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We have performed first-principles calculations of the structure and lattice dynamics in the metal
hexaborides SmBg, CaBg, SrBe and BaBg using Density Functional Theory in an attempt to understand
the negative thermal expansion in the first of these materials. The focus is on the role of Rigid Unit

Received 30th January 2023, Modes involving rotations of the Bg octahedra similar to the rotations of structural polyhedra connected
Accepted 24th March 2023 by bonds in Zn(CN),, Prussian Blue and Si(NCN),. However, it was found that there is very low flexibility
DOI: 10.1039/d3cp01306e of the network of connected Bg octahedra, and the lattice dynamics do not support negative thermal

expansion except possibly at very low temperature. Thus the negative thermal expansion observed in
rsc.li/pccp SmBe probably has an electronic origin.

1 Introduction

The simple cubic hexaborides XBg, which are formed from
some transition metals (X = Sm, Y, La for example) and some
alkali earth elements (X = Ca, Sr, Ba) are shown in Fig. 1."* The
crystal structure consists of Bs octahedra, linked together by
B-B bonds. This is similar to the cubic perovskite structure, but
without the octahedral cation, and more importantly with the
shared oxygen atom replaced by a B-B bond. In this sense it is
like Zn(CN),,®> which has Zn-centred tetrahedra connected
by shared CN bonds, and even more similar to analogues of
Prussian Blue in which metal-centred octahedra are connected
by shared CN bonds in exactly the same topological layout.*>
The main difference is that the essential network in SmByg is
entirely made from boron atoms, rather than metal-centred
oxide or halide polyhedra, and thus cubic metal hexaboride
materials potentially represent a new type of network material.

Over the past two decades we have seen a rapid increase
in the number of conventional network materials that show
negative thermal expansion (NTE), that is, over a range of

Fig.1 The crystal structure of SmBg (space group Pm3m, lattice para-
meter 4.134 A at temperature of 20 K).> B atoms are the small grey bonded

, L , L , spheres, and Sm atoms are the larger pink atoms at the corners of the unit
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an analogue of the cubic cristobalite phase of SiO,, and the
most famous NTE material Zrw,0g'” with corner linked WO,
tetrahedra and ZrOg4 octahedra.

NTE in network materials is commonly associated with a
mechanism known as the ‘tension effect’.® One simple example
is cubic ScF;.'® The crystal structure has cubic symmetry, and
consists of corner-sharing ScFs octahedra with linear Sc-F-Sc
bonds - essentially it has the cubic perovskite structure without
the 12-coordinated cation. The Sc-F bonds are relatively rigid
(and have positive thermal expansion), and so rotations of the
Sc-F bonds will necessarily reduce the corresponding Sc-Sc
distances and hence will lead to overall reduction in the crystal
size. Such rotations occur as thermally-excited vibrational
motions, and their effect in reducing the Sc-Sc distance exceeds
that from the thermal expansion of the Sc-F bonds."*'® Thus
the effect becomes larger with higher temperature, leading
directly to NTE. Because atomic motions are correlated, the
important question is the extent to which the structure allows
for low-frequency rotational vibrations. In structures consisting
of connected polyhedra, the question becomes focussed on the
balance between the phonons in which the polyhedra rotate as
nearly-rigid objects - the Rigid Unit Modes (RUMs)"”*® - and
the phonons that lead to bending of the bonds of polyhedra.
This point has been discussed in detail elsewhere.

Of the metal hexaborides, as far as we can tell low-
temperature lattice parameters have only been measured for
SmBg, which itself is now best known as a topological
insulator.”**® Experimental data show the existence of NTE
in SmBg at low temperatures,' and we have recently confirmed
this with our own diffraction data shown in Fig. 2. On the other
hand, there are higher-temperature data for other metal hexa-
borides, which all show positive thermal expansion above room
temperature.’

In this paper we investigate the role of phonons and the
standard Griineisen and tension effect mechanisms® using
density functional theory simulations of SmBs and analogue
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Fig. 2 Unpublished experimental data for the temperature-dependence
of the lattice parameter of SmBe, obtained by the corresponding author
with Zhongsheng Wei and Dean Keeble at the XPDF beam line at the
Diamond synchrotron facility in the UK.
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materials with alkaline earth cations, CaBs, SrBg and BaBs.
In fact it will be shown here that although there is a phonon
mechanism to generate NTE, it is not sufficient in these
materials to give NTE over a wide range of temperatures.
In the case of SmBg it is impossible to reproduce the observed
NTE from a phonon mechanism, and thus we will conclude
that the mechanism for NTE in SmBs may more likely have an
electronic origin.

2 Methods
2.1 DFT methods

Simulations were performed using the CASTEP program,”’
version 19. This uses a density-functional-theory method based
on periodic structures that make use of plane-wave basis sets.
The effects of core electrons were handled using norm-
conserving pseudopotentials supplied as part of the CASTEP
package (NCP19).

