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A simple topology-based model for predicting the
activation barriers of reactive processes at 0 K†

Leandro Ayarde-Henrı́quez, *ab Cristian Guerra,cd Mario Duque-Noreñac and
Eduardo Chamorro *c

This work reveals an underlying correlation between the topology and energetic features of matter

configurations/rearrangements by exploiting two topological concepts, namely, structural stability and

persistency, leading thus to a model capable of predicting activation energies at 0 K. This finding

provides some answers to the difficulties of applying Thom’s functions for extracting energetic

information of rate processes, which has been a limitation for exact, biological, and technological

sciences. A linear relationship between the experimental barriers of 17 chemical reactions and both

concepts was found by studying these systems’ topography along the intrinsic reaction coordinate. Such

a procedure led to the model DHzP ¼ 718:3971 m, which accurately predicts the activation energy in

reacting systems involving organic and organometallic compounds under different conditions, e.g., the

gas-phase, solvent media, and temperature. This function was further recalibrated to enhance its

predicting capabilities, generating the equation DHzP ¼ 691:5314 m for this procedure, characterized by a

squared Pearson correlation coefficient (r2 = 0.9774) 1.1 times higher. Surprisingly, no improvement was

observed.

Introduction

Thom’s catastrophe theory (CT)1 has tremendously impacted
several branches of scientific research. Such relevant work has
been applied to biological,1 social,2,3 technological,4–7 and
exact8–12 sciences. Despite the popularity of CT, the connection
between objects derived from it and the energy associated with
a particular configuration of matter or the amount of heat
needed for a process to occur is far from clear. This fact is
readily evidenced in both stationary and reacting systems.9,13–15

Scheme 1 shows the molecular graph, i.e., the collection of
nuclear attractors and (bond) paths connecting them,16 for the
CH4 and H4Si molecules, panels (a) and (b), respectively. These
‘‘networks’’ are a graphical representation of the vector field
created by the gradient of the electron localization function

(ELF). The ELF17 is a quantum chemical tool for probing Pauli’s
exclusion principle; therefore, this function enables recovering
Lewis objects such as bonds and valence. This means that ELF
attractors (or maxima) are crucial topographical objects which
shape the molecular graphs and allow us to distinguish them.
Although in the majority of cases, it is determined via quantum
calculations,10 it has been shown that the ELF can be obtained

Scheme 1 ELF molecular graphs of methane and silane, panels (a) and (b),
respectively, showing that although these compounds have different
physical–chemical properties, their molecular graphs are topographical
equivalents. These textbook systems evidence the limitations of using
topology to gain insights into the energetic features of matter. Yellow
lines represent ELF gradient paths. Orange spheres indicate saddle points
of index one.
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from experiments.18,19 It is worth noting that any conclusive
evidence concerning the distinguishability between methane
and silane can be extracted by examining their topography
since these molecules exhibit the same (equivalent) molecular
graph. However, it is well known that such systems have
different physical and chemical properties. For instance, the
molar enthalpy of formation (in the gas phase at 298.15 K) is
+34.3 and �74.6 kJ mol�1 for H4Si and CH4, respectively.20

Furthermore, over the last 25 years, the computational
evidence, gained by associating topographical changes in the
phase-space of the ELF17 with meaningful chemical events (e.g.,
formation and cleavage of bonds) along a reaction pathway
through seven parametric functions,9 has led our community to
agree on the impossibility of extracting energetic information via
these polynomials (unfoldings) derived from Thom’s works.1 For
instance, the energy needed for a covalent bond scission cannot
be correlated with any unfolding since, in some cases, this
chemical event is described via a fold-type polynomial,13,14,21

whereas in others, through a cusp function.9,13,14 Thus, insofar
applications of CT in our field have been focused on providing
information on the molecular mechanism or the relative reactivity
of chemical species, leaving aside the energetic aspect of the
discussion. Although our group has recently made some progress
by revealing the intimate relationship between the unfoldings1

