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An on-the-fly deep neural network for simulating
time-resolved spectroscopy: predicting the
ultrafast ring opening dynamics of 1,2-dithiane†

Clelia Middleton, a Conor D. Rankineab and Thomas J. Penfold *a

Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists

to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity

to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry

out high-level simulations which facilitate the interpretation of the underlying dynamics probed during

these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-

state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-

the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The

train-test process iterates for each time-step of the dynamics data until the network can predict spectra

with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required

to produce them, at which point it simulates the time-resolved spectra for longer timescales. The

potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using

sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly

apparent for simulations of larger systems which will exhibit a more notable computational burden,

making this approach applicable to the study of a diverse range of complex chemical dynamics.

1 Introduction

Modern light sources and optics have led to a dramatic increase
in sophisticated time-resolved experimental techniques that
can reveal fine details about the excited-state dynamics of
molecules and materials on the atomic scales of time (femto-
second) and length (Angström). Methodologies such as ultra-
fast multidimensional spectroscopy,1 femtosecond stimulated
Raman spectroscopy,2 ultrafast electron diffraction (UED),3 and
time-resolved X-ray absorption spectroscopy (TR-XAS)4,5 offer
complimentary insights into the competition between different
photochemical and photophysical channels, couplings between
key vibrational modes and electronic states, and the electronic
and nuclear structural dynamics which underpin the functional
properties of the molecules and materials under study. However,
the complexity of these experiments and their data are such that
extracting the dynamics from the experimentally-obtained obser-
vables can be extremely challenging and, in practice, often
requires strong support from theory and computation.

This support often focuses on the simulation of quantities
such as electronic state population kinetics; which can be
compared directly to time constants extracted from fitting
kinetic models to the experimentally-obtained observables.
While useful, these theoretical quantities are not guaranteed to
be directly related to any of the experimental observables, and
previous works6 have highlighted the importance of simulating
the experimental observables directly to avoid the misinterpreta-
tion of the data. Ultimately, the direct evaluation of experimental
observables using simulations provides the critical connection
between experiment and theory that is required to maximise the
reliable information extracted from the experiment. It also
supplies a common vocabulary for theoreticians and experimen-
talists working on light-triggered processes to exchange and
develop meaningful interpretations of experimental data.

A time-dependent theoretical framework which describes
excited-state non-adiabatic nuclear dynamics is often essential
to reproduce accurately the experimental observables. When it
comes to carrying out simulations under such a framework,
trajectory-based approaches [e.g. trajectory surface hopping
(TSHD),7 ab initio multiple spawning (AIMS),8 or variational
multi-configurational Gaussian (VMCG) dynamics9] are appealing
since they circumvent the challenge presented by the exponential
scaling of quantum dynamics.10–12 Indeed, as both the potential
and experimental observables can be calculated on-the-fly with
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trivial parallelisation as and when (and only where) they are
required, trajectory-based approaches make it easier to translate
the quantum dynamics performed in higher dimensional space
into time-resolved spectra. Specifically, in the context of
X-ray spectroscopy13,14 – the focus of the present work – on-the-
fly trajectory-based approaches have been used to great effect to
model the ultrafast photochemical ring-opening reaction of 1,3-
cylohexadiene,15 the excited state relaxation of pyrazine,16,17 and
the non-radiative relaxation of ethene via a conical intersection
(CI).18 However, while trajectory-based approaches can reduce the
computational cost compared to traditional grid-based quantum
dynamics approaches,19,20 there remains still a significant com-
putational cost associated with carrying out an (X-ray) spectral
simulation at each time step; this cost is preclusive for larger
systems, especially where high-accuracy quantum-chemical calcu-
lations are required to describe satisfactorily complex effects.

