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Force field refinement for reproducing
experimental infrared spectra of ionic liquids†

András Szabadi, ab Aleksandar Doknic, c Jonathan Netsch, a

Ádám Márk Pálvögyi, d Othmar Steinhauser a and Christian Schröder *a

We employ polarizable molecular dynamics simulations with the newly developed FFGenOpt parametrization

tool to reproduce IR spectra of several ionic liquid cations and anions in the gas phase. Our results show that

polarizable force fields in the bulk phase provide a reasonable compromise between computational effort and

accuracy for investigating IR spectra when treating the transition from gas to liquid phase carefully. Although

collectivity seems to play only a minor role, the liquid phase not only changes the electrostatic environment of

the molecules but also introduces friction and intermolecular interactions altering the IR spectrum significantly.

In addition to the classical force field approach, we also tested if the additional computational effort of

machine learning potentials justifies their application in reproducing IR spectra. However, the main purpose of

this work is to improve the quality of polarizable force fields concerning vibrations and not the prediction of IR

spectra which can be better done with quantum-mechanical cluster approaches.

1 Introduction

Ionic liquids have garnered substantial attention in the past two
decades due to their outstanding properties, such as high thermal
and chemical stability, negligible vapor pressure, and large electro-
chemical windows, making them ideal candidates for applications
such as electrolytes in batteries,1–4 benign solvents,5 and extraction
media.6 Understanding the structural composition of ionic liquids,
their ion interactions, and their dynamics is crucial to predict and
optimize their potential for various applications. Infrared spectro-
scopy has proven to be an effective method7–10 to investigate these
phenomena on a single-particle and collective basis, with the mid-
IR regime (approximately 4000 to 400 cm�1) providing information
on the presence or absence of different conformers, and the far-IR
region (ca. 400 to 40 cm�1) offering insight into the intermolecular
dynamics of the liquid system, allowing the analysis of hydrogen-
bond networks for instance.8,9,11

Due to its simplicity, quantum-mechanical (QM) calcula-
tions remain a popular method for interpreting features of

experimental IR spectra.7,12–15 However, as ionic liquids consist
of cations and anions in a heterogeneous network, gas phase
QM calculations are usually not capable of reproducing an
IR spectrum from 40 cm�1 to 4000 cm�1, even more, if several
conformers of the cations and anions exist. Quantum-
cluster calculations starting from ion pairs to medium-sized
clusters9,16–19 may help to capture essential features of inter-
molecular interactions only visible in the liquid phase. The
parallel existence of several cationic and anionic conformers
can be modeled by ab initio molecular dynamics (AIMD)17,20,21

propagating the nuclei on a classical energy surface but calcu-
lating the electronic structure at each step. While this limits
system size considerably (to about a hundred atoms and a few
dozen picoseconds), anharmonicity, reactivity, and electron
orbitals become accessible. An emerging new field bridging
the gap between the computational cost of AIMD and classical
molecular dynamics is using machine learning (ML) potentials,
utilizing machine learning to predict the resulting potential at
each geometry. The advantage of such networks is that they can
yield results with comparable accuracy to the data set they were
trained on (usually AIMD data) at a fraction of the cost, as the
propagation of the system is done using classical mechanics.
The drawback lies in the nontrivial training process, requiring
large data sets and extensive validation to ensure transferabil-
ity. Additionally, only processes visible in AIMD trajectories
(o200 ps) are covered by these ML potentials.