and the pair-electron density symmetry in chemical reactions
occurring in both grounds15,22 and electronically excited
states,23–25 none of these works give any clue on how to correlate
the unfoldings with, for instance, the activation barrier. To the
best of our knowledge, the only effort in this direction was made
more than two decades ago by Margalef-Roig, Miret-Artés, and
Toro-Labbé.26 They showed that if a property such as the chemical
hardness, energy, or chemical potential is described through a
Gibbs-like potential along a reaction coordinate, then this
potential is (locally) isomorphous to a fold polynomial. This result
constitutes a breakthrough, at least from a theoretical standpoint.
However, the cardinality of the unfolding set is seven, and, on the
other hand, applying such a result to a concrete situation, such as
predicting the height of a barrier, completely fails. This scenario
depicts the poor progress that has been made in unifying Thom’s
work with crucial chemical quantities (e.g., enthalpy of formation)
and justifies the lack of studies devoted to revealing underlying
relationships (if any) between energetic descriptors and the
foundations of CT, despite its astonishing popularity. In fact,
the impossibility of an energetic discussion concerning electron
rearrangements by means of Thom’s polynomials is indeed the
main drawback of all methodologies based on CT. Our findings
suggest that such discouraging state-of-the-art results from the
absence of a measurable relationship between the qualitative
description of electron rearrangements given by unfoldings and
the energy demanded by the former, because this correlation is
deeply rooted in the very basis of topology and not in Thom’s
unfoldings. This means that such a relationship is a more
fundamental one.

This paper presents a promising achievement regarding
the above discussion. Herein, we first show the existence of a
strong correlation between crucial topological concepts, namely,

persistency and structural stability, and the activation barrier of
reactive processes. Quite surprisingly, such a relationship can be
written in terms of a model capable of predicting energy thresh-
old in reactions encompassing organic and organometallic
compounds.

Results and discussion

Table 1 lists 17 reactions used to deduce the model (see the
ESI† for further details). Activation energies (DH) computed via
DFT functionals deviate, at most, 2.88 kcal mol�1 from the
corresponding experimental value after correcting the latter to

0 K (DHzT¼0). The value of DHzT¼0 is obtained by means of the
molecularity of each reacting system and the absolute tempera-
ture of the experiment.10,29 Experimental conditions were
incorporated into the proposed model by considering the
solvent media, pressure, and temperature for each case. More-
over, the selected system of chemical reactions comprises a wide
temperature range, i.e., from 293 to 748 K, covering an interval of
experimental activation barrier of 7.7–54.0 kcal mol�1.

We then follow all topographic changes associated with
relevant electron reorganizations leading to the breaking of
single bonds and reduction of double to single bonds along the
intrinsic reaction coordinate (IRC) before the reaction system
reaches the transition state configuration. These events consti-
tute the so-called electronic preparation stages of the reaction,
which are indeed the driving forces underpinning compound
activation. It should be stressed that the subsequent develop-
ment we present allows these chemical changes to be described
by any of the seven unfoldings, enabling the generalization of
Toro–Labbé and collaborators’ work.26 The next step is critical
since we need to measure the total energy the system needs to
move throughout the preparation rearrangements; in other
words, it is crucial to estimate how much energy must be added
to the reacting system. From the Eyring–Polanyi32 theory, it is
well-known that this amount of energy comes from external
sources, namely, intermolecular collisions. Conveniently, this
energy can be associated with the negative reaction force
integral.33 Thus, the integration limits correspond to the energy
of reactant(s) and the structure exhibiting the last topographi-
cal change, Er and E* respectively:

m � DE ¼
ðE�
Er

F Rð Þd Rð Þ ¼ E� � Erj j (1)

In eqn (1), F represents the force of the reaction, R stands for
the IRC, and m is the amount of external energy needed to
prepare the reacting system to undergo a chemical reaction.
The reaction will not occur for values of m lower than the one
computed through eqn (1), whereas the reaction has a signifi-
cant probability of proceeding for values equal or higher.
Consequently, it is reasonable to take m as the (external) control
parameter.1,4 Fig. 1 presents a fragment of the IRC regarding
the archetypal Diels–Alder (DA) reaction between 1,3-butadiene
and ethylene for further clarifying how we exploited eqn (1).
The reduction of the dienophile double bond is the last
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topographical change before the system reaches the transition
state configuration. Thus, the energy associated with this key
geometry is equal to E* by definition.