We have previously developed21,22 and deployed25–27 a deep
neural network (DNN) – XANESNET28 – for predicting the line-
shape of X-ray absorption (XAS)21,22,29 and emission (XES)23

spectra. XANESNET predicts spectral lineshapes using only local
information about the coordination geometry of the absorbing
atom. It can be optimised in as little as a minute and predicts
instantaneously, making it a powerful tool for reducing the
computational cost associated with simulating time-resolved
spectra. Towards developing DNNs for this kind of application,
there are two distinct approaches: one can either develop a ‘Type I’
DNN, trained for generality in the sense that it is able to simulate
an XAS/XES spectrum for an arbitrary absorbing atom in any
coordination environment at a given absorption edge (our pre-
vious work has, to date, focused on this approach21,22), or a ‘Type
II’ DNN, trained for a specific (time-dependent) problem. A
general ‘Type I’ model might be a sub-optimal solution for the
prediction of the fine structure that can typically be acquired in
modern ultrafast experiments. Consequently, in this Article, we
work with a ‘Type II’ DNN and apply our model to investigate
theoretically the ultrafast excited-state ring-opening dynamics of
1,2-dithiane (for structure see Fig. 1) as studied with sulphur K
edge XAS. Our results show that our ‘Type II’ DNN, trained on-the-
fly using first-principles geometric and XAS spectral data obtained
from excited-state TSHD, offers an accurate, affordable, and
computationally efficient approach for translating nuclear
dynamics into time-resolved experimental observables.

2 Method and computational details
2.1 Trajectory surface-hopping dynamics of 1,2-dithiane

Nonadiabatic TSHD simulations of the ultrafast excited-state
ring-opening dynamics of 1,2-dithiane have been previously
published in ref. 30, and the complete computational details
are contained therein. Briefly: 51 independent initial condi-
tions sampled from a ground-state (S0) Wigner-distributed
ensemble were transformed into the first electronically-
excited (S1; s�S�S  LPS) state according to their computed
transition energies and moments, and then trajectories were
propagated classically over the excited state potential energy

surface for 1 ps using a 0.5 fs integration time step via the
velocity-Verlet algorithm. The nonadiabatic transition probabil-
ities were accounted for using the the fewest-switches algorithm.31

Fig. 1(a) shows the population kinetics of the S0 (ground
state) and S1 and S2 (together, as the excited states) over the first
900 fs post-photoexcitation to the S1 state. The excited state
population in Fig. 1(a) couples together both the S1 and S2

states since the latter has only a minor contribution in the early
part of the dynamics and the two form a degenerate pair of
s�S�S  LPS states at later times, so we do not represent the
states separately. In the XAS spectral simulations, the treatment
of the S1 and S2 states is discussed in more detail below.

Fig. 1(b) shows the average (with one standard deviation
covered by the shaded area) S–S internuclear distance as a
function of time obtained from the TSHD simulations. An
initial coherent oscillation with a temporal period of E350 fs
is observed, followed by a significant increase in the standard

Fig. 1 (a) Electronic state population kinetics obtained from the first
900 fs of TSHD simulations. (b) Average (line) and standard deviation
(shaded region) of the S–S internuclear distance obtained from the first
900 fs of TSHD simulations. TSHD simulations were propagated following
the transformation of 51 initial conditions sampled from a ground-state
(S0) Wigner-distributed ensemble into the first electronically-excited
(S1; s�S�S  LPS) state. Data were obtained from ref. 30.
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deviation and a damping of the oscillation which indicates
vibrationally-hot incoherent motion occurring across the S0-
and S1/S2-state potential energy surfaces at later times. This
behaviour, discussed in detail in ref. 30, agrees well with
previous experimental observations obtained via time-resolved
ion spectroscopy.32

2.2 Sulphur K-edge XAS simulations

Sulphur K-edge XAS spectra were simulated using restricted-
excitation-window time-dependent density functional theory
(REW-TDDFT)33 within the approximation(s) of the BP86
exchange-and-correlation functional34,35 as implemented in the
ORCA36 quantum chemistry package. The REW-TDDFT equations
were solved for 60 states under the Tamm-Dancoff approximation
(TDA),37 and the interaction with the X-ray field was accounted for
under the electric quadrupole approximation.33 The scalar relati-
vistic effects were described using a Douglas–Kroll–Hess (DKH)
Hamiltonian of 2nd order.38 The DKH-def2-TZVP39 basis set was
used throughout.

To calculate the sulphur K-edge XAS spectra of the
electronically-excited states (S1/S2), the reference wavefunction
for the valence-excited states was approximated using the lowest-
lying triplet electronically-excited state (T1) of 1,2-dithiane, which
has very similar electronic structure to the lowest-lying
electronically-excited singlet states (S1/S2) and represents a tract-
able approximation due to the lack of spin sensitivity in XAS.40

As detailed in ref. 30, the S1 and S2 states correspond to s�S�S  
LPS transitions which are close in energy (near degenerate at later
times in the TSHD simulations) and, given the similarity of their
character, should be expected to exhibit similar sulphur K-edge
XAS spectra. The T1 state, which we use as a proxy, also corre-
sponds to a s�S�S  LPS transition and approximates the char-
acter of the S1 and S2 states well – certainly sufficiently well for the
scope of the present work which aims primarily to establish the
effectiveness of training our ‘Type II’ DNN on the fly.

