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On the use of Monkhorst–Pack scheme to
evaluate superconductivity and the issue
of umklapp electron–phonon interactions

X. H. Zheng *a and J. X. Zhengb

The Monkhorst–Pack scheme is a method to save time in the days of slow computers. It excludes

umklapp phonons with significant consequences. Its widespread application to evaluate supercon-

ductivity arises from the desire to reduce phonon contributions to solve a historical difficulty of the BCS

theory. An alternative method turns out to be more accurate in Pb and Pd.

I. Introduction

In 1957, Bardeen, Cooper and Schrieffer published the famed
BCS theory. It leads to a formula to relate TD (Debye tempera-
ture) and Tc (transition temperature of superconductors).1

In 1968, Ashcroft predicted metallic hydrogen (TD B 3500 K
by estimation) might be a high-temperature superconductor.2

In 2004, Ashcroft recommended hydrogen-dominated metallic
alloys as a better alternative because the attainment of metallic
states should be well within the current capabilities of diamond
anvil cells but at pressures considerably lower than may be
necessary for hydrogen.3

In 1970, Satterthwaite and Toepke found 8.05 r Tc r 8.35 K
in thorium–hydrogen and thorium–deuterium, surprisingly
high in the 1970s. It was in a Pyrex enclosure in ambient
pressure, with no detectable isotope effect.4 In 1972, Stritzker
and Buckel found Tc up to 9 and 11 K in palladium-hydrogen
and palladium–deuterium, isotope effect reversed.5 In 2015,
Drozdov and colleagues found Tc = 203 K in the sulfur hydride
system in a diamond anvil cell under pressure.6 In 2020, Dias
and colleagues found Tc C 287 K in a carbonaceous sulfur
hydride under pressure,7 retracted by the journal investigating
if its style affected the result.

In 1972 and 1978, Ganguly and Papaconstanstopoulos inves-
tigated the reversed isotope effect in palladium hydrides
theoretically.8,9 In 2020, Semenoka and colleagues reported a
rule to predict the maximum Tc for metal hydrides.10 Mean-
while, Flores–Livas and colleagues offered an up-to-date per-
spective on conventional superconductivity in hydrides at high

pressures.11 Very recently, Peng,12 Chen,13 Dou,14 Duan,15 Li16

and colleagues published further results of theoretical studies
of superconductivity in compressed hydrides.

In light of the fascinating progress outlined above, we need
to consider if the Monkhorst–Pack (MP) scheme is applicable to
evaluate the BCS theory. It is a method to save time in the days
of slow computers17–19 readily available from popular computer
packages such as QUANTUM ESPRESSO.20 It resembles Fourier
expansion, but in terms of the so-called ‘‘stars’’, representing
groups of plane waves propagating in the symmetric directions
of the lattice. It serves the purpose of ‘‘integrating periodic
functions of a Bloch wave vector over either the entire Brillouin
zone (BZ) or over specified portions’’.19 Therefore, by design,
it excludes umklapp phonons.

We do not know if anyone has ever extended the MP scheme
to include umklapp phonons. On the other hand, in 1994,
Savrasov, Savrasov and Andersen stated without ambiguity that,
when they calculated electron–phonon coupling strengths and
transport properties in Al, Nb and Mo, the phonon integration
is over BZ.21 When applied to a semiconductor, their ‘‘tetra-
hedron’’ method is identical to the MP method.22 They treated
Ta, Pb, Mo, V, Cu and Pd similarly.23 Camargo–Martı́nez and
colleagues used the MP scheme to study superconductivity
in H3S,24 stating they had knowingly excluded umklapp
contributions.25,26 Du and colleagues used the MP scheme to study
transition metallic hydrides27 and made a similar statement.28

We believe the practice in21–28 amounts to an answer to
the call for reducing phonon contributions to superconduc-
tivity to solve a historical difficulty. In the BCS theory, super-
conductivity arises from the interactions between electrons and
phonons.1 In the Drude theory, electrical resistivity arises from
the same interactions.29 In both cases, the e–p interactions do
not depend on temperature, leaving other considerations to
induce temperature dependence of the phenomena. Many tried
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but failed to find such e–p interactions: whenever the interactions
were reasonable in the normal state, they always were too strong
in the superconducting state, and vice versa.30–42 In 1977, Peter,
Ashkenazi and Dacorogna suggested multiplying the electron–
phonon coupling constants by 0.7 in superconductors,36 calling
for a reduction of phonon contributions.

But why do we exclude the umklapp phonons? On account
of the availability of the MP scheme? On account of the
popularity of the practice? We need an adequate reason. In a
superconductor, two electron states in a pair have identical
occupation probability by symmetry. But they may also have
different occupation probabilities when they accommodate
electrons driven by normal and umklapp phonons. We devise
an alternative scheme to pair superconducting electrons to
avoid conflict.43,44 We show it can solve the historical difficulty
with high accuracy in Pb and Pd.

We arrange the article as follows. In Sections II to IV, we detail
the issue of umklapp phonons and the MP scheme. We explain
why the scheme excludes umklapp phonons. We describe the
method of Carbotte and Dynes to include umklapp contributions.
We also describe the pioneering procedure by Savrasov and
Savrasov (S & S) to implement the MP scheme to evaluate super-
conductivity, together with its recent advances. In Sections VI to
VIII, we discuss the historical and theoretical difficulties that
oblige us to reduce phonon contributions to superconductivity.
In Sections IX to XIII, we discuss the alternative pairing scheme to
reduce phonon contributions. We demonstrate its high accuracy
in Pb and Pd via detailed calculations. We place brief discussions
and conclusions in Sections XIV to XVII.