Not surprisingly, reaction systems with high activation barriers
demand more external energy in order to surmount that thresh-
old; therefore, the exposure of ELF maxima (i.e., the number of

frames in which a critical point appears along the path) will also
be long. From this, it is reasonable to conclude that this exposure
factor should be correlated with the height of the activation
barrier. Recall that a reaction system lying in a deep energetic
well (relative to the transition state energy) will exhibit a low
reactivity. The higher the local curvature of the potential energy
surface (PES), where reactants and the transition state configu-
ration are placed, the more the energy needed for the reaction to
occur. Thus, PES features are the key elements underpinning both
kinetic and thermodynamic aspects of reactive processes. Luckily,
ELF topography accurately captures the complexities of this
surface. For example, an exposure factor constitutes a suitable
visual measure of the persistency6,34–37 of a critical point (CP).
Furthermore, this topological concept is an adequate metric for
exploring the structural stability of CP4,6,38–42 and, in general, the
system molecular graph. A CP that remains in the molecular graph
(topographic map) upon an external perturbation (m) is frequently
referred to as a persistent point. Our working hypothesis is that the
concept of persistency, estimated via the external parameter m and
the activation barrier are correlated. To prove that, we compute m
using eqn (1) for each reaction listed in Table 1, and the results are
shown in Table 2.

The unit of m was kept in Hartree to minimize the statistical

propagation effects of errors. Fig. 2 depicts the plot of DHzT¼0
(see Table 1) versus m (see Table 2) obtained through the least-
square method. The Pearson (product-moment) correlation
coefficient (PCC), r, is a widely used statistical metric to quantify
the strength of the linear relationship between a pair of
variables.43–46 For convenience, the PCC takes values between
�1 and +1, where �1 corresponds to a perfect negative linear
relationship, whereas the +1 value characterizes a perfect positive
one. Two random variables are called linearly uncorrelated if
r = 0.47 Typically, the degree of linearity is established by partition-
ing the interval, and although different research fields have

Table 1 Computed(DH) corrected DHzT¼0 and experimental (Ea) activation
barriers in kcal mol�1

No. Reaction
DH
[kcal mol�1 ]

DHzT¼0
[kcal mol�1]

Ea
[kcal mol�1]

1 5.05 5.82 7.727,28

2 33.70 32.49 33.529

3 19.64 19.34 20.530

4 10.43 12.44 13.630

5 11.85 14.41 15.630

6 14.94 17.82 19.030

7 28.69 28.34 29.329

8 35.98 35.37 36.329

9 21.12 22.62 23.729

10 22.90 24.01 24.629

11 51.79 52.50 54.029

12 30.58 32.30 33.231

13 29.59 30.24 31.931

14 31.78 32.00 32.931

15 29.94 30.57 31.431

16 29.40 31.45 32.331

17 30.70 32.74 33.631

Fig. 1 IRC fragment for the Diels–Alder reaction between 1,3-butadiene
and ethylene. The reduction of the dienophile double bond constitutes the
last topographic change before the reaction system reaches the transition
state configuration. This means that the energy of such an ‘‘activated’’
structure is E* blue spheres, indicating ELF maxima, which provide a natural
and straightforward representation of Lewis objects (e.g., core, bond, and
valence).
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adopted distinct criteria,47 most agree in describing the relation-
ship as strong if r Z 0.7.48–50 Moreover, the predicting capability
of a model is a paramount practical feature. In order to measure
how well the simple regression line fits the experimental data, we
can simply square r,43–45 which is called the squared Pearson
correlation coefficient (SPCC), r2.43–45 The SPCC range is [0, 1]43–45

and measures the amount of variation around the mean of
the independent variable predictable from linear regression.44