2.3 Deep neural network

The architecture of the ‘Type II’ DNN used in this Article closely
follows that of XANESNET,28 as detailed in ref. 22. XANESNET
is a deep multilayer perceptron (MLP) machine-learning model
comprising an input layer, two hidden layers, and an output
layer. All layers are dense, i.e. fully connected, and each hidden
layer performs a nonlinear transformation using the rectified
linear unit (ReLU) activation function. Featurisation is per-
formed via dimensionality reduction using the wACSF descrip-
tor of Gastegger and Marquetand et al.41 As constructed in this
Article, the input layer contained 49 neurons comprising a
‘global’ (G1) function, 16 radial (two-body; G2) functions, and
32 angular (three-body; G4) functions, and the first hidden layer
contained 256 neurons with each subsequent hidden layer
reducing in size by 50% relative to the size of the preceding
layer. The linear output layer contained 359 neurons from
which the discretised sulphur K-edge XAS spectrum was
retrieved. The internal weights, W, were optimised via iterative
feed-forward and backpropagation cycles to minimise the

empirical loss, J(W), defined here as the mean-squared error
(MSE) between the predicted, mpredict, and target, mtarget, sulphur
K-edge XAS spectra over the reference dataset, i.e. an optimal
set of internal weights, W*, was sought to satisfy argmin

W

J Wð Þð Þ.

Gradients of the empirical loss with respect to the internal
weights, dJ(W)/dW, were estimated over minibatches of 32
samples and updated iteratively according to the Adaptive
Moment Estimation (ADAM)42 algorithm. The learning rate
for the ADAM algorithm was set to 1 � 10�4. The internal
weights were initially set according to the He43 uniform dis-
tribution. Unless explicitly stated in this Article, optimisation
was carried over 2000 epochs. Regularization was implemented
to minimise the propensity of overfitting; batch standardisa-
tion and dropout were applied at each hidden layer. The
probability of dropout at each epoch was set to 0.30.

The XANESNET DNN is programmed in Python 3 with the
TensorFlow44/Keras45 API and integrated into a Scikit-Learn46

(sklearn) data pre- and post-processing pipeline via the Keras-
Regressor wrapper for Scikit-Learn. The Atomic Simulation
Environment47 (ase) API is used to handle and manipulate
molecular structures. The code is publicly available under the
GNU Public License (GPLv3) on GitLab.28

In this Article, the objective is to develop a ‘Type II’ DNN to
translate the TSHD simulations described above into time-
resolved XAS spectroscopic signals. The DNN is trained on the
fly from first-principles data (geometries and sulphur K-edge XAS
spectra) obtained/calculated at each time step, and is then used to
predict all future timesteps. After each iteration of this process,
the DNN predictions are assessed for accuracy (Fig. 2). We aim to
find the timestep at which the DNN can provide predictions that
substitute for the time-consuming quantum-chemical calcula-
tions which would otherwise be required to obtain the time-
resolved sulphur K-edge XAS spectra at later times. At each
timestep, two DNN are trained using data from the preceding
timesteps: one for the electronic ground state (S0) and one for the
electronically-excited states (S1/S2, using the T1 as a proxy). The
two DNNs are then used to predict the sulphur K-edge XAS spectra
for all future timesteps, the choice of DNN depending on whether
the trajectory is in the S0 or S1/S2 state at that timestep. We assess
the point at which the DNN can substitute for the quantum-
chemical calculations in two ways. Firstly, we use a cosine
similarity metric to quantify the difference between the predic-
tions and quantum-chemical calculations at each time step after
the point up to which the DNNs were trained; while this provides
an appropriately accurate assessment for this proof-of-concept
work, the obvious limitation is that this approach requires the
quantum-chemical calculations to already be available for all
future timesteps. Secondly, and, principally, to circumvent this
requirement, we also assess the cutoff using the model uncer-
tainty evaluated using the ensembling methodology.23 Principally,
ensembling exploits the fact that there is no guarantee that there
exists a single unique set of internal weights, W*, for a DNN which
satisfy argmin