II. Umklapp phonons: MP scheme

The MP scheme is an alternative to Fourier expansion to
present the states of electrons or phonons in BZ in terms of
the ‘stars’. In an article in 1973, titled ‘‘Mean value point in the
Brillouin zone’’,17 Baldereschi proposed the formulation

f ðqÞ ¼ f0 þ
X1
m¼1

fmAmðqÞ (1)

which imitates the usual Fourier series for an arbitrary function
in reciprocal space, f (q), with the harmonic waves in the
Cartesian coordinates grouped into waves propagating in the
symmetric directions of the lattice of a crystal. In eqn (1),
we have

AmðqÞ ¼
1

Nm
1=2

X
Rm

exp iq � ðRm � R0Þ½ � (2)

where R0 and Rm are coordinates of the atomic site and an atom
on the m-th shell, m = 1, 2, 3, . . ., Rm runs over the m-th shell,
and Nm number of atomic sites on that shell. In eqn (2) Rm � R0

represents a set of vectors resembling rays from a point source.
It customarily is referred to as a star. Baldereschi found the
mean value point, q0, that ensures Am(q0) = 0 for m r 2 or 3.
He argued eqn (1) could be reduced to f (q0) C f0 because other
terms were negligible in a rapidly converging series. The

treatment simplifies phonon integration significantly to a
surprisingly good effect.17

Shortly afterwards, also in 1973, Chadi and Cohen18 proved
the following relation:

O
ð2pÞ3

ð
BZ

A�mðqÞAnðqÞdq ¼ dmn (3)

with dmn = 1 or 0 depending on if m = n, closely resembling the
orthogonal relation in Fourier analysis. It is rather regretful
that Chadi and Cohen did not carry on to find the expression of
fm in eqn (1). Instead, they replaced the mean value point of
Baldereschi with a grid of ‘‘special points’’ to integrate f (q), see
ref. 18 for further details of the algorithm.

In 1976 Monkhorst and Pack19 found the expression

fm ¼
O
ð2pÞ3

ð
BZ

A�mðqÞf ðqÞdq (4)

and used it to supplement eqn (2) and (3) to establish a
well-defined self-consistent system comparable with Fourier
expansion. Monkhorst and Pack also proved:X

j

A�mðqjÞAnðqjÞ ¼ dmn (5)

which leads through eqn (1), (2) and (4) to a discrete system
comparable with the system of fast Fourier transform (FFT).
In the Mokhorst–Pack scheme, f (q) in eqn (1) is evaluated over
an uniform ‘‘coarse mesh’’ of q, or sample points, to reduce the
load of computation. Afterwards, f (q) is evaluated over a ‘‘fine
mesh’’ by interpolation or extrapolation.

The MP scheme is for ‘‘integrating periodic functions of a
Bloch wave vector over either the entire Brillouin zone (BZ) or
over specified portions’’.19 Extending the MP scheme to include
umklapp phonons will be challenging because we do not know
the lattice vector involved in the umklapp process. In Fig. 1, we
use the filled squares to mark the MP sample points and the
dashed lines to mark the borders of BZ. We show the phonons
are periodic only when their momentum is in the direction of
the lattice vector. It will not be easy to determine the umklapp
phonons under other circumstances.

III. Umklapp phonons: CD sphere

To illustrate the difficulty to extend the MP scheme, we present
electron–phonon interactions schematically in Fig. 2, where the
shaded circles are for spherical Fermi surfaces in the extended
zone scheme, G the initial state of an electron. We also use A, B,
C, D, E and F to present the end states of the electron when
scattered by a phonon of momentum q r qD, qD being
the Debye momentum. Since G, A, and B are in the first BZ,
we refer to the events as normal scatterings, others umklapp
scatterings.

We use CC, DD, EE, FF to mark images (replicas) of C, D, E,
F, respectively, in the first BZ. A state and its image, say C
and CC, have identical coordinates against the centres of the
Fermi surfaces they are on. In the previous paragraph, we say a
normal phonon drives an electron from G to C. Alternatively, we
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can say an umklapp phonon drives the electron from G to CC.
Either way, the result is the same in terms of the strength and
enumeration of the electron–phonon interactions.

It is apparent that, as long as we have normal phonons to
scatter an electron from G to C, D, E and F, we can think we
have umklapp phonons to scatter the electron from G to CC,
DD, EE and FF. It is wrong to believe the destination states of
the electron are restricted to A and B and the arc in between
and conclude that just a portion of the Fermi surface is subject
to bombardment by the scattered electrons.

To evaluate the strength of the electron–phonon interactions,
we have to count the number of phonons. We have two options.
We may choose to follow the open circle in the top part of Fig. 2 to
trace the electron states, exemplified by A, B, C, D, E and F, and
integrate the phonons. The radius of the circle must vary between
0 and qD. We must keep identifying the electron states from
several BZs. It will be a cumbersome and impractical task.
Alternatively, we can choose to follow Carbotte and Dynes to
integrate A, B, CC, DD, EE and FF, . . ., in a large sphere enveloping
the entire Fermi surface,45 shown in the bottom part of Fig. 2,
referred to as the Carbotte–Dynes sphere, or CD sphere for short.

IV. Umklapp phonons: S & S procedure

The procedure of Savrasov and Savrasov (S & S) is an early attempt
to implement the MP scheme to evaluate superconductivity and

electrical resistivity. It starts from the well-established framework
of density functional theory (DFT) to find phonons by solving the
following matrix eigenvalue equation:X

n

hcmjVeff �r2 � ejcniAn ¼ 0 (6)

for lattice vibrations. Eqn (6) is identical to eqn (9) in ref. 22
(cm, cn, An and e marked somewhat differently). It assumes a
Fourier expansion

jki ¼
X
n

jcniAn

where |ki is a wave function of the system (marked as |kji
originally). It evaluates e and Veff numerically.22

In 1996, S & S investigated eight metals in ambient.23

Nowadays, DFT calculations can predict a significant portion
of the properties of a given material. Given a modest set of
elements, it is already possible to predict the thermodynami-
cally stable crystal structures, not only in ambient but also
spanning a vast pressure range to terapascals and beyond.46

With the next step, S & S enters untested waters because it is
about a ‘‘new, generally applicable method for ab initio calculation
of the wave-vector dependent electron–phonon coupling’’.21

It evaluates

gc(q) = hk + q|dV|ki + . . . (7)

Fig. 1 Normal and umklapp lead phonons, shaded triangle envelops
Debye frequencies and momenta, vertical dashed lines mark borders of
BZ. Top: In the (0.77, 0.25, 0.59) direction. Bottom: In the (0, 1, 1) direction,
filled squares represent Monkhorst–Pack sample points.