However, for the evaluation of the frequency-dependent
complex refractive index n(o) = n0(o) + i�n00(o) one needs the
high-frequency imaginary part of the dielectric spectrum S(o)
close to the IR region
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S00(o) = 2n0(o)�n00(o) (1)

from trajectories of sufficient system sizes and simulation
periods,22 which are out of reach for ML or QM-based calcula-
tions. Consequently, force field-based (FF) simulations repre-
sent a promising alternative, although the electronic degrees of
freedom are treated implicitly by point charges, while the
classical motion of the nuclei is based on a potential energy
surface defined by a force field. Thereby, the calculation of
nano- or even microseconds with up to 100 000 atoms are
available, making conformational sampling for relatively small
organic molecules a non-issue. In order to recover some of
the electronic interactions, different approaches have been
established.23 One of these is the Drude-oscillator model, where
each non-hydrogen atom receives a virtual particle with a small
mass tethered to it by a harmonic bond. These virtual particles
represent the polarization of the surrounding electrons, allow-
ing the molecule’s dipole moment to adjust to the local electric
field quickly and without rearranging the nuclear coordinates.
Although the number of interacting particles is increased this
way, no fundamentally new interactions are introduced, i.e.,
existing force fields can be utilized by only adding a polariz-
ability parameter for the required atoms.

Alternative approaches to address the challenge of targeting
vibrational frequencies have been explored in the literature,
including AFMM,24 ForceBalance,25 and the Open Force Field
Initiative,26 among others. AFMM employs a slow converging
Monte Carlo algorithm to optimize bond and angle force field
parameters. The alignment of QM and FF normal modes in the
gas phase is based on frequencies and eigenvectors. However, it
should be noted that AFMM may encounter issues such as the
possibility of multiple assignments of FF modes to specific QM
modes and difficulties in finding optimized parameters when
far from the initial guesses. ForceBalance, on the other hand,
utilizes systematic and reproducible procedures for FF optimi-
zations intending to match experimental and/or QM data.
While ForceBalance offers flexibility in matching various target
data, it is important to note that the vibrational mode matching
is just one component of the overall optimization merit func-
tion and may be overruled by structural and energetic consid-
erations. The Open Force Field Initiative builds upon the
parametrization methodology of ForceBalance.27 In our current
work, we introduce FFGenOpt, our in-house Python program
that employs a genetic algorithm to optimize force field para-
meters to accurately reproduce QM normal modes.

Our investigation centers around four model systems
encompassing commonly utilized imidazolium cations and
various anions found in ionic liquids. We direct our attention
towards comparing polarizable FF and ML-based trajectories,
with a specific focus on their ability to faithfully reproduce
experimental IR spectra in the liquid phase. However, it is
important to highlight that our primary interest lies in the
polarizable FF approach, as it enables the simulation of various
dynamical properties, including the heterogeneous dynamics
exhibited by ionic liquids. For example, extending the applic-
ability of the polarizable FF to the IR region allows for the

computation of the frequency-dependent refractive index n(o)
as well as various solvation dynamics phenomena in the THz
regime.

2 Theory
2.1 IR spectra

Infrared spectra capture the fluctuations of molecular dipoles
upon excitation via electromagnetic waves. These fluctuations
comprise both single-particle and collective modes of motion.
Molecular dipoles can be evaluated by

~miðtÞ ¼
X
b

qib � ð~ribðtÞ �~riðtÞÞ (2)

where qib is the partial charge and -rib are the coordinates of
atom b of molecule i. As ions have a net charge qi, the molecular
dipole moment has to be defined with respect to a reference
point. We use the center-of-mass of the molecule i as it is also
the center for translation and rotation of that molecule, con-
sequently facilitating the interpretation.28,29 The collective rota-

tional dipole moment
-

MD(t) is the sum of all molecular dipole

moments: ~MDðtÞ ¼
P
i

~miðtÞ.28 The auto-correlation function of

the collective rotational dipole moment consists of the auto-
correlation functions of the individual molecular dipoles plus
their cross-correlation functions:30

~MDð0Þ � ~MDðtÞ
D E

¼
X
i

~mið0Þ �~miðtÞh i þ
X
jai

~mið0Þ �~mjðtÞ
� � !