W

J Wð Þð Þ. Practically, ensembling involves training

multiple (N) instances of each DNN using the same reference
dataset but different statistical initialisations for W. The ensemble
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of N DNNs is then used to produce N independent predictions
from which a mean prediction and standard deviation for each
input can be derived. The latter is used to quantify the ensemble
uncertainty for the predictions. In this present Article, ensembling
is performed at each timestep and the point at which the DNN is
sufficiently capable of substituting for the quantum-chemical
calculations is taken to be the point at which the standard
deviation converges to its minimum value.

3 Results and discussion
3.1 Time-resolved sulphur K-edge XAS spectra from first
principles

Fig. 3(a) and (b) show the ground- (S0) and excited-state (S1/S2)
sulphur K-edge XAS spectra as a function of the S–S internuclear
distance along the ring-opening coordinate. The S0-state sulphur
K-edge XAS spectrum corresponding to the (initial; equilibrium)
ring-closed structure of 1,2-dithiane exhibits a main band at
2404 eV with a shoulder on the high-energy front. This main
band, within a single-electron picture, corresponds to transi-
tions from each of the S 1 s orbitals into the low-lying
unoccupied s�S�S orbital. The shoulder corresponds to transi-
tions into the s�C�S orbitals, with the latter being weaker
transitions than the former as a consequence of the reduced
spatial overlap between these orbitals and the S 1 s orbitals.
Upon photoexcitation into the S1 state – a HOMO–LUMO

s�S�S  LPS transition – an additional band appears at
E2401 eV (Fig. 3(b)), corresponding to transitions from the S
1 s orbitals into the sulphur ‘lone pair’ (LPS) orbitals which now
contain holes as a consequence of the photoexcitation process.
There is also a reduction in the energy gap between the s�S�S
and s�C�S orbitals. For the ring-opened structure, both the S0-
and S1/S2-state sulphur K-edge XAS spectra show a distinct low-
energy feature similar to the excited-state sulphur K-edge XAS
spectrum of the ring-closed structure. This is because the ring-
opened structure contains two terminal sulphur radicals and
the lowest-energy unoccupied orbitals, similarly, are of the LPS

type. The highly localised nature of the LPS orbitals and the
initial S 1 s core electron means that these transitions are much
less sensitive to changes in geometry than the other features
present in the sulphur K-edge XAS spectrum.

In the S0 state (Fig. 3(a)) a shift of the first feature towards
lower energy occurs as ring opening proceeds. This reflects the
elongation of the S–S bond. In the S1/S2 states (Fig. 3(b)), the
low-energy feature at 2401 eV is already present at the equili-
brium/Franck–Condon geometry and so little change in this
peak with S–S bond length is observed. A similar observation is
made with respect to the main band shifting towards lower
energy. However, in contrast to what we observe for the S0 state,
the shift is weaker. It is noted that both the S0- and S1/S2-state
sulphur K-edge XAS spectra are very similar at longer S–S inter-
nuclear distances as a consequence of the near-degeneracy of the
three states at the ring-opened geometries.

Fig. 2 A schematic of the workflow used in this Article. The DNN takes as input geometries obtained from the TSHD simulations of 1,2-dithiane, carried
out in ref. 30, and the calculated sulphur K-edge XAS spectra for these geometries up until some time, T, after excitation. These pairs of geometries and
sulphur K-edge XAS spectra constitute the reference dataset on which the DNN carries out supervised learning. The optimised DNN is used to predict the
sulphur K-edge XAS spectra for all future timesteps up until the final timestep, and the error – or loss – associated with the predictions is quantified by the
cosine similarity between the theoretical target and DNN-predicted sulphur K-edge XAS spectra. This process is repeated at sequential timesteps, T + DT,
until the cosine similarity between the theoretical target and DNN-predicted sulphur K-edge XAS spectra converges.
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Fig. 4 shows the temporal evolution of the sulphur K-edge
XAS spectra from the ensemble average of the 51 TSHD
trajectories over 900 fs post-photoexcitation to the S1 state.
Fig. S1–S51 – found in the ESI† – show the temporal evolution
of the sulphur K-edge XAS spectra for each of the 51 TSHD
trajectories individually. Fig. 4 shows two distinct and
temporally-evolving bands centred around 2401 and 2405 eV,
consistent with the static simulations along the ring-opening
coordinate (Fig. 3).