The calculations were performed using the standard PBE
generalised-gradient approximation®*! for CaBgs, SrBg and
BaBg, assuming the electronic states are those of an insulator.
The integration of the electronic states was performed using a
Monkhorst-Pack grid®> of 7 x 7 x 7 wave vectors. A cut-off
energy of 800 eV was chosen for the plane wave electronic basis
set based on convergence tests for energy differences. For
structure optimisation, calculations were performed to a con-
vergence of energies to 10~ % eV per atom, convergence of force
to 10" eV A™*, and convergence of stress to 10~ * GPa. All limits
were chosen on the basis of tests on convergence of energy
differences for two similar volumes.

For the calculations on SmBg, on the other hand, the system
was treated as a metal. A cut-off energy of 900 eV was used for
the electronic basis set. Other details were the same as for the
other materials.

We did not consider contributions from magnetic spin
moments because it has been shown that SmBg remains non-
magnetic down to very low temperatures.>'

2.2 Structure optimisation

The optimised values of the lattice parameters and interatomic
distances for all systems are compared with experimental
data,*? in Table 1. In each case agreement on lattice parameters
is good, to within 1%.

The bond distances are shown in Fig. 3, where we are able to
make one important point. Increasing the size of the metal
atom clearly, from Table 1, creates some strain in the crystal
structure. This strain is accommodated mostly by expansion of
the length of the B-B bond connecting two octahedra, and to a
much lesser extent by increasing the size of the octahedra.

2.3 Phonon methods

Phonon frequencies for the alkali earth hexaborides were calcu-
lated using the density functional perturbation theory (DFPT)
method.>**> An interpolation method was used to compute
frequencies for any wave vector based on calculations of the
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Table 1 Calculated and experimental crystal structure data for the four
hexaborites examined in this study. a is the cubic lattice parameter, and x is
the fractional coordinate of the boron atom. Bond length values are in A.
B-B (1) is the bondlength within the Bg octahedra, and B-B (2) is the
bondlength between octahedra. M-B is the bond length between the
metal cation and the nearest boron atom. Experimental data from SmBg
are from the neutron diffraction measurements of Trounov et al* mea-
sured at a temperature of 23 K, and for the other phase data are taken from
a compilation of Schmitt et al.®>® for measurements performed at room
temperature

a(A) Bx B-B (1) B-B (2) M-B
SmBg exp 4.133 0.200 1.755 1.652 3.037
SmB calc 4129 0.200 1.752 1.652 3.034
CaBg exp 4.152 0.202 1.750 1.677 3.053
CaBg calc 4122 0.203 1.732 1.673 3.032
SrBe exp 4.198 0.203 1.764 1.704 3.088
SrBs calc 4.194 0.203 1.762 1.702 3.085
BaBg exp 4.276 0.205 1.784 1.753 3.148
BaB, calc 4.262 0.206 1.775 1.752 3.138
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Fig. 3 Comparison of the two experimental’>* (filled circles) and calcu-
lated (open circles) B—B distances in the four hexaborides, plotted as a
function of the metal (M) to boron distance. From left to right the metal
atoms are Sm, Ca, Sr and Ba. Note that there is a close overlap of the
experimental and calculated distances in the case of the SrBg. The upper
data are for the B—B distances within the octahedra and the lower data are
for B—B distances connecting two octahedra. The lines are fits to the data,
and highlight the fact that most of the strain imposed by increasing the size
of the metal atom is accommodated though expansion of the B—B bond
connecting two octahedra.

dynamical matrices performed for a Monkhorst-Pack grid of
wave vectors of size 7 x 7 x 7 in reciprocal space. A convergence
tolerance for force constants during the DFPT calculations
of 10™° eV A2 was used. The phonon acoustic sum rule was
enforced. For SmBg the dynamical matrix was calculated using
a supercell method. We have checked in the case of CaBg4 that
the two methods give substantially the same results.
Volumetric thermal expansion® is given by the formula
oy = CyvY/BV, where Cy is the heat capacity at constant volume,
and B = VOP/OV is the bulk modulus. The key quantity is
the overall Griineisen parameter y, which can be constructed
from the individual mode Griineisen parameters defined as
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y: = (0w;/0V) x (V/w,), where w; is the angular frequency of the
phonon labelled i and V is the crystal volume. The overall
Griineisen parameter is formed as

L3 2o T, o

where n(w;, T) is the normal Bose-Einstein distribution.

For each system a set of calculations was performed with the
crystal structure in its lowest-energy configuration, then a
second set of calculations was performed using a lattice para-
meter expanded by about 1%. Mode Griineisen parameters
were obtained as y; = (Aw;/w;)/(AV/V) from lattice dynamics
calculations using a set of random wave vectors. An eigenvector-
matching algorithm®® was used to ensure that the correct pairs of
modes were compared in the calculation of Aw;. Cy, was calculated
from the phonon frequencies using the standard formula based
on differentiation of the Bose-Einstein distribution function.

