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Solvation entropy, enthalpy and free energy
prediction using a multi-task deep learning
functional in 1D-RISM†

Daniel J. Fowles and David S. Palmer *

Simultaneous calculation of entropies, enthalpies and free energies has been a long-standing challenge

in computational chemistry, partly because of the difficulty in obtaining estimates of all three properties

from a single consistent simulation methodology. This has been particularly true for methods from the

Integral Equation Theory of Molecular Liquids such as the Reference Interaction Site Model which have

traditionally given large errors in solvation thermodynamics. Recently, we presented pyRISM-CNN,

a combination of the 1 Dimensional Reference Interaction Site Model (1D-RISM) solver, pyRISM, with a

deep learning based free energy functional, as a method of predicting solvation free energy (SFE). With

this approach, a 40-fold improvement in prediction accuracy was delivered for a multi-solvent, multi-

temperature dataset when compared to the standard 1D-RISM theory [Fowles et al., Digital Discovery,

2023, 2, 177–188]. Here, we report three further developments to the pyRISM-CNN methodology.

Firstly, solvation free energies have been introduced for organic molecular ions in methanol or water

solvent systems at 298 K, with errors below 4 kcal mol�1 obtained without the need for corrections or

additional descriptors. Secondly, the number of solvents in the training data has been expanded from

carbon tetrachloride, water and chloroform to now also include methanol. For neutral solutes,

prediction errors nearing or below 1 kcal mol�1 are obtained for each organic solvent system at 298 K

and water solvent systems at 273–373 K. Lastly, pyRISM-CNN was successfully applied to the

simultaneous prediction of solvation enthalpy, entropy and free energy through a multi-task learning

approach, with errors of 1.04, 0.98 and 0.47 kcal mol�1, respectively, for water solvent systems at 298 K.

1 Introduction

State-of-the-art computational methodologies are capable of
making accurate predictions of solvation free energy for
aqueous systems. They are commonly used in the calculation
of pKa,1–3 protein–ligand binding affinities4 and aqueous
solubility.5,6 However, the development of computational
approaches for determining solvation free energy often focus
on aqueous systems, with a lack of progress for organic solvents
or non-ambient temperatures. Further, although many methods
exist for the prediction of solvation free energy, far fewer exist for
the routine prediction of solvation entropy or enthalpy.

Methods of simulating the solvated environment for a given
system can generally be separated into one of two categories,
implicit or explicit solvent models. The most common implicit

models treat bulk solvent as a uniform polarisable medium
defined by a dielectric constant, and have found extensive use
through models such as the solvation model based on solute
electron density (SMD)7 and the polarisable continuum model
(PCM).8,9 However, implicit models rely on incomplete repre-
sentations of important molecular level details such as short-
ranged solute–solvent interactions. Typically, implicit models
only predict for solvation free energy. Several such methods do
exist for the routine prediction of other important thermo-
physical properties however, such as COSMOTherm.10 Fogolari
et al. have discussed recent advances in the prediction of
solvation thermodynamics,11 and Karplus et al. have proposed
a method of estimating the configurational entropy difference
between two states,12,13 both of which involve molecular
dynamics (MD) simulations and implicit solvent. Explicit solvent
models, such as those commonly used with MD, offer a viable
alternative to implicit continuum based approaches,14 with which
a variety of studies report methods for predicting solvation
enthalpy or entropy. Lin et al. proposed a two-phase thermo-
dynamic model for calculating the entropy of molecular fluids
from the trajectory of MD simulations,15 and the inhomogeneous
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solvation theory (IST) has seen increased use for predicting
solvation thermodynamics.16 However, the use of explicit sol-
vent models and molecular dynamics simulations come at a far
greater cost than their implicit counterparts, and often require
time consuming and expensive simulations to model even a
modest number of systems.

The reference interaction site model (RISM) is a third
approach, capable of calculating solvation dependent thermo-
dynamic parameters at a lower computational cost than explicit
models, whilst modelling specific solute–solvent interactions.
The RISM theory uses a simplified form of the high-dimensional
molecular Ornstein–Zernike (MOZ) equations to model solvent
density distribution around a solute molecule through a set of
correlation functions, from which two distinct methods have been
developed. The most commonly used of these is 3D-RISM, which
approximates the MOZ equations by a set of three-dimensional
integral equations. With the recent development of several semi-
empirical17,18 and theoretical free energy functionals,19,20 3D-RISM
has found frequent use as a method to predict SFE.21–25 Solvation
enthalpies and entropies can also be obtained through 3D-RISM
with the decomposition of solvation free energy into the entropic
contribution using temperature derivatives.26 With this method,
solvation enthalpies and entropies were reported to within 2.12
and 1.93 kcal mol�1 of experiment, respectively. However, as
solvation entropies were extrapolated from calculated free ener-
gies, for which state-of-the-art semi-empirical or theoretical free
energy functionals are necessary to obtain reasonable agreement
to experiment, any errors found within free energy calculations can
also be found in the associated solvation entropy and enthalpy.
By contrast, the 1D-RISM theory, in which the MOZ equations
are approximated as a set of one-dimensional integral equations,
is rarely used for quantitative calculations of solvation thermo-
dynamics because it is considered to be too inaccurate in its
common form.