Fig. 2 Top: Fermi spheres (shaded circles, radius = kF, first BZ in the S–W
corner) and phonons on a spherical surface. An electron is scattered from
G to A, B (normal scattering) and C, D, E, F (umklapp scattering, folded back
to CC, DD, EE, FF in the first BZ). Bottom: Carbotte–Dynes phonon sphere
(centre = G, radius = 2kF).
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for the matrix element of electron–phonon coupling (inter-
action). Eqn (7) is identical to eqn (3) in ref. 21, save some
presentational changes for clarity, c identifies phonon polar-
ization, k and q stand for electron and phonon momenta.
To the best of our knowledge, the authors of ref. 21 were the
first to let V in eqn (7) be identical to Veff in eqn (6). It is a
significant advance because a pseudopotential is a phenomen-
ological and task-specific entity, not universally applicable. For
example, the empty-core model of Slater47 and the muffin-tin
model of Ashcroft48 are entirely different and not supposed to
be interchangeable.

The final step of the S & S procedure is to integrate the
matrix element in eqn (7). They found

a2FðnÞ ¼ 1

N

X
‘;q

dðn � �ho‘Þdðe� eFÞjg‘ðqÞj2SðqÞ (8)

which is identical to eqn (1) in ref. 21 but in somewhat different
notations. In eqn (8) n is the phonon energy, N number of
atoms in unit volume, e and eF electron and Fermi energies,
respectively, oc phonon frequency. If we let S(q) = 1 or 0
depending on if q is in the first phonon BZ, then eqn (8)
becomes eqn (1) in ref. 21 in every detail. It amounts to a
numerical scheme to exclude all the umklapp phonons. We will
discuss the physics of a2F(n) and phonon contributions to it in
some detail in Section IX, with S(q) from a different scheme.

S. Y. Savrasov declared that, when applied to a semiconduc-
tor, his ‘‘tetrahedron method’’ is identical to the special-point
scheme of Monkhorst and Pack.22 It is not clear whether or not
S & S had adopted the MP scheme in ref. 23 but Fig. 1 there tells
us they probably had employed a 4 � 4 � 4 MP grid to sample
the phonons from within BZ for integration.

In Fig. 3 we use the curves to present the S & S a2F(n) in Pd
and Pb sampled from Fig. 1 in ref. 23. We also use the shaded
silhouettes to present more accurate examples for comparison.
The S & S evaluations are overly strong in both metals. We will
further the comparison in the following sections.

V. Umklapp phonons: recent advances

In 2019, Camargo-Martı́nez, González-Pedreros and Baquero
studied the pressure effect on high-Tc superconductivity in
H3S.24 In response to our enquiry in ref. 50, they confirmed
that ‘‘the electron–phonon umklapp process has a vital rele-
vance in explaining the behaviour of electrical resistance’’ but
claimed ‘‘in the total absence of electrical resistance, . . .,
perhaps an electron that undergoes the umklapp-process will
contribute to electrical resistance rather than the supercon-
ducting phase’’.25 In short, they believe the umklapp process
does not contribute much to superconductivity.

In a following publication,26 González-Pedreros, Camargo-
Martı́nez and Mesa continued to apply the MP scheme to
evaluate superconductivity in D3H. They cited,25,50 claiming
that ‘‘the presence of umklapp process is mainly associated
with the electrical resistivity, which is measured in the normal
state and not in the superconductor one’’. They announced

‘‘Our calculations were considered in the superconducting
state, and Umklapp processes have not been included’’.

In 2021, Du and colleagues studied high-temperature super-
conductivity in transition metallic hydrides under pressure.27

They stated that the umklapp phonons ‘‘play a key role in
explaining the DC conductivity of normal metals’’.28 In
response to our enquiry,51 they claimed: ‘‘the pairing of elec-
trons with opposite momenta, caused by an exchange by virtual
optical phonons depends on umklapp phonons if kF { qD.’’
They also claimed: ‘‘if these quantities are of the same order of
magnitude, or kF c qD, then pairing occurs without a notice-
able contribution of the umklapp phonons’’.28 Interestingly,
we have kF Z 1.145qD when valence Z3, true in virtually
all metallic superconductors, proving the MP scheme is
inapplicable.

VI. Pairing difficulty: history

In theory, there is no difference in the interactions between
electrons and phonons in the superconducting and non-
superconducting states. In history, however, whenever reason-
ably accurate superconductivity arisen from the first-principles

Fig. 3 Electron–phonon spectral densities, a2F(n), in Pd and Pb. Top:
From S & S calculation (curve, l = 0.340) and the alternative scheme
(silhouette, l = 0.199). Bottom: From S & S calculation (curve, l = 1.55) and
McMillan experiment (silhouette, l = 1.33).49 The S & S evaluations are
overly high in both metals.
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calculation, electrical resistivity always turned out to be too
weak and vice versa.

In an early example, Tomlinson and Carbotte in 1976
evaluated a2F(n) for lead with the pseudopotential of Appappillai
and Williams, which is a specification of the Heine–Abarenkov
potential.30 The agreement with tunnelling measurements was
considered to be ‘‘very good’’52 although the longitudinal numer-
ical peak of a2F(n) at 9 meV is more than 2 times stronger than the
observed tunnelling peak. It is not clear if correct Tc would arise
from the first-principles a2F(n).