3 Phonon dispersion curves of CaBg
and SmBg

Here we consider the main details of the phonon dispersion
curves. These are shown for SmBs and CaBg along the main
symmetry directions in reciprocal space in Fig. 4. Corres-
ponding data for SrBs and BaBg are given in the ESL

At zero wave vector, the mode decomposition gives acoustic
modes with irreducible representation Ty, and Az + Eg + Ty +
T,g + 2Ty, + Ty for the optic modes. In CaBg the two optic Ty,
modes show splitting of the frequencies of the longitudinal and
transverse modes, which is not present in SmB¢ because in this
case it is a metal. The values of frequencies at zero wave vector
are given in Table 2.

Images of the mode eigenvectors are shown in the ESIL.f The
lowest frequency T,, mode involves simple opposite displace-
ments of the metal cation and By octahedron, creating a local
electrical dipole moment. The T,, mode consists of sideways
displacements of the B-B bond connecting two octahedra in
the perpendicular direction. This necessarily causes deforma-
tion of the Bg octahedra. The T;; mode involves the rotation of
the B¢ octahedra without distortion (see the discussion in
Section 4), together with a counter rotation of the linking B-B
bonds. The higher-frequency T;, mode involves displacements
of the linking B-B bond along the direction of the bond,
causing bond-bending distortions of the Bg octahedra. The E,
mode involves asymmetric stretching of the B-B bonds within
the B¢ octahedra. Finally, the A;, mode is the totally-symmetric
stretch of all bonds within the B octahedra accompanied by an
opposite contraction of the linkage B-B bonds.

The low-frequency part of the dispersion curves of SmBs
have been measured by inelastic neutron scattering along
the three symmetry directions from zero wave vector at room
temperature.’” The measurements included the acoustic
modes in each direction, and the lowest set of optic modes
that come together as the Ty, triplet at just below 5 THz at zero
wave vector. Agreement between calculation and experiment is
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Fig. 4 Calculated phonon dispersion curves of SmBg (left) and CaBg (right). The wave vector labels have conventional meaning: I represents the wave

11

vector (0, 0, 0), X represents (%, 0, 0), M represents (3, 3, 0) and R represents (%, '5, %). Results from a single-crystal neutron inelastic scattering experimen

are represented as points, using different symbols to aid clarity.

Table 2 Calculated phonon frequencies for the four metal hexaborides of
this study, SmBe, CaBg, SrBg and BaBg at zero wave vector, in units of THz.
In each case other than SmBg, which are ionic insulators, the T;, modes
show longitudinal/transverse splitting, and we give the frequencies of both
components together. As a metal, SmBg does not show this splitting

Mode SmBg CaBg SrBg BaBg

Tiy 4.86 5.15, 7.22 4.68, 6.27 5.63, 6.79
Tou 15.11 14.32 14.10 13.80

Tig 17.37 18.76 18.41 18.52

Tag 22.32 23.93 23.31 22.50

Tiu 25.94 26.73, 26.80 25.84, 25.90 24.86, 24.93
Eg 34.44 33.94 32.33 29.72

Asg 38.50 37.99 36.33 33.54

excellent, including the lack of LO/TO splitting of the Ty,
modes at zero wave vector, the significant flattening of acoustic
mode dispersion curves, the subtle cross-over of the transverse
and longitudinal acoustic modes for wave vectors around
(4,1, 0) (half way between the points labelled I' and M in
Fig. 4), the rapid rise of the acoustic modes in increasing wave
vector from zero wave vector (I'), and the maxima in the
frequencies of the low-frequency optic modes at the points
(4 4 0) (half way between I' and M) and (}, 4, 1) (half way
between I' and R). The calculated frequencies of the acoustic
modes are in excellent agreement with experiment across the
whole Brillouin zone for all three directions. The lowest fre-
quency TO modes agree very well with experiment, including

10752 | Phys. Chem. Chem. Phys., 2023, 25,10749-10758
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the values of the maximum frequencies. The maximum fre-
quencies of the low-frequency LO modes are calculated to have
slightly higher frequencies than experiment at the zone bound-
aries, but the fact that the frequency of the LO mode at wave
vector X is lower than that at wave vector M, which in turn is
lower than that at wave vector R, is reproduced in the calcula-
tion. On the basis of this level of agreement between calcula-
tion and experiment we conclude that our DFT approach is
reproducing most of the relevant behaviour of the phonon
dispersion curves.

For SmB, and CaBg we can compare the calculated frequencies
for zero wave vector with the results from Raman spectro-
scopy,>>”® as summarised in Table 3. We consider the agree-
ment to be good.