Within the RISM framework, solvation free energy predic-
tions are made analytically using one of several available free
energy functionals. In 1D-RISM many of these functionals fail
to accurately predict the energetic parameters of the chemical
system under investigation. These functionals, such as the
Hyper-Netted Chain (1D-RISM/HNC) model,27 are too inaccu-
rate for routine use and typically achieve absolute prediction
errors above 20 kcal mol�1. Much effort has been put into
improving the predictive capabilities of 1D-RISM based func-
tionals for SFE calculations. Some of these improved models,
such as the Gaussian Fluctuations (1D-RISM/GF) and Partial
Wave models (1D-RISM/PW), can more accurately predict SFE
than previous methods.28,29 Although reasonable qualitative
agreement with experimental data has been reported, large pre-
dictive errors are still commonly observed for many chemical
systems.

In previous work, we proposed a method of accurately
predicting solvation free energy.30 This method, pyRISM-CNN,
combined our in-house 1D-RISM solver, pyRISM,31 with a deep
learning based free energy functional and was shown to accu-
rately predict SFE for organic molecules in aqueous solvent
at 273–373 K, as well as carbon tetrachloride or chloroform

solvent systems at 298 K. Compared to the standard 1D-RISM
theory, the pyRISM-CNN functional reduced the predictive
error by up to 40-fold, obtaining a prediction accuracy below
1 kcal mol�1 of experiment across each tested solvent. Moving
from 1D-RISM calculation to pyRISM-CNN prediction requires
minimal additional computational expense as the solvation free
energy density (SFED) functions that are used as input to the CNN
model can be generated as part of the typical 1D-RISM workflow.

Here, we report three further developments to the pyRISM-CNN
methodology. Solvation free energy data at 298 K has been
introduced for methanol solvent systems, for a total of four
solvents alongside carbon tetrachloride, chloroform and water.
Organic molecular ions have also been introduced for water
and methanol solvent systems, allowing pyRISM-CNN to predict
SFE for both neutral and ionised solutes, either as a combined
input or independently. Accurate predictions of SFE can be
obtained for both neutral molecules and molecular ions without
the need for additional descriptors or corrections. The pyRISM-
CNN functional has also been successfully applied to the simulta-
neous and accurate prediction of solvation enthalpy, entropy and
free energy through a multi-task learning approach. By expanding
the range of chemical systems for which SFE predictions can be
made, as well as enabling the accurate prediction of solvation
enthalpy, entropy and free energy, pyRISM-CNN has expanded the
potential application for the RISM theory.

2 Theory
2.1 1D-RISM

The details of the general RISM theory have been discussed
in depth elsewhere,32 and so only the 1D-RISM theory will be
explained here. 1D-RISM uses an approximated one-dimensional
form of the molecular Ornstein–Zernike equation with spherically
symmetric site–site correlation functions for the modelling
of molecular solutions. Both solute and solvent molecules are
modelled as sets of spherically symmetric sites, with one site per
atom. There are three types of site–site correlation functions that
are considered in RISM, each of which varies with site–site
separation only: intramolecular correlation functions, total
correlation functions and direct correlation functions. The
intramolecular correlation functions describe the structure of
a given molecule. For two sites within a molecule, s and s’, the
intramolecular correlation function is written as

oss0 ðrÞ ¼
dðr� rss0 Þ
4prss02

(1)

where rss0 is the distance between sites and dðr� rss0 Þ is the
Dirac delta function.

Intermolecular solute–solvent correlations are defined for
each pair of solute and solvent sites by the total correlation
functions hsa(r) and direct correlation functions csa(r). Here,
s refers to a solute site and a to a solvent site. The total
correlation functions are closely related to the radial distribu-
tion function (RDF) as

hsa(r) = gsa(r) � 1 (2)
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where gsa(r) is the radial distribution function of solvent sites
around a given solute site.

The total and direct correlation functions are related via a
set of RISM equations

hsaðrÞ ¼
XM
s0¼1

XN
x¼1

ð
R3

ð
R3

oss0 ðjr1 � r0jÞ

� cs0xðjr0 � r00jÞwxaðjr00 � r2jÞdr0 dr00
(3)

where r = |r1 � r2|, wxa(r) are the bulk solvent susceptibility
functions, and M and N are the number of solute and solvent
sites, respectively. Any mutual correlations between bulk sol-
vent sites are described by the solvent susceptibility functions
wsolv
xa (r), which are determined from solvent–solvent site total

correlation functions hsolv
xa (r), intramolecular correlation func-

tion osolv
xa (r) and the solvent bulk number density r.

wxa(r) = osolv
xa (r) + rhsolv

xa (r) (4)

The solvent–solvent site hsolv
xa (r) and osolv

xa (r) are obtained
from preliminary solvent–solvent 1D-RISM calculations and
molecular structure. To complete the set of RISM equations,
closure relations must be introduced

hsa(r) = exp(�busa(r) + gsa(r) + Bsa(r)) � 1 (5)

where usa(r) is the atom–atom potential, Bsa(r) is a bridge
function, b = 1/kBT and gsa is the indirect correlation function
(gsa(r) = hsa(r) � csa(r)).