Soon after, in 1977, Tomlinson and Carbotte evaluated the
electrical resistivity, r(T), for lead with the same potential.31

Between T = 4 and 295 K, their r(T) is about 75% of the observed
values, as is shown clearly in the graphic portrayal of the result in
1981 by Eiling and Schiling.32 A similar discrepancy occurred in
aluminium (Heine–Abarenkov potential tabulated by Harrison,
discrepancy in electrical resistivity obscured by logarithmic
scaling).33–35

Also in 1977, Peter, Ashkenazi and Dacorogna studied the
effects of anisotropy on the Tc of niobium.36 Intriguingly they
found that the electron–phonon coupling constants determined
are probably too large and have to be multiplied by a factor of 0.7
(0.49 in coupling strength) to obtain the observed Tc.

Again in 1977, Harmon and Sinha evaluated a2F(n) for
niobium.37 They borrowed the muffin-tin potential used in
the calculation of the band structure. They found l = 1.58,
which is considerably larger than the commonly accepted
values (B1.0).

In 1979, Glötzel, Rainer and Schober evaluated a2F(n) for
vanadium, niobium, tantalum, molybdenum, tungsten, palladium,
platinum and lead.38 They carefully avoided any uncontrolled
approximations. To find phonon dispersion, they used published
Born-von Kármán fits to the force constants. To estimate the
strength of the electron–phonon interaction, they adopted muffin-
tin potentials developed for band structure calculations. The value
of Tc turned out to be 2 to 3 times too high. They show Tc is
sensitive to the Coulomb pseudopotential, m*, but stick to a reason-
able choice m* = 0.13. They conclude their careful approach was
incapable of reproducing the observed values of Tc.

In 1987, Al-Lehaibi, Swihart, Butler and Pinski evaluated
both r(T) and a2F(n) for tantalum with a muffin-tin potential
from band calculation.39 While r(T) was found to be slightly
lower than experimentally observed, a2F(n) exceeded the tun-
nelling values significantly, giving Tc = 7.01 K (4.5 K experi-
mentally). This was considered a puzzle. A similar puzzle
occurred when niobium was investigated.40–42

VII. Pairing difficulty: inconsistent
occupancy

There is a paradox disallowing contributions to superconduc-
tivity by some phonons. The topic was discussed before.43,44

We revisit it here, with additional explanations, for the con-
venience of the reader. In Fig. 4 we show the Fermi surface in
the first BZ in Fig. 2, and a pair of electron states on the surface,

A = (k0, m) and FF = (�k0, k). Initially we have an electron in the
state G = (k, m). Since an electron has two spins, we may also
have G = (k, k).

Letting G = (k, m), we have a normal phonon to drive the
electron into A = (k0, m). Note the spin remains unchanged
before and after scattering. By symmetry we also have a normal
phonon to drive another electron from (�k, k) to (�k0, k).
In Fig. 4 we show the paths of the two electrons as the two
curved solid arrows, which are in association with a certain
occupation probability of the destination pair state, say h(q) =
0.3, q = k � k0 being the momentum of the normal phonon.

Letting G = (k, k), we have an umklapp phonon to drive the
electron into FF = (�k0, k). By symmetry we also have an
umklapp phonon to drive another electron from (�k, m) to
(k0, m). In Fig. 4 we show the paths of the two electrons as the
two curved dashed arrows, which are in association with
another occupation probability, say h(q) = 0.5, q = k + k0 being
the momentum of the umklapp phonon, in contrast to the
previous probability 0.3 in association with q = k � k0.

We should notice we have followed Mott and Jones to
assume we always have a phonon to scatter an electron between
any two states in a shell surrounding the Fermi surface.29 For
example, in Fig. 4, the states G, A and FF are all at the Fermi
level. Another example is eqn (8), where we always have eF as the
electron energy due to the delta function d(e � eF), assuming we
have phonons to let d(n � h�oc) = 1 at any values of q requested
by the events.

VIII. Pairing difficulty: double
occupancy

To supplement our discussion in the previous section, we
follow BCS to construct the ground state made from paired

Fig. 4 Schematic of a spherical Fermi surface and a pair of electrons with
initial momenta k and �k, and destination momenta k0 and �k0. In normal
and umklapp scattering the pair follows the paths indicated by the solid
and dashed arrows respectively. The range of normal scattering is marked
by the shaded wedges (half angle = 601, valency = 2).
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valence electrons.1 We have

ðk ";�k #Þ !
ðk0 "; �k0 #Þ; normal

ð�k0 "; k0 #Þ; umklapp

(
(9)

to present states in the events shown as the solid and dashed
arrows in Fig. 4, respectively, both start from k. Note the spins
of the electrons remain unchanged before and after scattering.
We also have:

ð�k "; k #Þ !
ð�k0 "; k0 #Þ; normal

ðk0 "; �k0 #Þ; umklapp

(
(10)

to present the states in the events shown as the solid and
dashed curved arrows starting from �k. Note that the normal
destination state in eqn (9) is identical to the umklapp destina-
tion state in eqn (10). The normal destination state in eqn (10)
is identical to the umklapp destination state in eqn (9). Letting

a
y
k0"a

y
�k0# and a

y
�k0"a

y
k0# (11)

be pair generation operators to generate particles in the desti-
nation states in both eqn (9) and (10). The ground state in the
BCS theory can be written as1

jCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hN

p
þ

ffiffiffiffiffiffi
hN

p
a
y
k0"a

y
�k0#

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hU

p
þ

ffiffiffiffiffiffi
hU

p
a
y
k0"a

y
�k0#

� �
jFi

(12)

where hN is the occupation probability of the destination state
of normal scattering in eqn (9), hU occupation probability of the
destination state of umklapp scattering in eqn (10). In eqn (12),
we generate just two pairs of quasi-particles explicitly, others
written collectively as |Fi. Due to double Fermion occupations
we have

a
y
k0"a

y
k0" ¼ 0 and a

y
�k0"a

y
�k0" ¼ 0 (13)

leading through direct calculation to

C j Ch i ¼ ½1� hNhU

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNð1� hNÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hUð1� hUÞ

p
�hFjFi (14)

which is not normalized unless hN or hU vanishes, assuming
hF|Fi = 1. Eqn (14) arises because the exclusion principle does
not allow two fermions to occupy the same state. The values of
hN and hU make little difference. It deems the scenario
described in eqn (9) and (10) a forbidden event when we have
say hC|Ci = 0.9999 or 1.0001. This difficulty always will be there
unless normal and umklapp phonons are arranged not to share
the same range of destination states.