It is interesting to draw attention to the phonon anti-crossing at
low frequencies, involving the acoustic and low-lying optic modes.

Table 3 Experimental and calculated Raman frequencies, given in the
units of measurement, cm~. Experimental data for SmBg are from Nyhus
et al?® (older data are given by Morke et al.>®), and were measured at a
temperature of 300 K. Experimental data for CaBg are from QOgita et al.,*®
and were measured at a temperature of 13 K. The exact agreements of
pairs of values are coincidental

Mode SmBg Expt SmBg Calc CaBg Expt CaBg Calc
Alg 1280 1284 1291 1264
Eg 1148 1148 1149 1129
Tag 730 743 780 780

This journal is © the Owner Societies 2023
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Table 4 Values of elastic constants Cyy, C44 and Cy,, and bulk modulus B,
deduced from the slopes of the acoustic modes in the limit of small wave
vector as described in the ESI
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Table 5 Number of RUMs for special wave vectors. For all other wave

vectors, including the general wave vector without symmetry, the number
of RUMs is equal to 3

Cy; (GPa) Cy4 (GPa) Cy» (GPa) B (GPa) Wave vector Number of RUMs
SmBy 440 71 22 161 (0, 0, 0) 6
CaBg 433 54 14 153 (¢, 0,0) 5
SrBg 394 66 52 166 (1/2, 0, 0) 5
BaBg 418 98 34 162 (1/2 £ 0) 4
(& ¢ 0) 4
(1/2 1/2 0) 4
(¢ 0) 4

This is particularly evident in the directions I'-X, where as a result
both the transverse and longitudinal acoustic modes are seen to
flatten quickly on increasing wave vector, and the optic modes rise
sharply. The effect is much larger in SmBg than in CaBe, leading to
lower frequencies at the X point in SmB,. The same effect is seen
in other directions I'-M and I'-R. It is noticeable that in each case
the extrapolation to the zone boundary of the un-crossed acoustic
modes gives similar frequencies.

It is also noticeable from Table 2 that there is a significant
and consistent decrease in the calculated value of the A,
symmetric stretch mode from SmBg to BaBg. This is commen-
surate with a change in B-B bond lengths (Table 1), that is the
longer bond has a weaker force constant. However, this trend is
not seen in the independent data for SmBs and CaBs shown in
Table 3, for reasons that are not clear.

The slopes of the acoustic modes were used to calculate the
elastic constants and bulk modulus. The method is described
in the ESL{ and key data are provided there. The results are
shown in Table 4. The results for SmB,, CaBg, and SrBg are
consistent with results given by the Materials Project as com-
puted from analysis using finite strains, although data for BaBe
are not available there.

4 Flexibility analysis

The Rigid Unit Modes (RUMs)"”'® discussed previously in
regard to framework structures composed of corner-linked
structural polyhedra, such as silicate and perovskite structures,
are the phonons that can propagate without any distortion of
the polyhedra. In the case of oxides with corner-sharing poly-
hedra, the RUMs typically propagate with low frequency. The
concept of RUMs can be extended to systems composed of
structural polyhedra connected via a shared molecular ligand,
as in the related materials Zn(CN),>*° and Si(NCN),,*" or
analogues of Prussian Blue, Fe,"" [Fe"(CN)c];.*° However, as
was found in the case of Zn(CN),, the RUMs that involve
bending of the linear Zn-CN-Zn linkage have relatively high
frequency, so one should not assume that in these extended
network systems the RUMs will have low frequencies,® which is
the pertinent issue for the cubic metal hexaborides.

We have evaluated all possible RUMs for the cubic metal
hexaboride structure, based on rigid-body motions of the B,
octahedra and with a rigid connecting B-B bond, and dis-
regarding any role of the metal atoms. We begin with a simple
count of degrees of freedom and constraints. Each octahedron
has 6 degrees of freedom. Each connecting B-B provides one

This journal is © the Owner Societies 2023

constraint, which is shared between the two connected octa-
hedra. Thus we have 3 constraints for each octahedron. The
difference between the numbers of degrees of freedom and
constraints implies there are three RUMs for each wave vector,
aresult confirmed by calculation using a dynamical matrix. It is
often found that symmetry leads to the presence of additional
RUMs at special wave vectors, and this was found to be the case
here using a simple flexibility mode (discussed below). The key
results are given in Table 5, and are consistent with those
obtained by Goodwin*® for the analogous Prussian Blue crystal.

The additional three RUMs at wave vector k = (0, 0, 0) are the
trivial acoustic modes. The rest of the results given in Table 5
can be accounted for simply by noticing that there are planes of
wave vectors of the form (¢, {, 0) containing one additional
RUM each. Thus, for example, the wave vector (&, 0, 0) lies
on the intersection of two such planes and thus has an
additional two RUMs, as seen in Table 5. This mode is a shear
acoustic mode.