Concretely, the closer the values of r2 to unity, the better the fit, and
the closer the experimental points are from the line. In contrast, if
r2 is equal to zero, it is impossible to write a linear function
containing both variables, i.e., a horizontal line is generated,
meaning the predicting capability of the model is null.44

Using the slope, g, of the linear fit, we propose the following
simple model for predicting the activation barrier (at 0 K) of

chemical reactions in both solution and gas phase within the
interval of 293–748 K:

DHzP ¼
g0

g
� DH ¼ DHð Þ2

m � g (2)

In eqn (2), DHzP is the predicted activation energy, and g0

represents the quotient between DH and m. Two details should
be recalled when applying the model; first, these two latter
parameters are to be determined via direct calculation; and
second, the correlation information is embodied within

the slope g. On the other hand, note that the unit of DHzP is
kcal mol�1, as desired. Different setups were considered for
testing the predicted performance of the proposed tool (eqn 2):
(i) organometallic compounds, (ii) reactions with activation
barrier out of the fitting energy interval, and (iii) cases in which
the direct calculation of the barrier is somewhat accurate, as
displayed in Table 3. The experimental activation energy of
reactions 1–12 is computed from the provided30 rate constant
using the Eyring–Polanyi theory.32 Detailed information con-
cerning optimized geometries, values of m and levels of theory
are provided in the ESI.†

The cleavage/reduction of bonds criteria characterizing the
electronic preparation stages and associated with the structural
stability concept has to be, to some extent, generalized to study
reactions where neither single bond breaks nor higher-order
bond reduces (e.g., reactions 16 and 21, Table 3). In such cases,
E* corresponds to the energy associated with the first topo-
graphic change, i.e., the apparition of a new ELF maximum
near the reaction center. Thus, this critical point is always
involved in the electron rearrangements leading to a new Sigma
bond between moieties since the reacting system is now
‘‘activated’’. It is not hard to realize that this line of thinking
indeed constitutes a natural way to extend the previous criteria,
as depicted in Fig. 3. This generalization seems to be reason-
able considering the significant amount of computational
evidence10 pointing out that the rising of an ELF maximum
near a reaction center constitutes a topographical signature
preluding a bond formation.

Reactions presented in Table 3 were obtained through
modern DFT functionals; nonetheless, some of them were
computed by means of the smallest possible basis set, guaran-
teeing an adequate description of physical (e.g., electron fluxes)
and chemical (e.g., predicted VSEPR59 structure) properties of
the system. Such a procedure aims to obtain a somewhat
accurate characterization of the reacting system, on the one
hand, while a poor estimation of the barrier, on the other, for
further testing the predictive capabilities of the model. For
instance, reactions [1–5, 7–9] follow this idea since they were
studied using the 6-31G (reactions 1, 2, 5, 7, and 8) and 6-31G(d)
(reactions 3, 4, and 9) basis sets. The case of reactions 1, 9, and
12 is quite remarkable because the estimated barrier (from
direct calculations) were 11.6, 7.1, and 7.1 kcal mol�1 lower
than the experimental value, respectively, whereas the model
prediction deviates �2.8, +2.8, and �0.5 kcal mol�1, respec-
tively. Moreover, the reaction (19) between diazomethane and

Table 2 External parameter m in Eh

No. m[Eh]

1 0.006550678
2 0.052624565
3 0.028535045
4 0.007001504
5 0.015171086
6 0.021119109
7 0.023956267
8 0.036021286
9 0.032307993
10 0.034610163
11 0.075898734
12 0.045908015
13 0.045773725
14 0.048255020
15 0.043459820
16 0.043328948
17 0.044536073

Fig. 2 Simple linear regression plot of DHzT¼0 as a function of m for 17
reactions, showing a very strong linear correlation between variables.
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norbornene, as well as the SN2 between bromomethane and
Cl�, show that the proposed model is capable of suggesting a
more accurate barrier than the direct computed one, even in
cases where the estimated activation energy using potent
quantum chemical machinery deviates only 3.6 kcal mol�1

from the experimental value. This fact is also evidenced in

the DA reaction between 1,3-cyclopentadiene and furan-2,5-
dione. However, although the estimated activation barrier for
the aliphatic-Claisen rearrangement (20) of 2-(allyloxy)prop-1-
ene deviates 3.3 kcal mol�1 from the experimental energy, the
model fails to provide a more accurate value. Furthermore,
its performance for the epoxidation of isobutene (13) and