(3)

In the frequency regime of IR spectroscopy, the interaction of
the molecular dipoles might become less critical (compared to
dielectric spectroscopy), and the auto-correlation function of
the collective dipole moment is often approximated by the auto-
correlation function of the individual dipole moment, i.e. h~m(0)�
~m(t)i.17,20,31

In principle, the IR absorption coefficient a(o) can be
obtained from the imaginary part of the dielectric constant
S00(o):32–35

aðoÞ � n0ðoÞ ¼ o
c
� S00ðoÞ (4)

¼ 2po2

c

Ð1
0

~MDð0Þ � ~MDðtÞ
D E

cosðotÞdt
3VkBT

(5)

using the frequency-dependent refractive index n(o) and the
speed of light c. Unfortunately, the factor o2 acts as a parabolic
amplifier for high-frequencies. Consequently, additional
numerical efforts, like baseline corrections, have to be applied
to the Laplace transform in eqn (5) to get meaningful spectra.
To circumvent this problem, the absorption spectrum should
be computed from the auto-correlation function of the time
derivative of the dipole moments:16,20,33,35,36

aðoÞ � n0ðoÞ / f ðoÞ
ð1
0

_~MDð0Þ � _~MDðtÞ
D E

cosðotÞdt (6)
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aðoÞ � n0ðoÞ / f ðoÞ
ð1
0

_~mð0Þ � _~mðtÞ
D E

cosðotÞdt (7)

The time derivative of the molecular dipole moment _~mðtÞ can be
computed via numerical differentiation or using the velocities
instead of the coordinates from the trajectory:16

_~miðtÞ ¼
X
b

qib � ~vibðtÞ �~viðtÞ
� �

(8)

_~MDðtÞ ¼
X
i

_~miðtÞ (9)

The derivative of the collective rotational dipole moment is the
sum of the derivatives of the molecular dipole moments. Except
for the machine learning potentials, spectra calculated via
eqn (8) or the numerical time derivative of eqn (2) show no
significant discrepancies, as shown in the ESI.†

Several quantum correction factors f (o) exist in litera-
ture31,37 affecting the peak heights as a function of frequency o.
The one closest to experiment37 is

f ðoÞ ¼ �h

kBT
� o

1� exp � �h

kBT
o

� � (10)

amplifying (but not shifting) the peaks at higher frequencies.
For example, f (o) at 1500 cm�1 is roughly 1.4 compared to
500 cm�1 at T = 300 K.

The noise of the correlation functions in eqn (6) and (7) can
be damped at longer times by multiplying with an apodization
function38 exp(�a t2) using a = 0.5 ps�2 which is half of the
value used in ref. 31. This smooths the peak shape and makes
Savitzky-Golay noise filtering obsolete.

Classical FF-based simulations cannot model nuclear quan-
tum effects, which play a role in vibrations of hydrogens
participating in hydrogen bonds.39–41 However, including expli-
citly nuclear quantum effects in ab initio MD simulations39,41

changes the IR spectrum of water only above 2700 cm�1, which
is usually out of reach for classical MD simulations as bonds
involving hydrogens are kept fixed by the SHAKE algorithm.
Nevertheless, nuclear quantum effects may be present in our
ML-based trajectories to some extent.

2.2 FFGenOpt

The FF parameters for most ionic species (either fixed-charge42–44

or polarizable45) are usually derived from quantum mechanics
(QM) energy calculations and validated using thermodynamic
parameters (e.g. heat capacity, compressibility, density) and radial
distribution functions. Being able to automatically convert the
parameters of such studies to IR spectroscopy-based terms would
provide new insight into the intermolecular dynamics of ionic
liquids and the ability of different force fields to reproduce IR
spectra. While automated force field-generating tools exist, these
either rely on chemical similarity to an existing database (such as
the paramchem webserver46) or require lengthy trajectories and
expensive QM calculations (e.g. force matching47,48).