The exact bridge functions are typically unknown and so an
approximation is needed to solve for the total correlation
functions and direct correlation functions. A commonly used
closure is the Kovalenko and Hirata (KH) closure33

hsaðrÞ ¼
expðXsaðrÞÞ � 1 XsaðrÞ � C

expðXsaðrÞÞ þ expðCÞ � C � 1 XsaðrÞ4C

(
(6)

where Xsa(r) = �busa(r) + gsa(r). A threshold constant, C, with a
value of 0 was introduced with the KH closure to linearize the
exponent when its argument grew larger than C. If the value of
C is changed from zero to infinity, the KH closure becomes the
HNC closure.

There are multiple expressions available within RISM for
determining solvation free energy once the total and direct
correlation functions have been solved. The functional is
usually selected to be consistent with the closure used within
the 1D-RISM calculations. The Gaussian fluctuations approxi-
mation (GF),34 KH35 and hypernetted chain (HNC)27 expres-
sions are shown below.

DGGF ¼ 2prkT
X
sa

ð1
0

�2csaðrÞ � hsaðrÞcsaðrÞð Þr2dr (7)

DGKH¼ 2prkT
X
sa

ð1
0

�2csaðrÞ�hsaðrÞðcsaðrÞ�Yð�hsaðrÞÞÞ½ �r2 dr

(8)

DGHNC¼ 2prkT
X
sa

ð1
0

�2csaðrÞ�hsaðrÞðcsaðrÞ�hsaðrÞÞ½ �r2 dr

(9)

2.2 pyRISM

The pyRISM program31 includes a general method of obtaining
variables which contain solvation and desolvation relevant
descriptors from the standard 1D-RISM free energy functionals.
Previously this method was applied within the RISM-MOL
framework and has been described in detail elsewhere,36,37 so
only a short summary of the process will be described here.
Each of the free energy functionals described in eqn (7)–(9) can
be condensed into a generalised form:

DGRISM ¼
ð1
0

wðrÞdr (10)

where the integrand functional w(r) combines the prefactor
(2prkT), and the total and direct correlation functions of a
single solute into an individual function of r which is referred
to as the solvation free energy density (SFED). By then omitting
the integration over r, this functional can be used to obtain
variables that quantify the response of solvent molecules to the
solute at chosen distances r from the solute site. The SFED
functions derived from the GF, KH and HNC SFE functionals
are given below:

gf wðrÞ ¼ 2prkT
X
sa

�2csaðrÞ � hsaðrÞcsaðrÞð Þ (11)

kh wðrÞ ¼ 2prkT
X
sa

�2csaðrÞ � hsaðrÞ csaðrÞ �Y �hsaðrÞð Þð Þ½ �

(12)

hnc wðrÞ ¼ 2prkT
X
sa

�2csaðrÞ � hsaðrÞ csaðrÞ � hsaðrÞð Þ½ � (13)

When the 1D-RISM equations are solved, the total and direct
correlation functions are represented on a fine grid. The values
of the SFED functions at selected grid points provide variables
that are denoted as m_w_n, where m is the 1D-RISM free energy
functional from which the variable is based and n is the grid
point at which the variable is evaluated. Machine learning
algorithms are then trained on these variables and the subse-
quent model can be used for solvation free energy prediction.
pyRISM is made freely available as open-source software.

3 Methods
3.1 Dataset preparation

Experimental solvation free energies of small organic molecules
were obtained from three different sources: the Minnesota
Solvation Database (MSD),38 those developed by Chamberlin
et al.39,40 and Zanith et al.41 The MSD contains experimental
solvation free energies in water and several organic solvents at
298 K. Experimental data obtained from Chamberlin et al.
includes hydration free energies in a 273–373 K temperature
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range, and data obtained from Zanith et al. includes solvation
free energies for small organic molecules in methanol at 298 K.

A multi-solvent, multi-temperature dataset of neutral and
ionised compounds was prepared from the available experi-
mental solvation free energies. Ionised compounds were
obtained exclusively from the MSD and consisted of ionised
organic solutes. A total of four solvents made up the neutral
portion of the dataset: water, methanol, chloroform and carbon
tetrachloride, with 659, 25, 109 and 79 solutes respectively.
Of the 659 water solutes, 272 were taken from Chamberlin
et al., and included hydration free energy data in a 273–373 K
temperature range. By using free energies over a range of
temperatures, a total of 3053 datapoints were available. The
remaining 387 solutes were taken from the MSD at 298 K, for a
total of 3440 datapoints. The ionised portion of the dataset
consisted of anions and cations in water and methanol
solvents. By solvent, 48 anions and 29 cations were present in
methanol, and 56 anions and 47 cations in water.