At early times, the band at 2401 eV shows oscillatory
behaviour with a period of E150 fs. This mirrors the popula-
tion kinetics (Fig. 3(a)). As shown in Fig. 3, this first transition
exhibits quite different behaviour in the ground and excited
state and therefore it is unsurprising that the oscillations in
this band reflects the population kinetics. In contrast, the peak
at 2405 eV shows oscillations with two distinct time periods,
one of B50 fs and another B340 fs. The latter is consistent
with changes in the S–S bond length, which as expected from
Fig. 1(b) shows one distinct oscillation before being damped
from the loss of coherence. The former 50 fs component

corresponds to oscillations in C–S bond lengths, while coher-
ence is reduced during the dynamics, these oscillations remain
more visible throughout the first 900 fs. This peak does not
exhibit any kinetics associated with the population kinetics as
the spectral shape is less sensitive to the fine details of the
electronic state populated than geometric changes occurring
during the dynamics. Both of the bands show little clear
variation after E400 fs, consistent with the dephasing of the
coherent nuclear motion (Fig. 1(b)) after the first ring-opening/
ring-closing cycle and the progression of the system towards
vibrationally-hot incoherent motion occurring across the S0-
and S1/S2-state potential energy surfaces at later times.

3.2 Predicting the sulphur K-edge XAS signal using
XANESNET

Having established the time evolution of the sulphur K-edge
XAS spectra using quantum-chemical calculations, we turn our
attention towards reproducing the same spectral simulations
using our ‘Type II’ DNN. As described in the Methods section,
we train two DNNs at each timestep: one for the S0 state, and
one for the S1/S2 states. The training data comprises, in each
case, all of the geometric and sulphur K-edge XAS spectral data
calculated until the current timestep, T. The two DNNs are then
used to predict the sulphur K-edge XAS spectra for all future
timesteps. Fig. 5 shows the mean cosine similarity of all spectra
predicted from timestep T to T = 900 fs. We acknowledge that,
although the cosine similarity metric ignores differences in
magnitude between the predicted and target sulphur K-edge
XAS spectra, our focus here is on reproduction of the spectral
shape alone as all of our sulphur K-edge XAS spectra have been
normalised to the largest value during their dynamics. The
cosine similarity shows a rapid improvement from 0.86 to 0.94
within the first 100 fs, followed by a subsequent plateau
suggesting that 100 fs of first-principles data is sufficient to
predict satisfactorily the sulphur K-edge XAS spectra for all
future timesteps. 100 fs is a surprisingly short timescale for this
data to be acquired over, but it corresponds approximately to

Fig. 3 Evolution of the sulphur K-edge XAS spectrum along the ring-
opening coordinate in (a) the electronic ground state (S0) and (b) the
lowest-lying electronically-excited states (S1/S2, using the T1 state as a
proxy). Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level.

Fig. 4 Time-resolved sulphur K-edge XAS spectrum associated with the
ultrafast excited-state ring-opening dynamics of 1,2-dithiane. Calculated
using REW-TDDFT at the DKH-BP86/def2-TZVP level.
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the time required for the S–S internuclear distance to reach its
maximum value (Fig. 1(b)). Suggesting that in this case, once a
DNN is trained on first principles sampling the full range of S–S
bond length, it has sufficient information to predict the
remaining spectra up to the 900 fs studied in this work. This
is discussed in more detail in Section 3.3.

This is supported in Fig. 6 which shows a plot of the principal
t-distributed stochastic neighbour embedding (t-SNE) compo-
nents of the wACSF descriptor encoding each local geometry at
every timestep (colour bar) of the dynamics. t-SNE is a statistical
approach for reducing the dimensionality of datasets.24 In con-
trast to the more commonly-used linear dimensionality reduction
approach of principal component analysis (PCA), t-SNE is a non-
linear dimensionality reduction approach which, unlike PCA,
seeks to preserve the local structure of data by minimizing the
Kullback–Leibler (KL) divergence between distributions with
respect to the locations of the points in the map. In contrast to
PCA, t-SNE is not a black box, but instead requires user-defined
hyperparameters: the perplexity, learning rate, and the number of
iterations (which, to produce Fig. 6, were set to 50, 60, and 1000,
respectively). The t-SNE visualisation presented in Fig. 6 shows
that the wACSF embeddings describing the equilibrium/Franck–
Condon structures are centred around 20 (t-SNE1), 0 (t-SNE2).
During the first 200 fs post-photoexciation, t-SNE1 gradually
transforms to �20, while t-SNE2 initially decreases, suddenly
increases at E100 fs, and then subsequently decreases again to
0 at E200 fs. Post-350 fs t-SNE1 and t-SNE2 disperse over the
entire t-SNE component space, reflecting the vibrationally-hot
incoherent dynamics that take over the TSHD simulations at later
times. This illustrates, consistent with the analysis performed in
the previous paragraph, that a significant amount of the t-SNE1