To map the RUMs onto the phonon dispersion curves, we
use the rigidity analysis described previously by Rimmer and
Dove.*® The eigenvectors from a full lattice dynamics calcula-
tion are compared with those from a calculation with a model
designed to reproduce the spectrum of RUMs. The calculations
were performed using the GULP simulation package.*>*?
Strong interatomic distance potentials were applied to the
B-B bonds, and bond-bending potentials were applied to the
B-B-B angles within the octahedra. No other potentials were
applied to the network, meaning that the octahedra can twist
about the connecting B-B bonds with no energy cost. The metal
atoms were not included in the model.

For a given phonon wave vector k and label i, we form the
comparison of the phonon eigenvector e/k) from the full lattice
dynamics calculation with the eigenvectors ¢’;(k) for the flex-
ibility model through the vector product relationship defined
by Rimmer and Dove:*®

-¢/;(k
— ’Qz ey ) @

where wj(k) is the (angular) frequency of the j-th mode in the
model calculation, the sum is over all modes in the model
calculation, and Q is an arbitrary value designed simply to
prevent divergence when wj(k) =~ 0, but because we needed to

include forces for the motion of the metal atom the RUMs will
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Fig. 5 Calculated phonon dispersion curves of SmBg (left) and CaBe (right) coloured between white and black to indicate the degree to which the mode
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eigenvectors with the RUMs. The wave vector labels have conventional meaning: I' represents the wave vector (0, 0, 0), X represents (1, 0, 0),
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not quite have zero frequency so it was necessary that the value this arises from the resistance of the chemical bonds against
of Q is significantly larger than the RUM frequencies. From the flexing of the linear Zn-C-N-Zn connection. This is in contrast
orthonormality of the phonon eigenvectors we have m;k) < 1 to the analogous material Si(NCN),, which we have recently
for all modes. The case m,(k) ~ 1 corresponds to the case where studied using an approach similar to the one here.*’ In that
there is a close matching of the eigenvector of the phonon in case, the Si-N-C linkage is much more flexible, and the RUMs
the full calculation to that of a RUM in the model calculation; are well separated from the frequencies of all other phonons
in this case one of the products of the eigenvectors is close to a and are clearly identified as such.
value of 1 and the frequency wj(k) ~ 0. The high frequencies of the RUMs identified in Fig. 5 - see
The results of the flexibility for SmBg and CaBg are shown in also the discussion of mode eigenvectors for phonons at zero
Fig. 5, where we plot the dispersion curves of Fig. 4 and shade the ~Wwave vector in Section 3, where we identified the Tig phonon as
curves towards black where there is a perfect match between the having RUM character - show that the torstional flexing of the
phonon and RUM eigenvectors - Where’ in eqn (2)’ ml(k) =1-and BeBs linkage is of hlgh energy, and thus the picture of freely—
white where there is no match (m,(k) = 0). jointed B¢ octahedra is not represented in the phonon spec-
What we have previously noted is that when the phonon trum. This is unlike the case of the cubic perovskites, where
modes that are nominally RUMs are of low frequency, and there is clear evidence from calculated® and measured®®
separated from other modes, we see a clear RUM character.’® phonon dispersion curves of a high degree of flexibility of the
However, when they are of higher frequency, or when there are linked octahedra. In the case of perovskite the RUMs have wave
other low-energy modes, the RUM eigenvectors can mix with those ~ vectors only along the line M-R in reciprocal space,'” that is, for
of other phonons. This has been discussed previously,'® and is seen ~ wave vectors between (0, 1, 1) and (4, 1, 1), and evidence from
in the case of Zn(CN), where the RUM eigenvectors are spread over a  inelastic neutron scattering data and calculations show a low
few modes with frequencies around that of the nominally-RUM frequency along this branch. It is clear in the case of the metal
phonon,® and in Zrw,0g where there is a surface of RUMs in  hexaborides, Fig. 4 and 5, that the corresponding line in the
reciprocal space and such a broad distribution of phonon frequen-  dispersion curves does not show low frequencies.
cies that the RUM is simply not visible at all.® We conclude from this analysis that in fact the network of
In Fig. 5 we see that the RUMs are identified with phonons connected By octahedra does not have the flexibility seen in
of relatively high frequency, as in Zn(CN),.* In the latter case, more traditional RUM systems such as cubic perovskites'” and
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phases of silica or silicates.'® In fact this might have been
anticipated from the data shown in Table 1 and Fig. 3. Incor-
poration of the larger cations causes the B4 octahedra and their
connecting B-B bonds to become strained, and hence the
whole network will become more taut and less flexible.