Experimental solvation enthalpies, entropies and free
energies of small organic molecules were taken from several
different sources. This second dataset contained a full set of
experimental solvation thermodynamic parameters for solute
molecules in water at 298 K. Every molecule present in this
second dataset can also be found in the solvation free energy
dataset. Solvation enthalpies for solutes in water were obtained
from the Acree dataset42 and Abraham et al.43 Solvation entro-
pies were taken from Garza.44 Experimental solvation free
energies from the MSD were assigned to each molecule. If an
experimental solvation enthalpy, entropy and free energy
were not all available for a given molecule then a pseudo-
experimental value would be calculated from the other two
available terms using DG = DH � TDS. In total, solvation
data was obtained for 139 solutes in water. Where necessary,
experimental values were converted to the Ben Naim standard
state.45,46 Table 1 provides a breakdown of the available experi-
mental data for each solvent. A spreadsheet detailing the
available experimental data by source can be found as part of
the ESI.†

Fig. 1 provides violin plots which show the distribution of
experimental solvation free energy and molecular weight by
solvent across the neutral and ionised datasets. Additional violin
plots of log P and the number of rotatable bonds per solute are

available in Section S1 of the ESI.† Tables containing the mean
and standard deviation (SD) of each experimental property across
the neutral and ionised datasets, as well as the mean and SD of
experimental solvation enthalpy, entropy and free energy values,
can also be found in Section S1 of the ESI.†

3.2 Solute structure generation

The InChi47 function within Open Babel48 was used to generate
a unique InChi descriptor for each solute within the MSD,
Chamberlin et al. and Zanith et al. datasets. Any duplicate
molecules were then removed using the ‘‘unique’’ function
within Open Babel. Dataset sizes shown in Table 1 refer to
solutes present after duplicate molecules were removed.

Solute coordinate files were taken from the MSD. The
corresponding coordinate files were not available for 10 solute
molecules taken from Zanith et al., and so were obtained from
the PubChem chemical database49 as a 2D coordinate file.
These files were converted to 3D structures and the lowest
energy conformer found through a conformational search
carried out using Open Babel. The conformational search
involved a systematic rotor search of each solute with the GAFF
forcefield.50

3.3 1D-RISM calculations

1D-RISM calculations were carried out with pyRISM using the
KH closure within a system of 16 384 grid points over 20.48 Å
from the solute. Aqueous solvent calculations used the dielectri-
cally consistent reference interaction site model (DRISM),51,52

while organic solvent calculations applied the extended reference
interaction site model (XRISM).53 Organic solvent calculations
were found to converge more consistently with XRISM than with
DRISM. Solvation free energy calculations with the KH, HNC and
GF free energy functionals were performed for both aqueous and
organic solvent systems. For all calculations it was assumed that
solute molecules were embedded within an infinitely dilute
aqueous solution. A convergence tolerance of 10�12 was set for
all calculations, with a minimum tolerance of 10�5 if the initial
calculation failed to converge. The impact from lowering the
minimum convergence tolerance to 10�5, as well as the choice
of model for 1D-RISM calculations (DRISM or XRISM) on the
quality of SFED generated has previously been found to be
negligible.30

Table 1 Breakdown of descriptors generated from each solvent. Two datasets were compiled from the available experimental data. The first dataset was
created from neutral and ionised experimental SFE at 273–373 K, and the second from experimental solvation enthalpies, entropies and free energies at
298 K. The number of datapoints listed for each solvent represents that solvents contribution to the total number of SFED in each dataset

Dataset Solvent Temperature range SFE functional Datapoints

DGexp,neutral
solv Carbon tetrachloride 298 K KH/HNC/GF 79

Chloroform 298 K 109
Methanol 298 K 25
Water 273–373 K 3440

DGexp,ionised
solv Methanol 298 K KH/HNC/GF 77

Water 298 K 103

DHexp
solv, TDSexp

solv, DGexp,neutral
solv Water 298 K KH/HNC/GF 139
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3.3.1 Solvent & solute parameters. The Lue and Blankschtein
version of the SPC/E water model (MSPC/E)54 was used for
modelling aqueous solvent. This altered version differs from
the original model with the inclusion of modified Lennard-
Jones (LJ) potential energy parameters for water based hydro-
gen, which were adjusted to prevent any possible divergence of
the algorithm.53,55,56 Organic solvent models were modelled
using the general Amber forcefield (GAFF) non-bonded para-
meters, which were assigned using the Antechamber and tLEaP
programs within Amber18.57 The Lorentz–Berthelot mixing
rules58 were used to generate solute–solvent LJ parameters
i.e., ssa = (ss + sa)/2 and esa ¼

ffiffiffiffiffiffiffiffi
esea
p

. GAFF50 parameters were
assigned to solute molecules using the Antechamber and tLEaP
programs within Amber18.