and t-SNE2 space has been covered within the first 100 fs, which
explains the convergence observed in Fig. 5.

Fig. 7(a) and (b) show theoretical (target) and DNN-predicted
time-resolved sulphur K-edge XAS spectra over the first 900 fs

post-photoexcitation, respectively. Percentage errors between
the theoretical (target) and DNN-predicted time-resolved sul-
phur K-edge XAS spectra are tabulated in Table 1. In contrast to
Fig. 4, the first 120 fs are left blank in Fig. 7(a) and (b) as this
timeframe contains the first-principles data from which the
DNN learns and on which no predictions are made (see Fig. 5).
Overall, we observe good agreement (particularly at early times)
between the theoretical and DNN-predicted sulphur K-edge XAS
spectra: the oscillatory behaviour of both bands – associated
with the population kinetics and changes in S–S internuclear
distance – is successfully reproduced by the DNN. However,
any comparison between the theoretical and DNN-predicted
sulphur K-edge XAS spectra for the trajectory ensemble at later
times (e.g. t 4 500 fs) is complicated by the vibrationally-hot
nuclear wavepacket and the progression of incoherent
dynamics. Consequently, we focus our analysis of the perfor-
mance of the DNN on individual trajectories from the trajectory
ensemble which, we assert, are a more stringent test of the
quality of the DNN predictions.

Fig. 8 shows a comparison between the theoretical and DNN-
predicted time-resolved sulphur K-edge XAS spectra for three
individual trajectories. The corresponding plots for the remaining
trajectories are shown in Fig. S55–S102 (ESI†). These show much
more fine detail in the dynamics than is visible at the trajectory
ensemble level and – importantly – in each case show good
agreement between the theoretical DNN-predicted sulphur K-
edge XAS spectra. Fig. 8(a) and (b) show the theoretical and
DNN-prredicted sulphur K-edge XAS spectra for Trajectory 1 and
the percentage error between the two simulations is tabulated in
Table 1. The oscillations present in the theoretical simulations are
also observed in the DNN simulations with an overall percentage
error under 10%. The merging of the two peaks observed at E300
and E700 fs are associated with the reformation of the S–S bond
at these timescales. Similar behaviour is observed for Trajectory 2

Fig. 5 Evolution of the cosine similarity loss metric as a function of the
training set size; the training set comprises all timesteps up to the training
time (T; on the x axis).

Fig. 6 t-SNE embedding of the wACSF feature vectors (encoding the
local geometries around the absorbing atoms) for all geometries across all
timesteps and all trajectories. Embeddings are colour-coded according to
their timestep. The initialisation of the t-SNE embedding was performed
via PCA, the learning rate was set to 50, the perplexity was set to 60, and
1000 iterations were carried out.
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in Fig. 8(c) and (d); in this case, the S–S bond reforms at E300 and
E600 fs. Fig. 8(e) and (f), showing the time-resolved sulphur
K-edge XAS spectra for Trajectory 3, illustrate different behaviour:
once the S–S bond reforms after E300 fs, non-radiative internal
conversion returns the molecule to the S0 state in a vibrationally
hot condition and rapid oscillations are observed, corresponding
to vibrational activity of the S–S stretching mode.