We present FFGenOpt, an automated Python-based tool for
generating FF parameters targeting vibrational spectra. It first

calculates the FF normal modes and vibrational frequencies of
a single molecule in the gas phase. Subsequently, the dot
products of the target QM and FF normal mode eigenvectors
are computed, which are used in a linear assignment problem
to map the two sets of vectors onto each other in a one-to-one
fashion applying the Hungarian method.49 Before the mapping,
the ratio of the corresponding eigenvalues (i.e. the frequencies)
can be used as a weight to discourage matching closely aligned
normal modes with large frequency differences.

Fig. 1 depicts the general procedure of the force field
refinement. A fitness score is evaluated based on the matching,
and an initial population is generated consisting of various sets
of FF parameters. The members (=sets) are sorted by fitness,
with some discarded (elitism). If the population reaches a
critical minimum diversity D, it is purged, with only the
member with the highest fitness score surviving, and a new
initial population is generated. If the diversity is high enough,
the genetic algorithm is called. The genetic algorithm of
FFGenOpt uses crossover operations designed for a continuous
search space, such as simulated binary crossover50 and blend
crossover.51 Mutations of population members are simulated
by adding Gaussian random vectors. After improvement, the
population is sorted by fitness, and the loop is executed again.
Otherwise, a random search algorithm is called first before
sorting the population. Exhaustive descriptions, along with the
source code, use-case examples and a tutorial are available on
github (https://github.com/cbc-univie/FFGenOpt).

3 Methods
3.1 FFGenOpt targets

We focus in this work on the ionic liquids 1-ethyl-3-methyl-
imidazolium acetate [C2mim]OAc, 1-ethyl-3-methyl-imidazolium
triflate [C2mim]OTf, 1-ethyl-3-methyl-imidazolium dicyanamide
[C2mim]N(CN)2, and 1-butyl-3-methyl-imidazolium tetrafluorobo-
rate [C4mim]BF4. Initial FF parameters for C2mim+, N(CN)2

�, and
OTf� were taken from ref. 52, for C4mim+ and BF4

� from ref. 16,
and for OAc� from ref. 53. FFGenOpt was used to generate new
parameters for each ion separately, with at least 100 generations
of optimization per species.

QM geometries and vibrational frequencies were computed
using Psi454 at the MP2/cc-PVDZ level of theory. Although

Fig. 1 Flowchart of FFGenOpt, which uses a genetic algorithm to improve
a set of FF parameters. Each set containing different parameters is a
member of the population, and only the fittest will survive.
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conventional wisdom holds that augmented basis sets
should be used for anion QM calculations, the computed
normal modes did not show a significant deviation between
the cc-PVDz, cc-PVTZ, and the aug-cc-PVTZ basis sets (see ESI†).
The same was also observed when comparing against DFT
methods such as B3LYP, with or without Grimme dispersion
correction D3. The only noticeable change occurred between
the HF and MP2 methods. For this reason, the computationally
less demanding MP2/cc-PVDZ level of theory was chosen as the
target for the QM frequency calculations. Please note that gas
phase QM calculations usually apply frequency scaling
factors,55,56 which are user-defined in FFGenOpt. These scaling
factors are a function of the functional and basis set and, thus,
the major reason for the insensitivity of QM frequencies
afterward.

3.2 Polarizable molecular dynamics

The resulting new parameters were then evaluated by calculat-
ing the IR spectra from trajectories produced identically: initial
configurations consisting of 500 ion pairs were generated by
packmol,57 followed by a steepest descent/adopted base
Newton-Raphson minimization in charmm.58 Subsequently,
10 ns of equilibration runs with an integration time step of
0.5 fs were produced in OpenMM59 in the NPT ensemble at a
pressure of 1 atm at 300 K under periodic boundary conditions.
Non-bonded interactions were cut off at 12 Å, and electrostatic
(Coulomb) terms were handled using the particle mesh Ewald
method. Polarizability was modeled by using mobile Drude
particles of 0.4 atomic mass units attached to non-hydrogen
atoms with a force constant of 1000 kcal mol�1 Å�2. The
velocity-Verlet integrator was set up with a friction coefficient
of 1 ps�1 and a collision frequency of 10 ps�1 for non-Drudes
(T = 300 K), and 200 ps�1 for Drudes (T = 1 K). The production
runs consisted of 100 ps�1 in the NVT ensemble using identical
settings to the equilibration, with every 10th frame written to
disk, resulting in a net time step of 5 fs on disk. Usually, the
SHAKE algorithm keeps the hydrogen-heavy atom bond length
constant in FF-based MD simulations. However, this way,
vibrational frequencies above 2500 cm�1 cannot be detected.
Turning off SHAKE still produces stable trajectories with fre-
quencies above 2500 cm�1, but lower frequencies are fortu-
nately unaffected (see ESI†). The trajectories were analyzed via
python scripts using the utilities provided in MDAnalysis.60,61