Table 3 Performance of the topology-based model

No. Reaction DH [kcal mol�1] DHzP ½kcal mol�1� DHzT¼0 ½kcal mol�1� Abs. error [kcal mol�1] Model abs. error [kcal mol�1]

1 13.77 22.53 25.3230 11.55 2.79

2 14.19 29.05 23.5230 9.33 5.53

3 13.03 15.41 22.1230 9.09 6.71

4 13.02 16.15 21.2230 8.20 5.07

5 18.28 25.25 22.9430 4.66 2.31

6 9.09 12.08 16.5430 7.45 4.46

7 16.48 17.54 22.6430 6.16 5.09

8 17.62 22.14 27.5030 9.88 5.36

9 9.72 19.61 16.8430 7.12 2.77

10 9.02 10.86 17.3230 8.30 6.46

11 11.58 16.93 15.7730 4.19 1.16

12 13.19 19.70 20.2430 7.05 0.54

13 16.20 16.21 8.2251,52 7.98 7.99

14 17.79 18.58 9.0451,52 8.75 9.54

15 21.03 27.01 29.0829 8.05 2.07

16 19.96 26.50 23.5253 3.56 2.99

17 0.68 0.93 1.2154,55 0.53 0.28

18 40.22 36.82 32.0929 8.13 4.73

19 15.62 14.50 12.0256 3.60 2.48

20 27.67 25.72 31.0031 3.33 5.28

21 42.47 38.09 37.1457,58 5.33 0.95

22 19.11 32.84 31.6030 12.48 1.21
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a-methylstyrene (14) by dimethyldioxirane is surprisingly poor,
predicting energy values slightly worse than the directly calcu-
lated ones. This might be explained by assuming that the basis
set used is less flexible than required to provide an appropriate
description of the physics underpinning both reaction systems.
On the other hand, the oxidation reaction encompassing a
transition metal (17) is crucial in the validation process because
of the complexity typically associated with describing almost
barrierless systems. Even current refined quantum calculation
methods estimate an activation barrier of about half the
experimental value. Nevertheless, the model succeeded in pre-
dicting a barrier lying 0.3 kcal mol�1 below the experimental
measurement, thus constituting a remarkable achievement
because of the critical dropping in the relative error from 147
to 23%, corresponding to the direct and predicted calculations,
respectively.

It is essential to emphasize the relevance of the application
limits of the proposed topology-based model. The activation
energy of the prototypical hydrogen-substituted DA between
1,3-butadiene and ethylene was experimentally determined at
800 K (about 50 K higher than the upper limit of the fitting
interval). Therefore, a significant inaccuracy should be expected if
eqn (2) is applied to this case. For instance, direct calculation via
the oB97X-D/6-31G(d) level estimates a barrier of 18.1 kcal mol�1;
in contrast, the model predicts a value 2.2 kcal mol�1 lower.

However, DHzT¼0is as high as 24.3 kcal mol�1.

Recalibration of the model

A straightforward mechanism for enhancing the value of r2, and

hence the linear correlation between DHzT¼0and m is filtering out
the three points exhibiting the highest distance from the fit line.

Such points correspond to reactions 4, 7, and 8 (see Table 1).
This procedure significantly improves both coefficients, which
means the corrected model should provide more accurate pre-
dictions than the uncalibrated one, as presented in Fig. 4.

Table 4 compares the prediction performance of both models.
Note that the expected enhancement in the predictability of the
corrected one is not observed, even though the correction proce-
dure leads to a relevant improvement of r2. Not surprisingly,
certain flexibility of the first equation capabilities was lost by
removing some statistical variability sources, leading to a null
improvement of the recalibrated model since exactly half of the
testing set shows more accurate barriers. It is worth noting these
reactions are quite randomized, which hinders the identification
of a pattern. This is evident in reactions 1, 2, and 17. However, this
intriguing finding might suggest that the linear correlation is
independent of the reaction set used to deduce the model, a
plausible explanation that should be further investigated.