To quantify the error between the calculated and DNN
predicted time-resolved spectra, Table 1 shows the overall
percentage error and the error in 4 time windows for the overall
ensemble and the trajectories shown in Fig. 8. The corres-
ponding table for the remaining trajectories is shown in the
Table S1 (ESI†). For the individual trajectories the overall
percentage error is B10%, with the error being smaller in the
first two time-windows and increasing slightly in the final two.
The overall percentage error of the ensemble (shown in Table 1)
is larger than the error of most of the individual trajectories,
indicating (i) the influence of the worst trajectories and (ii) that
combining each of the individual trajectories into the ensemble
can compound the overall error. This influence of individual
trajectories makes it interesting to consider the weighting given
to each trajectory in the ensemble. For TSH dynamics used here
each trajectory should have equal weights for all time-step,
alternatively for Gaussian based methods, the weighting of the
trajectory basis functions is dynamic and calculated during the

dynamics.16,18,48 An alternative approach adopted to analyse
time-resolved scattering experiments used the weighting as a
free parameter to fit the experimental spectra.15 This would
provide one criteria to eliminate trajectories exhibiting large
errors and the weighings determined to achieve a good agree-
ment with experimental data could be used to establish the
dominant photochemical pathways from an ensemble of trial
trajectories.

3.3 Determining if a model is sufficiently trained for an
unknown system

Up until this point, we have assessed whether the DNN is
sufficiently trained to predict future timesteps based on an
evaluation of the cosine similarity metric between the theore-
tical and DNN-predicted sulfur K-edge XAS spectra for those
future timesteps (Fig. 5). However, this approach is not parti-
cularly useful in practice as it requires that quantum-chemical
calculations have already been carried out for all timesteps –
this then makes the DNN redundant. Consequently, a metric
which supplies an error/uncertainty, enabling one to judge
when the DNN model is sufficiently capable and confident in
a prediction, is required.

One approach could be to execute quantum-chemical calcu-
lations to assess the prediction error for a limited time window
after the DNN model has been developed up until the predic-
tion error is minimised. However, such an approach would
likely fail to account for scenarios where the system explores a
region of the potential energy surface which is significantly
different to region(s) explored in the early timesteps with which
the DNN was trained. Another approach could be to execute a
small number of quantum-chemical calculations distributed
throughout the future time window for the purposes of asses-
sing the prediction error at specific future times, and to assume
that these samples cover sufficiently the space of the potential
energy surface that is explored. However, this is certainly not
straightforward to assume.

Alternatively, we can implement a broader uncertainty
awareness into the DNN itself using an ensembling approach.23,49

Fig. 7 Time-resolved sulphur K-edge XAS ensemble-averaged spectrum associated with the ultrafast excited-state ring-opening dynamics of 1,2-
dithiane. (a) Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level. (b) Predicted using the DNN detailed in this Article. Plots are shown from
120 fs onwards, as the DNN has been trained on the data from all timesteps up until 120 fs.

Table 1 Percentage errors averaged over the duration of the trajectory
for each of trajectories 1, 2, and 3 (Fig. 8), and for the full trajectory
ensemble; also tabulated are the percentage errors averaged over four
time windows: I (100–300 fs), II (300–500 fs), III (500–700 fs) and IV (700–
900 fs). The corresponding table for the remaining trajectories in the
trajectory ensemble is found in the ESI (Table S1)

Trajectory Overall I II III IV

1 8.4 3.7 8.7 10.1 11.1
2 8.7 5.1 7.6 11.7 10.2
3 11.5 6.0 14.1 14.8 10.9
Overall 10.2 5.2 11.3 11.7 12.7
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Practically, ensembling involves training multiple (N) instances
of each DNN using the same reference dataset but different
statistical initialisations for W. The ensemble of N DNNs is
then used to produce N independent predictions from which a
mean prediction and standard deviation for each input can be
derived. The latter is used to quantify the ensemble uncertainty
for the predictions. The concept behind this interpretation is
that different W* obtained from the N models in the ensemble
will tend towards similar predictions when the inputs are
similar to those found in the reference data. This is because
W* for each DNN instance, even if/when different, have been

optimised for comparable data. In contrast, if the inputs are
dissimilar to the inputs found in the reference dataset, each of
the N independent predictions will be more greatly affected by
W* and a higher standard deviation will consequently be
observed. The deviation of ensembled predictions hence pro-
vides, to the end user, a barometer of the ‘dependability’ of the
DNN for an application with their own dataset.