5 Thermodynamic properties from
vibrational spectra

The phonon densities of states of SmBgs and CaBg are shown in
Fig. 6a and b respectively, and corresponding data for SrB¢ and
BaBg are given in the ESI.{ The phonon densities of states show
the gaps at frequencies of around 20 THz and just above 30 THz
as seen in the phonon dispersion curves, Fig. 4. The same gaps
are seen in SrBy and BaB.

Of relevance for the thermal expansion are the mode Gri-
neisen parameters y; as defined earlier in Section 2.3. We have
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computed these for a random set of wave vectors, and we plot a
histogram of the distribution of values of y as spread across the
range of phonon frequencies. Fig. 6¢c and d show these dis-
tributions for SmBg and CaBg respectively, and corresponding
data for SrBs and BaBg given in the ESL. It is clear that there are
phonons in SmB, and CaB, that have negative values of y;, but
there are many more that have positive values, particularly at
low frequency. However, in SrBs and BaBg there are many fewer
phonons with negative values of y.

Fig. 7 shows the distribution of significant values of y across
the dispersion curves of SmB¢ and CaBg shown in Fig. 4;
corresponding diagrams for SrBe and BaB, are again given in
the ESL.¥

The overall Griineisen parameters, y, of SmBg, CaBg, SrBg
and BaB, as calculated from eqn (1), are shown as functions of
temperature in Fig. 8. Not surprisingly, in the light of the data
shown in Fig. 6, and of the corresponding data shown in the
ESI,} even at low temperature the overall Griineisen parameters
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Fig. 6 Calculation of phonon densities of states for SmBg (a) and CaBg (b), and distribution of values of mode GrUeisen parameters across the range of
frequencies for SmBg (c) and CaBg (d). In the latter two, pink represents a zero of phonon modes with a particular pair of values of frequency and Grueisen
parameters, yellow corresponds to the maximum in the distribution function, and the colour scheme passes from pink to yellow through dark blue. In
order to highlight the existence of the distribution function for which there are fewer modes we saturate the scale of the histogram.
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Fig. 8 Calculation of the temperature-dependence of the overall
Gruneisen parameters of SmBg, CaBg, SrBg and BaBs.

are dominated by the distribution of positive-valued mode
Griineisen parameters at low frequencies.

What we see is that in SrBg and BaBg there is not the
slightest hint of a negative thermal expansion. On the other
hand, CaBs does show negative thermal expansion for a small
range of temperatures at low temperature as indicated by a
negative value of y. The interesting case for us is SmBg, which
we have to conclude does not show negative thermal expansion

10756 | Phys. Chem. Chem. Phys., 2023, 25,10749-10758

as arising from the phonons. The accuracy of our calculated
phonons is attested by the good agreement with the inelastic
neutron scattering data shown in Fig. 4, and so we can
conclude that the negative thermal expansion shown by the
data in Fig. 2 must have a different origin that of the normal
phonon mechanism.®

The values of the coefficients of volume thermal expansion
for the four hexaborides, calculated as described in Section 2.3,
are shown in Fig. 9. The data, of course, follow the trend seen in

T
25 —_SmB6 -
—CaB
20 - 6
_ —SrB6
¢ 15 .
=
es> 10 N
5 —

400 600 800
Temperature (K)

1000

Fig. 9 Calculation of the temperature-dependence of the volume ther-
mal expansion of SmBg, CaBsg, SrBg and BaBs.
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the overall Griineisen parameters (Fig. 8), with a small range of
NTE seen in CaBg only.

6 Discussion

The work of this paper has been concerned with analysing the
flexibility of the network of connected Bs octahedra in simple
cubic metal hexaborides. The key finding from the DFT phonon
calculations presented here is that in each case the network
is not particularly flexible, with an energy cost to flex the
orientation of one B¢ octahedron about the linkage B-B bond
connecting two tetrahedra. This was seen in the calculation of
RUMs, where their frequencies are far from being low. As a
result, we concluded that the NTE observed in SmB; (Fig. 2)
does not have its origin in the tension effect and phonons.
On the other hand, there is a weak effect in CaBg which would
be interesting to investigate using low-temperature diffraction
methods.

The methods employed in this study are based on the quasi-
harmonic model of Griineisen in which the important anhar-
monic effects are coupling of interatomic force constants with
volume. It might be asked whether NTE could arise if account
were taken of direct phonon-phonon anharmonic interactions
as accounted for, for example, in renormalised phonon theory.
Most evidence, and in this we include our own theoretical study
that addresses this point exactly,*® is that anharmonic effects
will lower the magnitude of the mode Griineisen parameters of
the renormalised phonons because their frequency will increase,
and cannot change the sign of mode Griineisen parameters from
positive to negative. We do not believe that there is evidence to
suggest that the current state of anharmonic phonon theory will
indicate that there is a possibility to find NTE when Griineisen
theory doesn’t show NTE.