In eqn (13), a
y
k0"a

y
k0" a

y
�k0"a

y
�k0"

� �
generates two electrons

scattered by normal and umklapp phonons respectively.
We assume equal energy for the two electrons, assuring double
occupancy of the electron state. We have no other choice
because, by the algebra of the BCS theory, the electron states
are always at the Fermi level due to the delta function d(e � eF)
in eqn (8). The problem is usually latent but outstands in the
pairing events. Many opted to exclude umklapp phonons to
deal with it.21–28 We show it enlightens us to find an alternative
option in the next section.

IX. Alternative pairing: scheme

We let

SðqÞ ¼
1; yN o y � 90�

0; otherwise

(
(15)

in eqn (8) to identify the phonons allowed to pair electrons. In
eqn (15) y is the angle of scattering (angle between k and k0 in
Fig. 4) and yN maximum angle of normal scattering (half angle
of the shaded wedges). For Fermi electrons and Debye phonons
we have yN = 2 sin�1(qD/2kF), where kF is the Fermi momentum,
qD/2kF = (4Z)�1/3 and Z valency, giving yN = 78.11, 69.01, 51.81 for
Z = 1, 2, 3 and so forth, assumed to equal the number of
conducting per atom for simplicity. Experimentally, Z from
measurement may be fractional, and yN depends on the direc-
tion of q because the phonon BZ is a polyhedron.

Eqn (8) and (15) exclude all the normal phonons, avoiding
the paradox discussed in Sections VII and VIII from taking
place. In addition, they exclude the umklapp phonons capable
of driving the electron into the other hemisphere of the Fermi
surface, avoiding a similar paradox. We understand eqn (8) and
(15) as a reasonable proposition to be tested numerically.

In the BCS theory, most Cooper pairs are in a thin layer
across the Fermi surface. It is out of the exclusion principle
because the internal states are all occupied, leaving no place to
accommodate scattered electrons for pairing. Now eqn (15)
draws a map over that thin layer, telling us graphically where
the scattered electrons can land without violating the exclusion
principle.

X. Alternative pairing: phonons

In Fig. 5, we use the open circles to represent vibration
frequencies of the Pd (top) and Pb (bottom) atoms excited by
neutrons along the symmetric directions of the (fcc) lattice.53,54

Theoretically, in simple metals, the Born-von Kármán theory
manifests itself as a series of 3 � 3 matrices, with elements

XX ¼ 1

2a2
V
0 0
effðrÞ

x2

r2
þ V

0
effðrÞ

y2 þ z2

r3

� �

YY ¼ 1

2a2
V
0 0
effðrÞ

y2

r2
þ V

0
effðrÞ

x2 þ z2

r3

� �

ZZ ¼ 1

2a2
V
0 0
effðrÞ

z2

r2
þ V

0
effðrÞ

x2 þ y2

r3

� �

XY ¼ 1

2a2
V
0 0
effðrÞ

xy

r2
� V

0
effðrÞ

xy

r3

h i

XZ ¼ 1

2a2
V
0 0
effðrÞ

xz

r2
� V

0
effðrÞ

xz

r3

h i

YZ ¼ 1

2a2
V
0 0
effðrÞ

yz

r2
� V

0
effðrÞ

yz

r3

h i

(16)

evaluated over the atomic shells surrounding an atomic site
(YX, ZX and ZY defined by symmetry). In eqn (16) r is the
normalized radius of an atomic shell, r = (Rm � R0)/a, R0 and
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Rm are defined in eqn (2), r2 = x2 + y2 + z2, and a crystal constant.

In eqn (16) V
0
eff ¼ dVeff=dr and V

0 0
eff ¼ d2Veff=dr

2, all in joules or
eV, arising from the Coulomb force in the radial and transverse
directions respectively.55

We find V
0
eff and V

0 0
eff with the help of the popular method of

optimization from Hooke and Jeeves.56 In the pattern-search

stage of the method, we perturb the values of V
0
eff and V

0 0
eff to

evaluate the penalty function measuring the r.m.s. difference
between the theoretical and experimental phonon frequencies
shown in Fig. 5. We refer to a perturbation as positive if it
reduces that r.m.s difference. Otherwise, we refer to it as
negative. In the pattern-move stage, we implement positive
perturbations in the original directions, negative perturbations
in opposite directions, magnitude proportional to their effects.
We repeat the process until we can no longer improve the
fitting between the circles and curves in Fig. 5.

We let Veff be third-order polynomials between the shells

and second-order polynomials within the first shell, with V
0
eff ¼

0 when r = 0. We list the values of Veff and its derivatives in Pb

in Table 1. We have V
0
eff ¼ 3:794, 0.020, 0.637, 0.894, 0.150,

�1.137 and V
0 0
eff ¼ �83:612, �3.063, �2.038, 2.932, �0.094,

�0.078 on the first six atomic shells in Pd, a = 0.389 nm.
In Fig. 6 we use the vertical lines to present the locations

of the shells. We also use the shaded silhouette to present
the pseudopotentials for the electron–phonon interactions.