3.4 Obtaining RISM solvation free energy density functions

Solute specific SFED functions were obtained as a 1D-RISM
calculation output using the pyRISM program. A SFED function
was generated for each free energy functional used, totalling
three sets per solute. As the grid used to represent the 1D-RISM
total and direct correlation functions was very fine, leading to

multiple correlated variables, a coarser grid-spacing was used
to obtain a representation of the SFED that was suitable for
machine learning. To minimise the inclusion of redundant
data and to exclude data at long solute–solvent separations in
the region where SFEDs approach zero, only every 40th grid
point from r = 0 Å to r = 8 Å was considered. This approach
produced 160 SFED descriptors per SFE functional for each
solute 1D-RISM calculation. These SFED were then used as an
input to machine learning models to predict experimental
solvation free energy, enthalpy and entropy.

3.5 Convolutional neural network models

Convolutional neural network (CNN) models were trained on
all three SFED variations (KH, HNC and GF) for each dataset.
Models were validated by nested cross-validation (CV), with
hyper parameters tuned by an inner 5-fold CV loop. Final tuned
model performance was evaluated by an outer 50-fold Monte
Carlo cross-validation loop with a 70% train/30% test split.
A stratified sampling approach was taken for multi-temperature
and multi-solvent data to ensure datapoints were separated by
molecule before splitting into training, validation and test sets.
Each variable was centered by subtracting its mean value in the

Fig. 1 Violin plots showing solute molecule data by solvent for the neutral and ionised datasets. a = experimental solvation free energies for the neutral
solute dataset, b = experimental solvation free energies for the ionised solute dataset, c = molecular weights for the neutral solute dataset, d = molecular
weights for the ionised solute dataset.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Fe

br
ua

ry
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/2
6/

20
24

 1
2:

21
:3

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp00199g


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 6944–6954 |  6949

training data, and scaled by dividing by the standard deviation of
its values in the training data.

Single and multi-output convolutional neural networks were
built using the ‘sequential’ and ‘functional’ model packages in
Tensorflow59 respectively, and accessed using Keras60 with a
Python implementation. Single output CNN were trained on
SFED generated from the solvation free energy dataset, and
multi-output CNN were trained on SFED generated from the
solvation enthalpy, entropy and free energy dataset. The multi-
task algorithm considered solvation enthalpy, entropy and free
energy with an equal weighting. The CNN training datasets
contained enthalpy, entropy and free energy values for each
solute without any missing data. Final CNN architecture consisted
of three blocks of Conv1D-MaxPooling1D-BatchNormalisation
with a subsequent Flatten layer, and was based on the refined
CNN architecture applied in our previous work.30 Single output
models contained a single Dense output layer while multi-
output models had three separate Dense output layers connected
to the Flatten layer. Convolutional layers were created using the
‘Conv1D’ layer package in Keras with 32 output filters, a kernal
size of 3 and stride length of 2. No padding was included and the
rectified linear activation function (ReLu)61 was used. Each of the
subsequent layers were also taken from Keras, with the max pool
size within MaxPooling1D layers set to 2. Default parameters were
used for BatchNormalisation and Flatten layers. The loss function
and metric was set to ‘mse’ (mean squared error), with the ‘Adam’
optimiser.62 Each model could run for a maximum of 60 epochs
with a patience of 20 epochs included through the Keras
‘EarlyStopping’ callback.

3.6 Statistical analysis

Solvation thermodynamics predictions were evaluated against
experimental values of solvation enthalpy, entropy or free
energy using the coefficient of determination (R2) and root
mean squared deviation (RMSD).

R2 ¼ 1�

PN
i¼1

yi � yiexp

� �2
PN
i¼1

yi �M yiexp

� �� �2 (14)

RMSD y; yexp
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1

yi � yiexp

� �2s
(15)

where index i goes through a set of N molecules, and yi and yi
exp

are the predicted and experimental values for molecule i
respectively. The coefficient of determination represents a
statistical measure of how well the regression predictions fit
the experimental data, and so negative values below 1 are
possible for models which fit the data worse than the mean
of the experimental data. The total deviation can be separated
into two parts: bias (or mean displacement, M) and standard
deviation (or SDEP, s).

bias ¼M y� yexp
� �

¼ 1

N

PN
i¼1

yi � yiexp

� �
(16)

s y� yexp
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1

yi � yiexp �M y� yexp
� �� �2s

(17)

The bias provides the systematic error, while the standard
deviation gives the random error that is not explained by the
model. The bias and standard deviation are connected to the
RMSD by:

RMSD(y,yexp)2 = M(y � yexp)2 + s(y � yexp)2 (18)

A model which reports an RMSD greater than the standard
deviation of the experimental data provides less accurate
predictions than the null model provided by the mean of the
experimental data.