3.3 Machine learning based potentials

Machine learning can be used to predict IR spectra.10 However,
we use ML potentials to generate trajectories with 12 ion pairs
whose random starting configuration was also generated by
packmol. ANI-2x62 was chosen as the molecular potential, using
a pure machine learning-based system for [C2mim]N(CN)2,
[C2mim]OTf and [C2mim]OAc. As boron atoms were not present
in the training data set of this potential, [C4mim]BF4 was
simulated using a mixed setup, with the cation described by
ANI-2x and the anion by the FF of ref. 16. In this case, only the
bonded interactions between the atoms of the cation are
calculated via the ML potential. Cation–anion and anion–anion

interactions are modeled using the force field. Due to the
nature of the ML potential, no virtual particles (Drude oscilla-
tors, lone pairs, etc.) were included in the topology of the ions.
The ANI-2x systems were equilibrated for 1 ns in the NPT
ensemble at the same pressure and temperature as the polariz-
able FF trajectories using the Langevin integrator with a step
size of 1 fs. Due to the size of the system, non-bonded interac-
tions were cut off at 6.5 Å, which should not interfere with
periodic boundary conditions. The production run consisted of
100 ps in the NVT ensemble, with every fifth step written to
disk, resulting in a net time step of 5 fs as well. For calculating
the IR spectra of the ML system, the same partial charges were
used as defined in the force fields of the polarizable FF systems.

3.4 Experiment

Experimental infrared spectra were recorded on a PerkinElmer
Spectrum 65 FT IR spectrometer equipped with a specac MK II
Golden Gate Single Reflection ATR unit. The samples were
dried for four days at 40 1C and 0.5 mbar and used without
further purification.

4 Results and discussion
4.1 Force field parameters

Transferability and accuracy are two opposing concepts in the
design of force fields. Transferability ensures that the FF can be
used for similar compounds. For example, in ionic liquids, the
parametrization of the imidazolium rings should be kept fixed,
although various alkyl chains may be attached to the aromatic
nitrogens. This way, the properties of similar compounds can
be compared more easily as differences are more likely based
on various functional groups and not a completely different FF.
However, using general energy potentials for families of mole-
cules reduces the accuracy of the FF for a particular molecule,
which is true for reproducing experimental infrared spectra. As
a compromise between transferability and accuracy, usually no
new FF potentials and atom types are introduced, adopting
instead the existing potentials for each molecule. Conse-
quently, the bond, angle, and dihedral potentials of C2mim+

and C4mim+ may have slightly different force constants but still
share corresponding equilibrium distances and angles as well
as the multiplicities of the dihedral potentials. Also, Lennard-
Jones parameters, partial charges, and polarizabilities are not
changed to preserve the collective structure and dynamics of
the ionic liquids. The resulting force constants for each ion, as
output by FFGenOpt, along with the original values taken from
the appropriate references, are collected in the tables of the
ESI.†