Although the curves and silhouettes are significantly different,
especially within the first shell, we should note the values of

Fig. 5 Experimental and theoretical phonon dispersion for palladium (top)
and lead (bottom), open circles from neutron scattering measurement,
curves from Born–von Kármán theory, usual (fcc) reciprocal site
conventions.

Table 1 Pb lattice potential dataa

m Siteb Nm r � a Veff V
0
eff V

0 0
eff

0 (0, 0, 0) 1 0.000 �2.868 — —
1 (1, 1, 0) 12 0.350 �0.599 2.138 �17.062
2 (2, 0, 0) 6 0.495 0.034 0.002 �1.839
3 (2, 1, 1) 24 0.606 0.028 0.030 �0.175
4 (2, 2, 0) 12 0.700 0.001 �0.193 �2.417
5 (3, 1, 0) 24 0.783 �0.013 0.191 �0.173
6 (2, 2, 2) 8 0.857 0.029 0.000 �0.542
7 (3, 2, 1) 48 0.926 0.035 0.031 �0.050
8 (4, 0, 0) 6 0.990 0.040 �0.001 �0.101
9 (4, 1, 1) 36 1.050 0.039 0.000 0.420
10 (4, 2, 0) 24 1.107 0.009 �0.198 �0.355
11 (3, 3, 2) 24 1.161 �0.024 0.000 �0.002
12 (4, 2, 2) 24 1.213 �0.024 �0.005 �0.123
13 (4, 3, 1) 72 1.262 �0.007 0.124 0.020
14 (5, 2, 1) 48 1.356 0.027 0.000 0.001
15 (4, 4, 0) 12 1.400 0.027 0.000 0.000
16 (4, 3, 3) 48 1.443 0.029 0.017 �0.011
17 (4, 4, 2) 30 1.485 0.032 0.004 �0.193
18 (5, 3, 2) 72 1.526 0.017 �0.135 0.168
19 (6, 2, 0) 24 1.565 0.001 �0.008 �0.055
20 (5, 4, 1) 48 1.604 0.000 �0.012 0.117

a Veff and its derivatives in eV, a = 0.495 nm. b One sample site per
atomic shell, in 0.5a.

Fig. 6 Pseudopotentials for lattice vibrations, Veff in eqn (16) (curves), and
electron–phonon interactions, V in eqn (20) (silhouettes), in palladium
(top, V0 = 31.6 eV and r0 = 0.324 nm) and lead (bottom, V0 = 29.0 eV and
r0 = 0.397 nm for the silhouette),43 vertical lines indicate radius of the
atomic shells.
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Veff between the shells do not affect the phonons. We can let,
for example, Veff 	 0 within the first shell (empty core model).47

XI. Alternative pairing: resistivity

Next, we evaluate r(T) for electrical resistivity against tempera-
tures. The formula involves a pseudopotential, V, for the inter-
actions between phonons and electrons. We will use the
experimental values of r(T) to determine V and compare it with
say Veff in eqn (16). We start with the Drude formula:

rðTÞ ¼ 1

N

me

e2
1

t
(17)

where T represents temperature in Kelvin, N number of atoms
in unit volume, me and e electron mass and charge respectively.57

In eqn (17) t represents the collision (relaxation) time,

1

t
¼ 4p

kBT

�h

ð1
0

atr2FðnÞxdx
ðex � 1Þð1� e�xÞ; (18)

x = n/kBT, kB being the Boltzmann constant. We also have the
electron–phonon transport density

atr2FðnÞ ¼
1

N

X
‘;q

dðn � �ho‘Þdðe� eFÞjg‘ðqÞj2
k � q
k � k (19)

where oc is the circular frequency of the phonon, c identifies
polarization, e and eF electron energy and Fermi energy, respec-
tively, q = k0�k, k and k0 stand for the initial and end states of an
electron.31

In eqn (19) we have the matrix element:52

g‘ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Mo‘

s
e‘ � hkþ qjrVjki (20)

which is the equivalence of eqn (7) in the many-particles
formalism, M being the mass of the atom, V = V(r) atomic
potential, and r distance from the atomic site in real space. The
atomic potential is differentiated to measure via Taylor expan-
sion the first-order effect of atomic vibration on the valence
electrons. We assume

VðrÞ ¼ V0 cos 1:57
r

r0

� �
(21)

when 0 r r r r0, otherwise V(r) = 0 (muffin-tin model).48

We will adjust V0 and r0 to fit the output of eqn (17) to
experimental data.

In metals, the electron–phonon interactions take place just
on the Fermi surface due to the exclusion principle. We convert
the summation in eqn (19) into integration. We let dk0 =
(dk0/de)de to let the integration accommodate the delta func-
tion, d(e � eF), to implement the physics. Sine k02 sin(y)dy =
qdq = q(dq/doc)doc, the summation in eqn (19) also accom-
modates d(n � h�oc), where y is the angle between k and k0 in
Fig. 4. The output of eqn (19) depends on the direction of k. We
average it over the Fermi surface and find the analytical
expression for atr

2F(n) in ref. 43.
We perform a two-dimensional search to specify V(r) in

eqn (21) to minimize the difference between the experimental

and computational values of r(T) illustrated in Fig. 7. We find

V0 ¼ � 29:0 eV

r0 ¼ 0:397 nm
(22)

in Pb, compared with Veff in Table 1. We find V0 = 31.6 eV,
r0 = 0.324 nm in Pd. We also illustrate the results in Fig. 6 for a
comparison with Veff in eqn (16).

XII. Alternative pairing:
superconductivity

We test if our pairing scheme in eqn (15), which excludes an
extensive range of phonons, ensures accurate superconduc-
tivity. We will perform a two-dimensional search to specify
V(r) in eqn (21) to minimize the difference between the experi-
mental and computational values of the superconducting
tunnelling current shown in the bottom part of Fig. 8. We will
compare the resulting values of V0 and r0 with the values in
eqn (22).