Statistical analyses were performed in a Python environment
using the ‘sklearn.metrics’ module available in scikit-learn.63

4 Results and discussion
4.1 Solvation free energy – neutral & ionised datasets

Convolutional neural network models were trained on datasets
of neutral or ionised solutes, separately. For both the neutral
and ionised datasets, three variations were tested: KH, HNC
and GF generated SFED, for a total of six models. Only models
trained on GF based SFED will be discussed here, as it has been
previously shown that the choice of free energy functional only
marginally effects SFE prediction accuracy.30 Models associated
with KH and HNC generated SFED can be found in Section S2
of the ESI.† Table 2 provides a breakdown of the test set based
performance for both models trained on GF generated SFED.

In our previous study of pyRISM-CNN, a CNN model trained
on the GF generated multi-solvent, multi-temperature SFED
dataset achieved an RMSD of 0.97 kcal mol�1 and R2 of 0.94.
This dataset consisted of the carbon tetrachloride, chloroform
and water based solute data presented in the neutral SFE
section of Table 2 under ‘Solvent’, ‘Temperature’ and ‘Data-
points’. Here, we have expanded that benchmark dataset to
include experimental solvation free energies for 25 solute
molecules in methanol. As can be seen in Table 2, including
this additional solvent does not impact upon the overall model
performance, with an RMSD of 0.99 kcal mol�1 and R2 of 0.93.
Individually, SFE predictions made for methanol based solutes
are no less accurate than for other solvents, with an RMSD of
0.73 kcal mol�1 and R2 of 0.42. The relatively low R2 is likely due
to the small number of datapoints available for methanol,
which represent a smaller spread of experimental SFE values
than are available for the other solvents. The performance of
this CNN model, trained on the expanded neutral solute
dataset, further shows the generalisability and capabilities of
this approach.

Similarly to the neutral solute dataset, a CNN trained on
SFED generated from ionised organic solutes is capable of
making accurate solvation free energy predictions. From the
ionised SFE section of Table 2, the CNN trained on ionised
solute data can be seen to accurately predict SFE to within
3.96 kcal mol�1 of experiment. This accuracy is not limited to a
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single solvent as RMSD of 3.60 and 4.10 kcal mol�1 are
achieved for predictions of solutes in methanol and water
solvents, respectively. Fig. 2 provides the correlation plots of
experimental SFE against predicted values for the neutral and
ionised solute datasets. Ionised solute predictions are colour
coded as anions and cations.

Solvation free energy predictions made with pyRISM-CNN
are of comparable accuracy to the current state-of-the-art of the
more computationally expensive 3D-RISM based methods. The
semi empirical universal correction (UC) free energy functional
paired with 3D-RISM has been shown to accurately predict
hydration free energies for neutral and ionised solutes. Labute
et al. calculated HFE values for a dataset of 504 neutral organic
molecules, obtaining an RMSD of 1.18 kcal mol�1.17 A similar
approach has been proposed by Casillas et al.,64 in which an

RMSD of 1.44 kcal mol�1 was achieved for 642 molecules from
the Freesolv database. Sumi et al. performed hydration free
energy calculations on an earlier version of the Freesolv data-
base using the reference-modified density functional formula-
tion, with which an RMSD of 1.46 kcal mol�1 was reached.65

The authors also compared their approach against 3D-RISM/NgB
and molecular DFT calculations performed on the same dataset,
which managed RMSD of 1.29 and 1.80 kcal mol�1, respectively.
Tielker et al. performed HFE calculations on neutral and ionised
organic solutes obtained from the MSD using the embedded
cluster RISM theory (EC-RISM).66 By including multiple solvent-
specific empirical parameters, 3D-RISM calculated hydration free
energies with an RMSD of 1.52, 4.48 and 2.91 kcal mol�1 were
obtained for neutral, anionic and cationic solutes, respectively.
Fewer studies have reported hydration free energy predictions for

Fig. 2 Correlation plots showing solvation free energy predictions from CNN trained on the individual neutral and ionised datasets. SFED datasets were
generated using the GF functional. The ionised dataset correlation plot is further separated into cation and anion based predictions. Errors are given
in kcal mol�1.

Table 2 Breakdown of solvation free energy predictions for neutral and ionised solutes. Two separate CNN were trained on either neutral or ionised
solute SFED, which were generated using the GF free energy functional. Statistics are given for both datasets, with model performance separated by
solvent as well as across the full datasets of neutral or ionised solutes. Errors are given in kcal mol�1

DGexp,neutral
solv dataset

Neutral solvation free energy By solvent Full dataset

Solvent Temperature Datapoints R2 RMSD Bias SDEP R2 RMSD Bias SDEP

Carbon Tetrachloride 298 K 79 0.63 1.00 0.69 0.68

0.93 0.99 0.28 0.93Chloroform 298 K 109 0.81 1.12 0.65 0.87
Methanol 298 K 25 0.42 0.73 0.16 0.64
Water 273–373 K 3440 0.95 0.96 0.11 0.93