4.2 Normal modes in the gas phase

FFGenOpt is capable of reproducing the vibrational frequencies
with correct normal mode vectors of QM gas phase calculations
with qualitative accuracy as shown in Fig. 2. The dashed line
represents 100% agreement between the force field and the QM
frequencies. The gray area indicates a discrepancy of 100 cm�1.
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These FF vs. QM normal modes not only coincide in frequency
but also have similar eigenvectors, which were also checked by
visual inspection. The most problems concern acetate (gray up
triangles), where the agreement can only be improved by
adding additional dihedral potentials with different multipli-
cities and anharmonic potentials. Despite that, the original FF
potentials were kept for transferability, and only the force
constants were varied. Minor problems also exist for a C–H
stretching mode of C2mim (off-diagonal blue pentagons) as the
automated alignment in FFGenOpt has problems with normal
modes having very similar eigenvectors. However, a frequency
penalty exists in FFGenOpt for large frequency discrepancies,
which solves most but not all of these problems. The penalty
should not be too large as otherwise the alignment of the
normal mode vectors becomes obsolete.

Even so, a reasonable agreement between FF (blue) and QM
normal modes (yellow) does not automatically result in a good
reproduction of experimental IR spectra of the liquid ionic
liquid, as shown in Fig. 3 for [C4mim]BF4. Although the B–F

stretching modes near 1132 cm�1 of the FFGenOpt FF (blue
line) matches the QM frequencies of 1126 cm�1 quite well
(yellow line), this peak is red-shifted by 80 cm�1 in the
experimental spectrum (green line) of liquid [C4mim]BF4. Also,
the second peak of the FFGenOpt FF (blue) at 1230 cm�1 is
roughly 70 cm�1 higher than the corresponding experimental
peak. Nevertheless, the better agreement between the FFGe-
nOpt optimized FF (blue line) than the original polarizable FF
(red line) from ref. 16 is apparent. This applies not only to the
overall shape of the spectra but also to the positions of
the peaks.

4.3 Infrared spectra in the liquid phase

The critical distinguishing factor between QM calculations in
the gas and the liquid phase is the intermolecular interactions
between the molecular ions. In principle, QM calculations of
small clusters can also capture these intermolecular
interactions.11,17,19 This way, the computation of normal modes
and their eigenvectors is still possible. However, using the
QM-optimized structure of the cluster for the normal mode
computation of an FF may yield imaginary frequencies as this
structure might not be the energetic minimum of the FF.
Consequently, mapping QM and FF normal modes becomes
more complicated but might still be an option for future
versions of FFGenOpt. As the number of cations and anions
needed to produce good results is not known a priori, AIMD
might be a viable alternative for the calculation of normal
modes and, subsequently, the IR spectrum of that ionic
liquid,11,17,20 especially if the number of ions pairs is eight or
higher.9,63,64 Even so, ab initio MD does not always perform
better in reproducing experimental IR spectra than polarizable
FF simulations.16 Possible drawbacks of this approach include
high computational costs and a discrepancy in the signal
intensities despite good frequency matching.11

The effect of intermolecular interactions in FF-based simu-
lations may be exemplified by the substitution of the molecular
dipole moment ~m in eqn (7) with the collective dipole moment
-

MD in eqn (6). The former equation omits all collective rota-
tions as evidenced in eqn (3). Both IR absorptions can be
calculated from MD simulations and are depicted for
[C2mim]OTf in Fig. 4. Interestingly, the collective approach in
eqn (6) (green line) does not change the peak positions at all,
and only the amplitudes are slightly affected. This outcome
contradicts the conventional dielectric behavior observed at
lower frequencies in the THz and GHz regimes, where cross-
correlations primarily define the peak structures. Collective
rotational motions of the dipoles may be too slow to be
detected at IR frequencies. However, the local environment
may still influence the molecular dipoles ~mi. For example, the
induced dipoles contributing to the molecular dipole respond
to the electrostatic field exerted by the other molecules. This
might be rather strong in ionic liquids as cage structures are
formed.52,65 The ion cages may also influence the permanent
molecular dipoles and their fluctuations. Furthermore, hydro-
gen bonds to the carboxylic group of acetate, for example,
significantly change the C–O stretching modes. The multitude

Fig. 2 Comparison of FFGenOpt vs. QM frequencies of normal modes of
individual ionic liquid ions. Note that the FF frequencies are not sorted by
value but rather by the alignment of the eigenmode to the corresponding
QM vibration.