In the top part of Fig. 8, the shaded silhouette represents the
experimental a2F(n) from ref. 49 which arises from the mea-
sured values of the superconducting tunnelling current shown
in the bottom part of the figure. Our numerical a2F(n), shown as

Fig. 7 Electric resistivity from experimental measurement (circles), com-
putation (solid curves) and S & S evaluation (filled squares). Top: In
palladium, deviation = 0.26% on average against resistivity in lead at
300 K. Bottom: In lead, deviation = 0.14% on average.43
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the histogram, arises from eqn (8) which in turn arises from
S(q) in eqn (15) and gc(q) in eqn (20) via V(r) in eqn (21). It
enables us the solve the Eliashberg equation at T = 0 numeri-
cally provided we know the edge of the superconducting gap
function, D0.52 We vary the trial value of D0 until we find the
experimental value of Tc from our numerical solution to the
Eliashberg equation at T 4 0.

Eventually, we find the computational tunnelling conduc-
tance current shown as the solid curve in the bottom part of
Fig. 8. We have l = 1.464 for our numerical a2F(n), compared
with l = 1.33 
 0.02 in ref. 49. We find m* = 0.0994 and D0 =
1.442 meV, giving 2D0/kBTc = 4.654, compared with m* = 0.1 

0.02 and D0 = 1.358 
 0.004 in ref. 49. We find

V0 ¼ �28:5 eV

r0 ¼ 0:404 nm
(23)

which deviate little from the values in eqn (22) for electrical
resistivity.

We find that, within the 0.3% error margin between the
experimental and computational values of r(T), V0 and r0 in
eqn (22) are not unique. On the other hand, we always find
unique values of V0 and r0 in eqn (23) to fit values of the

tunnelling currents, full of rich details about the phonons.
Therefore, we find V0 and r0 in eqn (22) iteratively. We treat V0

and r0 from eqn (23) as trial values of their counter parts in
eqn (22) and proceed to fit r(T) once again. Usually, one
iteration is sufficient to secure proper values of V0 and r0 in
eqn (22).

In the top part of Fig. 3, we use the curve to show the S & S
a2F(n) in Pd, l = 0.35 (0.34 by our calculation).23 It leads trough
the Eliashberg equation at T = 0 to D0 = 0.0286 meV when
m* = 0.13. Consequently, we find Tc = 0.19 K from the relation
2D0/kBTc = 3.52, that is Pd becomes a superconductor.
In comparison, with the umklapp pairing scheme in eqn (15),
we find a different a2F(n) shown as the shaded silhouette in the
top part of Fig. 2, l = 0.199. It leads through the Eliashberg
equation to D0 = 0, giving Tc = 0.

XIII. Alternative pairing: numerical
scheme

The scheme in eqn (15) arises entirely from the theoretical
point of view to avoid the pairing difficulty revealed and
analysed in Sections VII and VIII. Now we test a pairing scheme
arising from a numerical point of view. We will include or
exclude phonons depending on if the output of the Eliashberg
equation matches experimental data accurately.

In Eqn (8), we let S(q) = Si when y = yi, i = 0,1,2,. . .,20, yi being
mesh points evenly distributed between y = 0 and p/2.
We always force Si = 0 when y 4 p/2. We follow the procedure
of Hooke and Jeeves56 to vary the values of Si to minimize the
difference between the experimental and computational values
of the superconducting tunnelling conductance, shown as the
small circles and the curve, respectively, in the bottom part of
Fig. 9. We force Si = 0 when y o yN initially but let the
procedure run free afterwards.

We evaluate the matrix element in eqn (20) with the pseu-
dopotential in eqn (21) and (22) so that the strength of the
electron–phonon interactions is identical to that for electrical
resistivity. We find the computational tunnelling conductance
current shown as the solid curve in the bottom part of Fig. 9.
We have l = 1.726 for the numerical a2F(n) shown as
the histogtam in the top part of Fig. 9. We find m* = 0.151,
D0 = 1.458 meV, giving 2D0/kBTc = 4.706.

In Fig. 10, we use the solid curve to present S(q) for our
numerical pairing scheme. It takes the value of Si when y = yi.
Otherwise, we define its value by interpolation. It fits well the
theoretical values of S(q) in eqn (15), shown as the shaded
rectangle, apart from some minor disturbances between q = 0
and qD. The slight slope of the curve around qD is from the non-
spherical geometry of the phonon BZ.

XIV. Discussion: palladium

We find l = 0.199 in Pd, a2F(n) shown as the shaded silhouette
in the top part of Fig. 3, giving Tc = 0 in accord with the
experiment. We are not alone. In 1977, Papaconstantopoulos

Fig. 8 Superconductivity in Pb, from the alternative pairing scheme in
eqn (15) to curtail phonon contributions, D0 adjusted to ensure an accurate
value of Tc. Top: a2F(n) from experiment (silhouette) and computation
(histogram). Bottom: Tunnelling conductance from experiment (open
circles) and computation (small circles).
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and co-workers found superconducting properties of 32 metals,
from self-consistent band-structure calculations and measured
values of the Debye temperature, in conjunction with the theory
of Gaspari and Gyorffy, l = 0.148 (0.281 without correction) in
Pd.58 Consequently, in 2010, Doubble and co-workers con-
cluded that the observation of strong spin fluctuations in Pd

does not lead to a large contribution to the linear specific
heat.59

S & S found l = 0.340 in Pd, a2F(n) shown as the curve in the
top part of Fig. 3, giving Tc 4 0 in contrast to the experiment.
They, too, are not alone. In 1978 and 1979, Pinski, Allen and
Butler found l = 0.41 in Pd,42,60 phonons integrated over BZ
following a similar practice to investigate Nb.40 In 2005,
Takezawa, Nagara and Suzuki found l = 0.377 from DFT,
phonons integrated on an 8 � 8 � 8 mesh within BZ.61 In
2006, Sklyadneva and co-workers found l = 0.40 also from DFT,
phonons integrated over a dense mesh in the first BZ.62

In 2020, Kawamura, Hizume and Ozaki found superconduct-
ing properties (or the lack of them) of almost all elements in the
periodic table from DFT via first-principles calculations with
necessary material informatics.63 They integrated phonons in
BZ with the optimized tetrahedron method described briefly by
Savrasov.22 Interestingly, they found l = 0.325 or 0.333 in Pd,
which leads through their first-principles m* and spin fluctua-
tions to Tc = 0.