Theory and computational details

Considering the excellent bibliographical sources available in
the literature on dynamical systems (DS), structural stability of
vector fields, and catastrophe theory (CT), here we will just
focus on stating the main ideas. Let us first recall that the
bonding evolution theory (BET)9 models the reaction system as
a gradient DS (GDS).35–37,39 The potential function of this GDS
is the so-called electron localization function (ELFRZ)17 which
is a scalar function depending on the three spatial variables of
R3. Roughly speaking, the gradient of ELF, rZ generates a
vector field which can be uniquely defined by its equilibria, i.e.,
rZ = 0, which yields only four types of singular (critical) points:
attractors (maxima), saddle points of index one, saddle points
of index two, and repellors (minima). Each of these CPs can be
characterized by a pair of non-negative integers known as the

Fig. 3 IRC fragment for the textbook reaction between acetyl chloride
and OH�. In this case, neither reduction nor scission of bonds occurs.
Therefore, we select the geometry showing the first topographical change
(i.e., the apparition of an ELF maximum near the hydroxyl oxygen due to
the splitting of its valence shell), which marks the onset of the system
activation. Blue spheres indicate ELF maxima, which provide a natural and
straightforward representation of Lewis objects (e.g., core, bond, and
valence).

Fig. 4 Recalibrated model, showing a significant improvement in its
prediction capabilities.
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rank, o, and signature, s. The first one indicates the number of
directions (eigenvectors) or dimensions of the space, whereas the
latter results from algebraically summing the sign of eigenvalues.5

The stability of an ELF CP requires that all its eigenvalues are real;
in other words, the real part of any eigenvalue is non-zero.6,39,60 A
critical point exhibiting this characteristic is called hyperbolic or
Morse-type; otherwise, they are referred to as degenerate or non-
hyperbolic.39 Intuitively, one can associate the stability of a CP
with the persistency of its characteristics (e.g., none of its asso-
ciated eigenvalues has a purely imaginary part) after the GDS
is submitted to a small perturbation.6,35–38 More precisely, it is
said that there exists a homeomorphism between vector fields
mapping every orbit of the unperturbed system to an orbit of the
perturbed one, preserving the direction of the flow,6,38,39,60,61 as
depicted in Scheme 2.

The topographic map or phase-space portrait (i.e., the collection
of all CPs and the set of trajectories connecting them39,62) is said to
be structurally stable if all CPs of the potential function (e.g., ELF)
preserve their type (s) and hyperbolic characteristic (o) after an
external perturbation is applied to the GDS, meaning that the
unperturbed map (Scheme 2, panel a) and the perturbed one
(Scheme 2, panel b) are orbitally equivalent. Thus, the number
and orientation of trajectories remain unchanged.38,39 The notion
of structural stability was first introduced by Andronov and Pon-
tryagin under the name of ‘‘grossier’’ (roughness).6,42 Peixoto63

extended their work by ‘‘embedding’’ a DS on a 2-dimensional
smooth manifold, postulating the necessary and sufficient condi-
tions that a DS must fulfill to be classified as a structurally stable
system:

(i) there is only a finite number of CPs, all generic
(hyperbolic);

(ii) the a-(starting point of the trajectory) and b-limit (con-
verging point of the trajectory) sets of every trajectory can only
be CPs or closed orbits (collection of trajectories);

(iii) no trajectory connects saddle points (the possibility of
self-connection is also excluded);

(iv) there is only a finite number of close orbits, all simple
(hyperbolic).