Fig. 3 Juxtaposition of experimental (green) and FF infrared spectra of
[C4mim]BF4 in the liquid phase. The red line corresponds to the original
polarizable FF,16 whereas the blue line stems from the FFGenOpt-
optimized FF. The yellow curve was obtained by Gaussian broadening of
the cation and anion’s gas phase line spectra.
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of these various interactions has severe consequences for the
IR spectra of the ions in the liquid phase. The overall rattling
of the molecular ions in their cages can be characterized by
the auto-correlation function of the current h J(0)�J(t)i, i.e. the
vibrations of the ionic center-of-masses. It is of minor impor-
tance for the IR absorption and restricted to the frequency
region below 200 cm�1.

Fig. 5 shows the comparison between the experimental
(green lines) and the computational IR spectra. As already
noticed in Fig. 3 for [C4mim]BF4, all FFGenOpt optimized
spectra (blue lines) have a significantly improved agreement
with the experimental spectrum compared to the original force
field in red. This applies to the peak positions and their shape.
Only the IR spectrum of [C2mim]OTf in Fig. 5a misses some
important peaks around 1200 cm�1. An MD simulation based
on ML potentials (orange line) is more capable of capturing
the main features of the experimental spectrum between
1300 cm�1 and 1000 cm�1 in case of [C2mim]OTf and thus
may be a promising alternative to polarizable FF simulations.

Despite being smaller by a factor of 50 in size, the computa-
tional cost of the ML-based potentials is more than one order of
magnitude higher, limiting its general applicability. Addition-
ally, some chemical elements like boron are not available in
ANI-2x.62 Consequently, polarizable FF simulations and ML
potentials have to be mixed. In the case of [C4mim]BF4, the
forces on the imidazolium are computed via the ML potentials,
and the FF propagates the BF4

� anions. Interestingly, this
combination shifts the BF4

�-peak very close to the experimental
IR frequency of 1050 cm�1 although the anions were described
by the polarizable FF and not the ML-based potential (see ESI†).

Although still faster than ab initio MD simulations, the huge
increase in computational time by ML-based potentials is not
always justified, as the corresponding IR spectra (yellow lines)
do not automatically agree better with the experiment than
polarizable FF simulations (blue lines). In the case of [C2mim]
OAc, polarizable FF simulations perform as good as the
ML-based potentials (see Fig. 5b) and even outperform
ML-based potentials in the case of [C2mim]N(CN)2 in Fig. 5c.
The experimental peak structure between 2050 and 2250 cm�1

is blue-shifted by 200 cm�1 and broadened significantly for the

Fig. 5 Comparison of experimental and computational IR spectra of
(a) [C2mim]OAc, (b) [C2mim]OTf and (c) [C2mim] N(CN)2 in the liquid
phase. ML + FF (red curves) spectra are obtained from simulations where
FF and ML potentials are equally mixed.

Fig. 4 Computational infrared absorption of [C2mim]OTf in the liquid
phase using the FFGenOpt FF. The absorption can be obtained from one
trajectory using eqn (6) (green) or eqn (7) (cations blue, anions orange).
The auto-correlation of the current hJ(0)�J(t)i (gray) describes the rattling
of the ions in their cages.
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ML-based potentials. Also, the experimental double peak struc-
ture at 1220 cm�1 is reduced to one peak. In contrast, the
experimental peak structure between 2050 and 2250 cm�1

(green) is red-shifted by 100 cm�1 in the FFGenOpt based
trajectories (blue). Also, the double structure at 1220 cm�1 is
red-shifted by roughly 250 cm�1.