Fig. 9(a) shows the median relative standard deviation for
the ensembled predictions as a function of the training time.
This shows a rapid decrease with convergence observed around
100 fs, in close agreement with that shown in Fig. 5. This

Fig. 8 Time-resolved sulphur K-edge XAS spectra associated with the ultrafast excited-state ring-opening dynamics of 1,2-dithiane for three individual
trajectories (1, 2, and 3) taken from the trajectory ensemble average shown in Fig. 7. (a), (c), (e) Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP
level. (b), (d), (f) Predicted using the DNN detailed in this Article. The remaining individual trajectories are shown in the ESI.† Plots are shown from 120 fs
onwards, as the DNN has been trained on the data from all timesteps up until 120 fs.
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indicates that for general application where all of the first
principles calculations do not exist, this metric could be used
to assess the point at which convergence is reached. For this
case study, the convergence around 100 fs is consistent with
previous analysis of the convergence this time window suffi-
ciently covers the full range of S–S bond distances covered
throughout the rest of the dithiane ring-opening dynamics.

For more detail, Fig. 9(b) shows the relative standard deviation
as a function of time for the spectra trained up to 110 fs. This
shows a small increase between 120–400 fs followed by a plateau
for the remaining time of the simulations. A comparison for
models with shorter training times can be found in Fig. S54
(ESI†), which show a much greater increase in the relative
standard deviation. To exemplify the uncertainty obtained from
the ensembling models, Fig. 9(c) shows two spectra with �2s,
calculated from the ensembling technique.

4 Conclusions

In this Article, we have applied the XANESNET DNN to transform
excited-state TSHD simulations into time-resolved experimental
sulphur K-edge XAS spectral signals. Taking advantage of the
accurate, affordable, and instantaneous predictions produced by
the XANESNET DNN, we bypass the intensive quantum-chemical
calculations that are usually necessary to simulate time-evolving
XAS spectra from (excited-state) molecular dynamics simulations.
We have shown that our ‘on-the-fly’ train-test procedure, iterated
at each timestep of the TSHD simulation, converges quickly and is

able to substitute effectively for (otherwise) time-consuming
quantum-chemical calculations. Consequently, we anticipate that
this approach could become an important auxiliary tool for
simulating and interpreting time-resolved XAS spectra.

For the present example presented in this article – the ultrafast
excited-state ring-opening dynamics of 1,2-dithiane – we find that
E100 fs of TSHD simulation provides sufficient first-principles data
to train a DNN which is then able to predict accurately the sulphur
K-edge XAS spectra at future (unseen) timesteps in the TSHD
simulation. In this particular case – the periodic ring-opening/
ring-closing dynamics of 1,2-dithiane – this training time window
can be rationalised as it covers the time required for the S–S bond to
break post-photoexcitation to an s�S�S  LPS state and survey
subsequently a significant amount of coordinate space. However,
for future applications, where convergence may be less straightfor-
ward, we have also demonstrated that the ensembling approach can
be used to assess the uncertainty of the DNN, providing an
indication of whether or not the DNN is sufficiently trained to
reproduce reliably and accurately the pertinent signals of the XAS
spectra. In the present formulation, the DNN maps (local) structure
onto the XAS spectral lineshape and, consequently, any interpreta-
tion drawn from using the DNN will be in terms of how the nuclear
wavepacket or ensemble dynamics map onto the (experimental)
spectroscopic observables. The DNN is therefore unable to provide –
directly, at least – information on the electronic wavepacket
dynamics and, under the present framework, such information
would still require first-principle quantum-chemical calculations;
however, these could be carried out at reduced computational cost
in a targeted manner, e.g. at critical geometries/times identified
from the experimental and/or DNN-predicted dynamics.

Overall, this Article demonstrates a particularly promising
new approach for the simulation and interpretation of time-
resolved X-ray spectroscopic signals. Extension to systems of
higher dimensionality is straightforward under the present
framework, and our ‘on-the-fly’ train-test procedure should
have broad applicability to trajectory-based approaches for
simulating time-resolved X-ray spectroscopic signals for a
diverse range of chemical dynamics – particularly dynamics
on longer timescales and for larger systems that the computa-
tional cost of these simulations presently precludes.
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Fig. 9 (a) Median relative standard deviations of the DNN-predicted time-
resolved sulphur K-edge XAS spectra at timesteps greater than the model
training time. (b) Median relative standard deviations as a function of time
for the spectra trained up to 110 fs, as shown in Fig. 7. (c) Sulphur K-edge
XAS spectra at 225 and 800 fs, including 2s uncertainty (shaded region)
calculated via the ensembling approach.
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