Peixoto’s landmark paper reveals the deep connection
between DSs and the underlying topological structure that
supports it since conditions (i), (ii), and (iii) coincide with the
ones stated by Andronov and Pontryagin.6,42,43 The third con-
dition is crucial for further understanding Thom’s catastrophe
theory4,64 and provides a straightforward way to explore the
coalesces mechanism of CPs in the rZ phase portrait.6 Never-
theless, the topographic map contains not only CPs but also a
large number of the so-called wandering points. A wandering
point always describes an unbound trajectory in the sense that
such a trajectory will not return to the starting point.6,39,60

Therefore, these types of points behave radically differently from
critical ones. Because of an external deformation (perturbation),
two critical points can merge, and consequently, a wandering
point is generated. Such an abrupt change in the number of CPs is
typically referred to as a (local) bifurcation.38,65 In (generic)
function families with more than one parameter, more than two
CPs merge, and the outcome (i.e., a wandering point or a new CP)
can be readily predicted by following the Poincaré–Hopf
theorem.66 Not surprisingly, these events can occur in the oppo-
site direction, in other words, the splitting of a non-hyperbolic CP
into two new Morse-type critical points, for instance. Catastrophe
theory1 is a robust mathematical program that succeeded in
describing all possible (abrupt) discontinuous changes in func-
tions defined on a 2-dimensional real space through a set of seven
parametric polynomials called universal unfoldings. Nonetheless,
the unfoldings can be rewritten in a convenient way, making them
suitable for probing the phase portrait of generic families on R3,
albeit the structural stability conditions (i–vi) must be satisfied.4,64

Within CT1 applications, the term bifurcation is usually replaced
by the catastrophe one (or by an elaborated combination of both
words, e.g., catastrophe bifurcation). Thom realized that in the
vicinity of a local bifurcation, the geometric shape of the potential
function could be replicated by adjusting the value of the poly-
nomial parameter(s). Because of this, the parameter is frequently
called a control parameter. Thus, by changing its value, one can

Table 4 Prediction accuracy of both models

No.
Model abs. error
[kcal mol�1]

Recalibrated model
abs. error [kcal mol�1]

1 2.79 1.91
2 5.53 6.66
3 6.71 6.11
4 5.07 4.44
5 2.31 3.29
6 4.46 3.99
7 5.09 4.41
8 5.36 4.50
9 2.77 3.53
10 6.46 6.04
11 1.16 1.82
12 0.54 0.22
13 7.99 8.62
14 9.54 10.26
15 2.07 1.02
16 2.99 4.01
17 0.28 0.25
18 4.73 6.17
19 2.48 3.04
20 5.28 4.28
21 0.95 2.43
22 1.21 2.48

Scheme 2 Unperturbed and perturbed phase-space portraits, panels (a)
and (b), respectively, showing that the vector field created by the gradient
of ELF is structurally stable since there exists a homeomorphism that
preserves the number and orientation of trajectories. Colored balls repre-
sent critical points of ELF. Oriented lines indicate ELF gradient paths.
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remove the degeneracy exhibited by the topographic map upon
the action of external forces, leading to a new denomination for
the control parameter, namely, external control parameter, m,5 as
shown in Scheme 3.

Silvi, Krokidis, and Noury9 proposed a methodology they
coined bonding evolution theory that allows following the
changes in the phase portrait of the ELF (along a reaction
coordinate) resulting from external forces acting on the react-
ing system and formally classifying them via the universal
unfoldings. It should be stressed that these changes are
typically associated with relevant chemical events such as the
bond-breaking and bond-forming processes. Moreover, there is
a general agreement in interpreting the ELF as a local measure
of the excess in the kinetic energy density of electrons due to
Pauli’s exclusion principle.67,68 Thus, ELF allows the recovery of
key chemical notions introduced by Lewis on the basis of
empirical evidence, such as, the concepts of valence, core,
and electron sharing.69,70 Not surprisingly, BET has been used
to gain deeper insights into different bonding situations,
encompassing gas-phase and solid-state systems.10

Reactant, product, and transition state (TS) geometries were
optimized with the Gaussian 16 suite of programs.71 For each of
the studied reactions, an IRC was performed in order to
confirm that the optimized TS structure indeed connected the
reactant(s) with the expected product(s). The wave function of
each point on the IRC was obtained by means of a single-point
calculation at the same level of theory used for optimizing the
corresponding structure. The analysis of the ELF phase-space
portrait was conducted using the Multiwfn package of
programs.72 Because of the astonishing advances in terms of
computational processing power, the simple regression equa-
tion can be straightforwardly obtained through commercial
packages, for instance, the Excel spreadsheet. However, we
used Python 3.7.7 for such a purpose.

