as a function of temperature. VLE and LLE data
were included for T r 0.92 and VLE data only for T 4 0.92. Results are
shown for the EOS of Johnson et al.60 (triangles), Kolafa and Nezbeda41

(squares), Lafitte et al.61 (crosses) and Stephan et al.58 (diamonds). The
temperature of the CEP obtained from simulation is indicated by the
vertical line.
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At the critical point, the thermodynamic factor vanishes (G = 0),
which has specific implications for the Maxwell-Stefan (MS) and
Fick diffusion coefficients and their finite-size corrections. Fig. 9
shows the results for the thermodynamic factor obtained from
simulation and EOS. It is apparent that both approaches predict a
linear temperature dependence. This linearity largely persists as
the system transitions from the LLE to the homogenous phase.
Moreover, the simulation results from below and above the UCST
show a good agreement in terms of the zero crossing and slope,
considering that these regions were accessed in a different man-
ner. This validates the methodologies applied in this work and the
NRTL-based approach to obtain the thermodynamic factor. It also
demonstrates that the UCST could have been equivalently calcu-
lated from simulations in the homogenous phase only. The
combined use of both simulative approaches in this study allowed
for a comprehensive exploration of phase equilibria, capitalizing
on the unique advantages offered by each method.

Fig. 1 and 9 show the deviation between simulation data and
EOS in predictive mode, which is off by approximately DT = 0.04
in terms of the critical temperature. After applying the adjusted
xEOS to the EOS, the results coincide with the simulation data,
only the ascending slopes are not fully aligned.

The results from KBI show a strong system size dependence.
For clarity, the system size N = 2500 was left out in Fig. 9,
showing only the results for the larger systems N = 5000, 10 000
and 20 000. It is apparent that KBI data for larger systems tend
toward smaller values of G and thereby better agree with the
reference curve obtained from the chemical potential data. This
trend is reinforced by the choice of the underlying radial
distribution function (RDF) type and whether extrapolation
was applied. Three types of RDF were used to calculate the
KBI: the standard RDF, and two modifications – RDF corrected

according to Ganguly and van der Vegt69 (vdV) and a shifted
version thereof (vdV + shf).25 More details can be found in the
ESI.† The vdV-corrected and extrapolated version consistently
led to the lowest values of G, often improved by its shifted form.
Simulations for N = 20 000 were additionally extended further
into the homogenous phase. It appears that the KBI values
slowly converge to the reference curve for higher temperatures
further away from the critical point.

It is worth noting that all G values are relatively close to zero,
but the difference among them can be significant. Variations

Fig. 7 Binary interaction parameter xEOS for mixtures A to E adjusted to
simulation data as a function of temperature. Results were obtained by
fitting xEOS to VLE and LLE simulation data and are shown for the EOS of
Kolafa and Nezbeda41 (squares). The temperature of the CEP is indicated
by the triangles.

Fig. 8 Residual Helmholtz energy derivatives Ar
mn (top) and thermophy-

sical properties a, b, g, cv, cp, w, GG, mJT (bottom) near the UCST of mixture
C at p = 0.0724 and x1 = 0.5. Results from simulation (circles) are
compared to predictive (dashed line) and adjusted EOS (solid line).41 The
error bars of the simulation data were omitted for visibility reasons.
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due to different RDF types, correction methods and system size
can be large. For example, while the thermodynamic factor of
the largest system at T = 0.91 is as low as G E 0.06, it can be
three to four times larger for smaller systems, cf. Table 3. This is
particularly relevant for transport properties, as G is typically
used as a factor or divisor.

3.4 Transport properties near the UCST

In the vicinity of the studied liquid–liquid critical point, the
self-diffusion coefficient exhibits a linear temperature depen-
dence, cf. Fig. 10 (top left). The results show a consistent
behavior across all four system sizes, i.e. the curves have the
same slope but are vertically displaced. As the temperature
rises, the self-diffusion coefficient also increases as expected.

Unlike the self-diffusion coefficient, the results for the MS
diffusion coefficient display no notable temperature dependence
in this limited range of states, cf. Fig. 10 (center left). While the
data suggest a dependence on system size, the presence of
statistical uncertainties makes this relationship less discernible.
To overcome this issue, the scattered data for each system size

were averaged, effectively revealing a clear dependence on system
size, cf. Fig. 10 (center right).