DGexp,ionised
solv dataset

Ionised solvation free energy By solvent Full dataset

Solvent Temperature Datapoints R2 RMSD Bias SDEP R2 RMSD Bias SDEP

Methanol 298 K 77 0.61 3.60 0.51 3.06
0.74 3.96 0.35 3.62Water 298 K 103 0.73 4.10 0.21 3.71
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ionised datasets. Misin et al. reported HFE calculations for
molecular ions involving 3D-RISM/PC+ and a correction for the
Galvani potential, with an RMSD of 4.84 kcal mol�1.23 Johnson
et al. treated 48 molecular ions in water with a variety of free
energy functionals in 3D-RISM without a Galvani correction,
achieving an RMSD of 6.51 kcal mol�1 with 3D-RISM/UC.26

4.2 Solvation free energy – combined dataset

Convolutional neural network models were trained on a com-
bined dataset consisting of neutral and ionised solute SFED.
In total, three separate models were tested with SFED generated
from each free energy functional: KH, HNC and GF. Only
models trained on GF based SFED will be discussed here.
Models associated with KH and HNC generated SFED can be
found in Section S3 of the ESI.†

Compared to the individual neutral and ionised datasets,
use of a combined dataset results in only a small reduction in
SFE prediction accuracy across solvents and neutral/ionised
solutes. A breakdown of solvation free energy predictions for
the combined dataset can be found in Table 3. By solvent,
neutral solute RMSD increases by 0.23, 0.22 and 0.51 kcal mol�1

for chloroform, methanol and water, respectively, when compared
against CNN trained on the individual neutral dataset. For carbon
tetrachloride, RMSD decreases by 0.02 kcal mol�1. Comparing
ionised predictions, a CNN trained on the individual ionised
dataset performed better than their combined dataset counter-
part, with prediction errors increasing by 0.67 and 1.70 kcal mol�1

for methanol and water, respectively. A drop in SFE prediction
accuracy is not unexpected for several reasons: experimental
solvation free energies for ionised organic solutes are typically
ten times greater than their neutral counterparts, and neutral
solute data outnumbers ionised solute data by 20 : 1. Fig. 3 shows
the correlation plot of experimental SFE against predicted values
for the combined neutral and ionised solute dataset.

4.3 Solvation enthalpy, entropy & free energy

Multi-task CNN models were trained on the solvation thermo-
dynamics dataset consisting of neutral organic solutes with
experimental solvation enthalpy, entropy and free energy
values. In total, three separate models were tested with SFED
generated from each free energy functional: KH, HNC and GF.

Single task CNN models were also trained on individual solva-
tion enthalpy, entropy and free energy datasets across the KH,
HNC and GF functionals, for a total of 9 single task models.
Each single task model performed comparably to the multi-task
CNN across each solvation property, with all of the statistics
available in Section S5 of the ESI.† Correlation plots comparing
pseudo-calculated values for solvation enthalpy, entropy and
free energy parameters from single and multi-output models
are available in Section S6 of the ESI.† Pseudo-calculated values
are those determined using DG = DH � TDS and the predicted
values for the two corresponding parameters. From these plots,
it can be noted that multi-output CNN better learn the correla-
tion between each solvation parameter than single output
models.

Solvation enthalpy, entropy and free energy predictions from
multi-output CNN trained on SFED generated from the KH,
HNC or GF free energy functional can be found in Table 4.
Across each free energy functional, solvation enthalpy, entropy

Table 3 Breakdown of solvation free energy predictions made using a CNN trained on a combined neutral and ionised dataset. SFED were generated using the
GF free energy functional. Statistics are given across the full dataset, as well as separated by solvent and neutral/ionised data. Errors are given in kcal mol�1

DGexp,neutral
solv , DGexp,ionised

solv dataset

Solvent Temperature Datapoints

By solvent Full dataset

R2 RMSD Bias SDEP R2 RMSD Bias SDEP

Neutral solvation free energy
Carbon Tetrachloride 298 K 79 0.68 0.98 0.31 0.93

0.99 3.03 0.09 2.97

Chloroform 298 K 109 0.74 1.35 0.29 1.32
Methanol 298 K 25 0.40 0.95 �0.27 0.91
Water 273–373 K 3440 0.88 1.47 �0.20 1.45

Ionised solvation free energy
Methanol 298 K 77 0.52 4.27 0.40 3.83
Water 298 K 103 0.59 5.80 0.48 5.55

Fig. 3 Correlation plot showing solvation free energy predictions made
with the combined neutral and ionised dataset. SFED were generated
using the GF functional.
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and free energy predictions are made with accuracies nearing
or below 1 kcal mol�1. By functional, RMSD of 1.06, 1.04 and
1.14 kcal mol�1 are obtained for solvation enthalpy predictions
with KH, HNC and GF respectively. Similar values of 1.00,
0.98 and 1.07 kcal mol�1 are obtained for solvation entropy.
Solvation free energy predictions remain the most accurate and
closely resemble accuracies obtained with single task CNN,
with RMSD of 0.53, 0.47 and 0.53 kcal mol�1. These results
suggest that use of a multi-task algorithm allows for the
accurate prediction of all three properties simultaneously, as
can be seen by comparing Tables 2–4. Fig. 4 provides the
correlation plots of experimental solvation enthalpy, entropy
and free energy against predicted values for the multi-task CNN
trained on GF generated SFED.