Conclusions

Some progress has been made concerning the limitation of
topology in providing meaningful information on the energetic
features of reacting systems. Here, it is first shown that there
exists a strong linear correlation between topological concepts,
such as persistency and structural stability, and the activation

energy of reactive processes. Then, this statistical relationship is
used as a topology-based model for predicting barriers at 0 K for
both organic and organometallic reaction systems. It should be
stressed that, within the framework of bonding evolution theory,
this model naturally comprises the set of parametric polyno-
mials resulting from Thom’s works, which constitutes an addi-
tional achievement due to the significant generalization. The
first fit was performed over the experimental data of 17 reactions
via a simple linear regression, leading to the predicted equation

DHzP ¼ 718:3971m, characterized by the Pearson correlation coef-
ficient and its squared value r = 0.9402 and r2 = 0.8839,
respectively. Such numbers indicate a high linear correlation
between variables, on the one hand, and the reliability of the
model in terms of its predictability capability, on the other.
Not surprisingly, this equation succeeded in predicting barriers
as high as 15.8 and 20.2 kcal mol�1 with deviations of 1.2 and
0.5 kcal mol�1, respectively. Even in the case of a remarkably
complex reacting system like the oxidation reaction involving a
transition metal (Ti), the accuracy of the model was significant
considering that the experimental activation energy is only
1.2 kcal mol�1 and the fit equation predicted 0.9 kcal mol�1.
Moreover, the model provided reasonable barrier values that
ranged from 2.1 to 6.7 kcal mol�1 for most of the other reactions.
However, it failed to give an enhanced barrier for the epoxidation
of isobutene and a-methylstyrene by dimethyldioxirane, predict-
ing slightly less accurate values than the direct computed ones.
We believe that this fact might be related to the suitability of the
level of theory employed for describing both the physical and
chemical properties of the reaction systems. The experimental
data were ‘‘cleaned up’’ by filtering out the three most distant
points from the regression line to improve the predicting

capabilities of the linear equation. Thus, the new model DHzP ¼
691:5314m was obtained altogether with its associated metrics
r = 0.9886 and r2 = 0.9774. Based on these fitting parameters,
one would expect a significant improvement in its predicting
capabilities; nonetheless, no improvement in the model perfor-
mance was observed. The recalibration process indeed led to
eliminating some sources of statistical variabilities; however, it
seems that certain flexibility of the model was also lost such that
both factors compensated. Alternatively, the model indepen-
dence on the reaction set might be the underlying cause under-
pinning this curious result, which is a plausible explanation that
needs to be carefully assessed since it would evidence the general
character of our findings.

It is mandatory to take all possible care when applying any
proposed models since the barriers of reactions used for the
fitting were experimentally determined within the [293, 748] K
range. Therefore, a high degree of inaccuracy should be expected
when applying either linear fit equation beyond both limits. For
instance, the model underestimates the barrier of the archetypal
Diels–Alder reaction by B8 kcal mol�1, which is not surprising
considering that the activation energy was experimentally deter-
mined at 800 K. This work opens several research directions
concerning the widening of the temperature interval through
incorporating other reactions and the recalibration of the model
such that its predicting capabilities improve. Moreover, both

Scheme 3 TherZ phase portrait exhibits a catastrophic bifurcation at m =
m* since two CPs appear/disappear. Colored balls represent critical points
of ELF.
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topographical concepts exploited here, structural stability and
persistency, could be used for probing the statistical width of
activated complexes. On the other hand, it should be further
investigated whether the correlation between topology and ener-
getic descriptors of reactive processes can be strengthened by
including other concepts from this powerful and elegant branch
of mathematics. These findings can be transferred to other
research fields to explore rate processes of different natures.
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