It is known that there are electronic mechanisms for NTE,*”
whether directly so or via magnetic interactions. In this regard,
we note that although the samarium atom is magnetic, mag-
netic ordering in SmBg has been shown to be absent down to a
temperature of 19 mK.”" Thus in our calculations we did not
include magnetic interactions, and the good agreement of our
calculated phonon dispersion curves with experimental data
shows that this was reasonable. It is also observed that samples
of the alkali-earth hexaborides can show magnetism, but this is
believed to have its origin in a mechanism that is not directly a
bulk property, such as broken B-B bonds at surfaces and
interfaces, and magnetism of Bs octahedra without saturated
connectivity.*®

In our calculations on SmBs we attempted to investigate
effects of electron entropy through calculation of changes of
electron entropy with volume. However, in our calculations on
SmB, we observed that electron entropy consistently increases
with volume across a range of Fermi-Dirac smearing tempera-
tures from 100-1000 K, which means the electron entropy
favours positive thermal expansion just as the phonon entropy
does. Recently one of us (LL) had calculated the band structure
for a range of volumes,*® showing that over a contraction of

This journal is © the Owner Societies 2023
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several percent there is no clear change in the electronic density
of states.

At this point we are forced to conclude that the NTE in SmBg
remains of unknown origin.

Author contributions

Li Li: investigation, formal analysis, validation, writing (review
& editing), visualisation. Keith Refson: software, writing (review
& editing). Martin T Dove: conceptualisation, methodology,
software, validation, formal analysis, resources, writing
(original draft), visualisation, supervision, funding acquisition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge financial support from National Natural
Science Foundation of China, grant number 12174274 (MTD).
This research made use of the Apocrita HPC facility of Queen
Mary University of London, supported by QMUL Research-IT
and initially funded by EPSRC grants EP/K000128/1 and EP/
K000233/1 (MTD), and the EPSRC-funded HPC Midlands Plus
(EP/P020232/1) Tier-2 system, which we accessed as members
of the project consortium (MTD).

References

1 V. A. Trounov, A. L. Malyshev, D. Y. Chernyshov, M. M.
Korsukova, V. N. Gurin, L. A. Aslanov and V. V. Chernyshev,
J. Phys.: Condens. Matter, 1999, 5, 2479-2488.
2 C.-H. Chen, T. Aizawa, N. lyi, A. Sato and S. Otani, J. Alloys
Compd., 2004, 366, L6-L8.
3 H. Fang, M. T. Dove, L. H. N. Rimmer and A. J. Misquitta,
Phys. Rev. B, 2013, 88, 104306.
4 T. Matsuda, J. E. Kim, K. Ohoyama and Y. Moritomo, Phys.
Rev. B, 2009, 79, 172302-172304.
5 S. Adak, L. L. Daemen, M. Hartl, D. Williams, J. Summerhill
and H. Nakotte, J. Solid State Chem., 2011, 184, 2854-2861.
6 C. Lind, Materials, 2012, 5, 1125-1154.
J. Chen, L. Hu, J. Deng and X. Xing, Chem. Soc. Rev., 2015,
44, 3522-3567.
M. T. Dove and H. Fang, Rep. Prog. Phys., 2016, 79, 066503.
9 R. Mittal, M. K. Gupta and S. L. Chaplot, Prog. Mater. Sci.,
2018, 92, 360-445.
10 N. Shi, Y. Song, X. Xing and J. Chen, Coord. Chem. Rev.,
2021, 449, 214204.
11 T. Chatterji, P. Henry, R. Mittal and S. Chaplot, Phys. Rev. B,
2008, 78, 134105.
12 M. Dapiaggi and A. N. Fitch, J. Appl. Crystallogr., 2009, 42,
253-258.

~

[e]

Phys. Chem. Chem. Phys., 2023, 25,10749-10758 | 10757


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp01306e

Open Access Article. Published on 25 March 2023. Downloaded on 1/19/2026 7:47:30 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

13

14

15

16

17

18

19
20

21

22

23

24

25

26
27

28

B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W.
Chapman and A. P. Wilkinson, J. Am. Chem. Soc., 2010, 132,
15496-15498.

L. Hu, J. Chen, A. Sanson, H. Wu, C. Guglieri Rodriguez,
L. Olivi, Y. Ren, L. Fan, J. Deng and X. Xing, J. Am. Chem.
Soc., 2016, 138, 8320-8323.

T. A. Mary, J. S. O. Evans, T. Vogt and A. W. Sleight, Science,
1996, 272, 90-92.

M. T. Dove, J. Du, Z. Wei, D. A. Keen, M. G. Tucker and
A. E. Phillips, Phys. Rev. B, 2020, 102, 094105.

A. P. Giddy, M. T. Dove, G. S. Pawley and V. Heine, Acta
Crystallogr., Sect. A: Found. Crystallogr., 1993, 49, 697-703.
K. D. Hammonds, M. T. Dove, A. P. Giddy, V. Heine and
B. Winkler, Am. Mineral., 1996, 81, 1057-1079.