In 1979, Striktzer found Pd films, irradiated with He+ ions,
became superconductors, Tc = 3.2 K.64 He suggested that, in the
case of l = 0.34 or so, irradiation might have smeared the Fermi
surface to defeat the effect of spin fluctuations and revive
superconductivity. He was open to considering smaller l
because he mentioned superconductivity enhancement by
irradiation.

In 2013, Hayashi and co-workers found l = 0.35 
 0.05 from
an angle-resolved photo-emission study of electron structure
and self-energy in non-superconducting Pd.65 It is not clear if
lB 0.35 still stands in ref. 42,60–63 after the authors have
extended their theory to include the umklapp phonons.

XV. Discussion: alkali metals

In Fig. 2, we present a spherical Fermi surface confined entirely
within the first BZ without touching its boundary. The gaps
between the Fermi surface and its replicas block umklapp
scattering when thermal agitations are too weak to drive the
electron to jump across the gaps. In the case of alkali metals,
the plot in Fig. 2 is no longer schematic but realistic. In 1971,
Ekin showed with careful experiment and analysis that, in
potassium, the contribution to electrical resistivity from
umklapp phonons drops rapidly below B2.5 K.66

Consequently, the analysis in Sections VII and VIII may not
apply to alkali metals. In the absence of the umklapp phonons,
represented by the curved dashed arrows in Fig. 4, we will not
encounter inconsistent or double occupancies of the paired
electron states. It appears reasonable for Yan, Zhang, Wang and
Yang to use the MP scheme to study superconductivity in dense
Li.67 The use of the MP scheme in ref. 24 and 27 might also be
justifiable if the authors could prove similarities between
hydrides and alkali metals.

Furthermore, in any metal, umklapp phonons might not
drive scattered electrons to cover the entire Fermi surface.
There might be some pockets of the electron states on the

Fig. 9 Superconductivity in Pb from the alternative pairing scheme, with
numerical S(q) in eqn (8) and same gc(q) in eqn (8) and (19), conventions
identical with Fig. 8.

Fig. 10 Survival rate, S(q), in lead from theory (silhouette) and numerical
calculation (curve).
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surface beyond the reach of umklapp scattering, leaving room
for normal phonons to pair electrons, evidenced by the minor
disturbances of S(q) below Debye momentum in Fig. 10.

Regrettably, in either alkali or any other metals, we do not
have sufficient reason to follow S & S and Andersen21–23 to
assume V = Veff in eqn (6) and (7). It is a great convenience, but
we may not be in a position to enjoy it safely. It allows us to
identify, for example, the roles of acoustic or optical phonons,
but we cannot be sure about it. We still have to estimate Tc

roughly from the values of TD, l and m* (ref. 68) not very
different from the practice of McMillan in 1968.69

XVI. Discussion: BCS interaction

The interaction term of the reduced Hamiltonian, Vkk0 in
eqn (2.14) in ref. 1, has no dependence on temperature in the
BCS theory. It then leads through the entropy of the electron
pair ensemble to Tc. An anonymous referee asks us to replace it
with its counterpart in a replacement theory70 where we must
choose the interaction term from eqn (4)–(6) if T o Tc.
Otherwise, we choose eqn (7)–(9). We do not know Vkk0 before
we know Tc. We also do not know Tc before we know Vkk0. We
have been puzzled by the dilemma. We believe it will be more
appropriate for us to follow70 or comment on it in future.

XVII. Conclusions

Peter, Ashkenazi and Dacorogna called for a reduction of
phonon contributions to superconductivity to solve a historical
difficulty of the BCS theory. It has led to widespread applica-
tions of the MP scheme, readily available from computer
packages, to evaluate superconductivity clearly because the
scheme excludes umklapp phonons. González-Pedreros,
Camargo-Martı́nez and Baquero believe the umklapp process
does not contribute to superconductivity. Du and colleagues
believe the umklapp process is relevant if the Fermi momen-
tum is much smaller than the Debye momentum. Otherwise,
they believe pairing occurs without a noticeable contribution of
the umklapp phonons.

Savrasov and Savrasov investigated the effect of the MP
scheme before and after a metal becomes a superconductor.
In their evaluation, superconductivity in Pb is overly strong in
the absence of the umklapp phonons. The electrical resistivity
becomes too weak. Furthermore, Pd becomes a superconductor
in ambient erroneously. It also is with weak electrical resistivity.
The lesson is clear: we must reduce phonon contributions when
and only when the metal is superconducting to avoid unwanted
weakening of electrical resistivity.

The BCS theory indeed obliges us to do so. It assigns definite
occupation probabilities to the paired electron states, sometimes
inconsistent with the occupation probabilities due to umklapp
scattering. We find we must exclude all the normal phonons.
We also have to exclude the umklapp phonons capable of driving
an electron to the other hemisphere of the Fermi surface. It leads
to accurate resistivity and superconductivity in Pb and Pd. In

particular, it explains why Pd is not a superconductor in the
bulk form.

Further verification of the approach against other classical
metallic and (or) novel high-temperature superconductors,
such as various hydrides under pressure, is necessary because
it concerns the worth of many previous and future endeavours.
It also is urgent in light of the rapid development in the field.
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