Since the Fick and MS diffusion coefficients are related by
the thermodynamic factor according to Dij = G� Ðij, the Fick
diffusion coefficient traces the same linear trajectory as the
thermodynamic factor (cf. Fig. 9) multiplied by the constant
MS diffusion coefficient. Hence, the Fick diffusion coefficient
is zero at the UCST solely due to the thermodynamic factor. The
resulting set of curves highlights the system size dependence
through different slopes rather than displacements as observed
for the self-diffusion coefficient, cf. Fig. 10 (bottom left).

When examining the impact of system size in Fig. 10 (top right),
the self-diffusion coefficient reveals a linear relationship with the
inverse of the edge length of the simulation volume L�1. By fitting a
linear function to the simulation data and extrapolating to the
thermodynamic limit L�1 - 0, the value for DN

i coincides with the
intercept. Yeh and Hummer70 investigated the system size depen-
dence of the self-diffusion coefficient and proposed a correction
term to account for finite-size effects far from the thermodynamic
limit. Their correction term scales linearly with the inverse of the
edge length of the simulation volume L�1

D1i ¼ Di þDYH ¼ Di þ
zkBT
6pZL

; (15)

Fig. 9 Thermodynamic factor around the UCST (green circle) of mixture
C at p = 0.0724 and x1 = 0.5. Results from predictive (dashed line) and adjusted
EOS (solid line)41 have a linear slope below and above the UCST. Simulation
results were obtained from chemical potential data below (crosses) and above
the UCST (diamonds). KBI results are depicted as a shaded point-cloud (K) for
three system sizes. Results for N = 20 000 based on RDF vdV + shf and
extrapolated (white circles) were extended further into the homogenous region.

Table 3 Values for the thermodynamic factor of the equimolar mixture C
at T = 0.91 and p = 0.0724 obtained from KBI

RDF

N Standard vdV vdV + shf

2500 0.214(3) 0.194(3) 0.206(2)
5000 0.160(3) 0.14(2) 0.155(8)
10 000 0.137(4) 0.125(3) 0.123(2)
20 000 0.100(2) 0.091(1) 0.092(1)

Extrapolated to N - N

2500 0.139(3) 0.118(3) 0.129(2)
5000 0.104(3) 0.09(2) 0.098(8)
10 000 0.096(4) 0.081(3) 0.079(2)
20 000 0.069(2) 0.059(1) 0.059(1)

Fig. 10 Simulation results (left) and finite size correction (right) for the
self- (top), MS (center) and Fick (bottom) diffusion coefficients near the
critical solution point of mixture C at p = 0.0724. Simulation data (circles),
correction proposed by Yeh and Hummer70 (black squares), extrapolation
to the thermodynamic limit (purple squares). Linear (dash-dotted lines) and
constant (dashed lines) fits. MS diffusion coefficient data from extrapolated
Onsager coefficients (green cross).
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where kB is the Boltzmann constant, Z the shear viscosity and
z E 2.837297 is a dimensionless constant for cubic simulation
volumes.70

After applying the correction to the self-diffusion coefficient,
the average value of the corrected data demonstrates an over-
estimation in comparison to the value of DN

i obtained from
extrapolated simulation data. However, a more accurate com-
parison can be made by considering the slopes of the curves
instead of their intercepts. The correction term DYH aims to
equalize the slope of the self-diffusion coefficient so that only the
intercept DN

i remains. To obtain a horizontal fit curve for the results
in this work, DYH must be scaled down by approximately 22%.

Similar to the self-diffusion coefficient, a finite-size correction
for the MS diffusion coefficient was proposed by Jamali et al.71

ÐN

ij = Ðij + DYH/G. (16)

As shown in Fig. 10 (center right), the four system sizes scale
linearly with L�1 and the data have a modest slope, allowing for
an extrapolation to the thermodynamic limit L�1 - 0. However,
the correction (16) proposed by Jamali et al.71 suggests a qualita-
tively different behavior. By correcting the MS diffusion coeffi-
cient with a term that includes the inverse of the thermodynamic
factor, both its value and slope would drastically increase as the
system approaches the UCST, potentially even toward positive
infinity. Such an increase was not observed in the data along
either temperature or system size.