M. T. Dove, Philos. Trans. R. Soc., A, 2019, 377, 20180222.
I. Batko and M. Batkova, Solid State Commun., 2014, 196,
18-23.

P. K. Biswas, Z. Salman, T. Neupert, E. Morenzoni, E.
Pomjakushina, F. von Rohr, K. Conder, G. Balakrishnan,
M. C. Hatnean, M. R. Lees, D. M. Paul, A. Schilling,
C. Baines, H. Luetkens, R. Khasanov and A. Amato, Phys.
Rev. B, 2014, 89, 155.

J. C. Cooley, M. C. Aronson, A. Lacerda, P. C. Canfield,
Z. Fisk and R. P. Guertin, Phys. B, 1995, 206-207, 377-379.
S. Gabani, E. Bauer, M. Della Mea, K. Flachbart, Y. Paderno,
V. Pavlik and N. Shitsevalova, J. Magn. Magn. Mater., 2004,
272-276, 397-399.

F. Lu, J. Zhao, H. Weng, Z. Fang and X. Dai, Phys. Rev. Lett.,
2013, 110, 096401.

P. Nyhus, S. L. Cooper, Z. Fisk and J. Sarrao, Phys. Rev. B,
1997, 55, 12488-12496.

P. S. Riseborough, Adv. Phys., 2000, 49, 257-320.

P. Syers, D. Kim, M. S. Fuhrer and J. Paglione, Phys. Rev.
Lett., 2015, 114, 096601.

B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison,
Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava,
M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas,
G. G. Lonzarich, G. Balakrishnan and S. E. Sebastian,
Science, 2015, 349, 287-290.

10758 | Phys. Chem. Chem. Phys., 2023, 25,10749-10758

29

30

31

32

33

34

35

36

37

38

39

40
41

42
43
44

45
46
47
48
49

View Article Online

PCCP

S. J. Clark, M. D. Segall, C. ]J. Pickard, P. J. Hasnip,
M. 1. ]J. Probert, K. Refson and M. C. Payne, Z. Kristallogr. -
Cryst. Mater., 2005, 220, 191-194.

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865-3868.

J. P. Perdew, K. Burke, M. Ernzerhof and R. Ernstorfer, Phys.
Rev. Lett., 1997, 78, 1396.

H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13,
5188-5192.

K. Schmitt, C. Stiickl, H. Ripplinger and B. Albert, Solid State
Sci., 2001, 3, 321-327.

S. Baroni, S. de Gironcoli and A. D. Corso, Rev. Mod. Phys.,
2001, 73, 515-562.

K. Refson, P. R. Tulip and S. J. Clark, Phys. Rev. B, 2006,
73, 155114.

L. H. N. Rimmer and M. T. Dove, J. Phys.: Condens. Matter,
2015, 27, 185401.

P. A. Alekseev, A. S. Ivanov, B. Dorner, H. Schober, K. A.
Kikoin, A. S. Mishchenko, V. N. Lazukov, E. S. Konovalova,
Y. B. Paderno, A. Y. Rumyantsev and I. P. Sadikov, Europhys.
Lett., 2007, 10, 457-463.

N. Ogita, S. Nagai, N. Okamoto, F. Iga, S. Kunii, T. Akamtsu,
J. Akimitsu and M. Udagawa, J. Solid State Chem., 2004, 177,
461-465.

I. Morke, V. Dvorak and P. Wachter, Solid State Commun.,
1981, 40, 331-334.

A. L. Goodwin, Phys. Rev. B, 2006, 74, 134302.

L. Li, K. Refson and M. T. Dove, J. Phys.: Condens. Matter,
2020, 32, 465402.

J. D. Gale, J. Chem. Soc., Faraday Trans., 1997, 93, 629-637.
J. D. Gale and A. L. Rohl, Mol. Simul., 2003, 29, 291-341.
C. W. Li, X. Tang, J. A. Mufioz, J. B. Keith, S. J. Tracy, D. L.
Abernathy and B. Fultz, Phys. Rev. Lett., 2011, 107, 195504.
W. G. Stirling, J. Phys. C: Solid State Phys., 1972, 5, 2711-2730.
H. Fang and M. T. Dove, Phys. Rev. B, 2013, 87, 214109.

J. P. Attfield, Front. Chem., 2018, 6, 14441-14446.

R. Monnier and B. Delley, Phys. Rev. Lett., 2001, 87, 157204.
L. Li, C.-E. Hu, M. Tang, Y. Cheng and G.-F. Ji, Philos. Mag.,
2017, 97, 1144-1156.

This journal is © the Owner Societies 2023


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp01306e