Based on the unsatisfactory agreement of ML-based poten-
tials and polarizable FF simulations, we also tried to mix both
force fields for the very same molecule in a dual topology
approach by calculating the resulting forces for both potentials
and interpolating between the two (l-state of 0.5). This leads to
the orange spectrum in Fig. 5c, which improves the description
of the peak region between 2050 and 2250 cm�1. Unfortunately,
the double peak at 1220 cm�1 is now slightly blue-shifted.

In analogy to QM scaling factors in the gas phase,55,56 one
might similarly contemplate scaling factors for force constants
in the liquid phase.66 Given that the viscosity in the liquid
phase significantly exceeds that of the gas phase, it is reason-
able to infer that all vibrations should exhibit oscillations at
lower frequencies. This phenomenon can be replicated by
applying a scaling factor to the force constants of bonds and
angles. The resulting red-shifts of particular IR peaks of our
ionic liquids are shown in Fig. 6. Interestingly, all red-shifts are
a linear function of the scaling factor with different slopes for
the various peaks. For a particular ionic liquid, the slopes may
be very similar if the frequency difference is not too much as
visible for [C2mim]OAc and [C4mim]BF4. Usually, a scaling
factor of roughly 0.98 counteracts the red-shifts of the FF peaks
mentioned before. As demonstrated in the ESI,† scaling factors
below 0.80 induce significant spectrum alterations and are
consequently unsuitable for our purposes.

5 Conclusion and outlook

Our parametrization tool FFGenOpt improves bonded force
field parameters to reproduce infrared spectra. Thereby, polar-
izable force field simulations may be an option for investigating
IR spectra as a reasonable compromise between computational
effort and accuracy. As indicated in Fig. 5, essential features can
be reproduced, including peak positions and relative intensi-
ties. The increased viscosity of the liquid phase compared to
the gas phase can be accounted for by using scaling factors for
the force constants, further improving the agreement between
simulations and experiments. In future versions, FFGenOpt
may be expanded to include the analysis of the normal modes
of clusters ranging up to a few ion pairs to reduce the resulting
red-shift of the IR peaks.

The computational cost is at least one order of magnitude
lower than simulations based on machine learning (yellow
curves), while the agreement with the experiment is compar-
able between FF and ML approaches. The combination of the
polarizable force field and machine learning potentials pro-
duces good agreement with the experiment, although at the
cost of poor statistics. Concerning consistency, polarizable FF
trajectories are preferred as they can also be used to compute
other structural and dynamics properties, which are neither
accessible by ab initio nor ML-based MD simulations. This way, all
computational data are at the same level of theory, which facilitates
the interpretation as discrepancies cannot arise from various
computational approaches with different approximations.

Our simulations also showed that collective effects captured
by eqn (6) play a minor role as the computation of IR spectra
based on the molecular dipole moments leads to very
similar results. Nevertheless, the auto-correlations h _m(0)� _m(t)i
of the molecular dipoles are completely different in gas
and liquid phase which emphasizes that the local environ-
ment of the molecules is of uttermost importance for the IR
spectra.

Fig. 6 Red-shift of particular IR peaks when applying a uniform scaling
factor to all bond and angle force constants of the polarizable FF.
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Data availability

The manual, source code and examples for FFGenOpt are
available on github (https://github.com/cbc-univie/FFGenOpt),
along with the force fields and input scripts used for trajectory
production and analysis.
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2010, 64, 112–119.

9 K. Fumino, S. Reimann and R. Ludwig, Phys. Chem. Chem. Phys.,
2014, 16, 21903.

10 M. Gastegger, J. Behler and P. Marquetand, Chem. Sci., 2017,
8, 6924–6935.

11 K. Wendler, M. Brehm, F. Malberg, B. Kirchner and L. Delle
Site, J. Chem. Theory Comput., 2012, 8, 1570–1579.

12 S. A. Katsyuba, E. E. Zvereva, A. Vidiš and P. J. Dyson,
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