The present simulation results suggest that there must be
other factors at play when approaching the UCST so that a
division by G is not advisable. These findings highlight the
need for a more comprehensive approach to correcting the MS
diffusion coefficient near the critical point. Further research
into the system size effects of the MS diffusion coefficient in
this region is worthwhile.

In addition to the correction proposed by Jamali et al.,71 the
finite-size corrected MS diffusion coefficient can also be obtained
by extrapolating the Onsager coefficients to the thermodynamic
limit.72 Recently, Celebi et al.73 published a comprehensive over-
view of finite-size corrections for diffusion coefficients.

The system size correction for the Fick diffusion coefficient
can be calculated by applying Dij = G�Ðij to eqn (16)

DN

ij = Dij + DYH, (17)

where the thermodynamic factor cancels out and the correction
term DYH for the self-diffusion coefficient remains. At the UCST,
the first term in eqn (17) Dij becomes zero. Since the Yeh and
Hummer70 correction DYH has the form of a linear function
without intercept, it follows that the Fick diffusion coefficient
in the thermodynamic limit DN

ij also becomes zero, cf. Fig. 10
(bottom right). It can be concluded that all three diffusion
coefficients reach a finite value at the UCST, exhibiting no
singularities such as poles or local extrema. Moreover, in the
restricted range of states located in the immediate vicinity of
the UCST, they tend to approach the critical point in a linear or
even constant fashion.

The shear viscosity shown in Fig. 11 (top) appears to be
constant in this limited range of states and independent of

system size, which is in accordance with the findings in ref. 70
and 71. It has a weighted mean of 1.168 � 0.118, with an
uncertainty of approximately 10%. Taking the average value of
the shear viscosity and its uncertainty into account, the para-
meter z E 2.837297 of the correction DYH would need to be
adjusted to 2.2 � 0.3 in order to obtain a horizontal correction
as aspired by Yeh and Hummer.70

In this limited range of states, the thermal conductivity also
remains independent of temperature, cf. Fig. 11 (bottom).
Moreover, there is no observable effect on thermal conductivity
as the system size increases and statistical accuracy improves.
Note that the thermal conductivity for large systems with N =
20 000 could not be obtained with the Green–Kubo formalism
due to technical memory usage limitations.

4. Conclusions

This study presents a detailed investigation of phase equilibria
and transport properties of five symmetric binary Lennard-
Jones mixtures, using molecular simulation and different EOS
models. Utilizing dedicated techniques, the study obtained
characteristic phase equilibrium lines and points, including
the CEP and CAEP. The simulation results for the VLLE and the
azeotropic line demonstrate a good agreement with EOS results

Fig. 11 Shear viscosity (top) and thermal conductivity (bottom) near the
critical solution point of mixture C at p = 0.0724 and x1 = 0.5 for different
system sizes (circles). Constant fit (dashed lines).
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in terms of temperature and pressure. However, the critical LLE
line is significantly overestimated by the EOS due to a strong
sensitivity of the CEP and UCST on the binary interaction
parameter x. To address this issue, an empirical correlation
between the binary interaction parameter of the EOS xEOS and
the true x value was introduced. The CEP and CAEP were found
to have opposing trends, which exacerbates the challenge of
representing them concurrently with EOS, compared to the
already demanding task of characterizing several phase equili-
brium types simultaneously.

Unlike the vapor–liquid critical points, the transport and
thermophysical properties near the liquid–liquid critical point
were found to exhibit no significant anomalies or singularities,
such as local extrema or poles. Instead, all properties approach
the critical point either linearly with temperature or are indepen-
dent of it. The Fick diffusion coefficient is zero there only because
the thermodynamic factor vanishes. To address system-size effects
on diffusion coefficients, the simulation data were extrapolated to
the thermodynamic limit and analytical finite-size corrections
were applied. However, these analytical corrections showed an
overestimation, particularly when they incorporate the thermo-
dynamic factor near the liquid–liquid critical point.
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