Several methods have been reported for the prediction of
solvation enthalpy and entropy, although few report predic-
tions for both alongside solvation free energy. MD based free
energy perturbation (FEP) calculations have been reported for a
dataset of 239 neutral small molecules in water, achieving an
average unsigned error (AUE) of 1.10 kcal mol�1.67 Compar-
isons can also be made against the SMD, which has been tested
extensively against both aqueous and organic solvents at 298 K

with which to calculate SFE for neutral and ionised solutes.7

By solvent, AUE of 0.52, 0.84 and 0.59 kcal mol�1 were reported
for neutral solutes in carbon tetrachloride, chloroform and
water respectively, and AUE of 2.47 and 4.40 kcal mol�1 were
also reported for ionised solutes in methanol and water.
Although not directly comparable, here with GF based
pyRISM-CNN models, RMSD values of 1.00, 1.12 and
0.96 kcal mol�1 were made for neutral solutes in carbon
tetrachloride, chloroform and water, and 3.60 and 4.10 kcal mol�1

for ionised solutes in methanol and water. Jaquis et al. reported
solvation enthalpy predictions for ethanol solvent systems using a
deep learning feedforward neural network and chemistry develop-
ment kit (CDK) descriptors, with a test set RMSD of 1.58 kcal
mol�1.68 Similarly, Chung et al. developed a deep learning neural
network model for the prediction of solvation enthalpy and free
energy, reporting an RMSD of 0.75 and 0.71 kcal mol�1

respectively.69 Irudayam et al. reported an MD based method of
calculating the hydration entropy from individual entropic compo-
nents, alongside solvation free energy.70 With this method, hydra-
tion free energies are calculated with a mean unsigned error of
2.5 kJ mol�1. The authors reported that solvation entropies, and
enthalpies by extension using DG = DH � TDS, are typically
underestimated, and conclude that forcefield based methods are
unable to account for the temperature dependence of solvation.
Hydration free energies and hydration enthalpies/entropies
were reported by Johnson et al. for a dataset of 1123 and subset
of 74 molecules, respectively, calculated with the 3D-RISM
theory and PC+ free energy functional.26 Across solvation
free energy, enthalpy and entropy, RMSD of 1.43, 2.12 and
1.93 kcal mol�1 were obtained respectively. However,
empirical corrections to the standard 3D-RISM theory were
necessary to obtain values with reasonable agreement to
experiment.

This multi-task approach can be readily extended to organic
solvent systems alongside the aqueous systems tested here.
There are, however, limited samples available with which to
train machine learning models. Increasing the availability of
high quality experimental data in the literature would help to
resolve this problem.

Table 4 Breakdown of solvation enthalpy, entropy and free energy
predictions made using multi-output CNN trained on SFED generated
using the KH, HNC or GF free energy functionals. Errors are given in
kcal mol�1

Multi-output CNN – DHexp
solv, TDSexp

solv, DGexp,neutral
solv dataset

Functional Parameter R2 RMSD Bias SDEP

KH Solvation enthalpy 0.90 1.06 0.14 1.00
Solvation entropy 0.77 1.00 0.10 0.95
Solvation free energy 0.94 0.53 0.07 0.50

HNC Solvation enthalpy 0.90 1.04 0.06 1.01
Solvation entropy 0.79 0.98 0.03 0.95
Solvation free energy 0.95 0.47 0.04 0.45

GF Solvation enthalpy 0.89 1.14 0.03 1.08
Solvation entropy 0.73 1.07 �0.03 1.01
Solvation free energy 0.95 0.53 0.05 0.50

Fig. 4 Correlation plots of experimental solvation enthalpy, entropy and free energy values against predicted values for the solvation thermodynamics
dataset. SFED were generated using the GF free energy functional and used to train a single multi-task CNN.
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5 Conclusions

Previously, we presented a new method for accurately predict-
ing solvation free energy, pyRISM-CNN, by combining the 1D-
RISM solver, pyRISM, with a deep learning based free energy
functional. With this deep learning approach, solvation free
energy predictions could be made to within 1 kcal mol�1 of
experiment across several different solvents and at tempera-
tures beyond 298 K. These accuracies marked a 40-fold
improvement in prediction accuracy when compared to the
standard 1D-RISM theory. Here, we have reported several
developments to the pyRISM-CNN methodology: enabling the
prediction of SFE for organic molecular ions, to within
4 kcal mol�1 of experiment; introduced methanol as a solvent
with which to train the pyRISM-CNN functional to predict
solvation free energy; and successfully expanded pyRISM-CNN
to a multi-task algorithm with the accurate and simultaneous
prediction of solvation enthalpy, entropy and free energy for
water solvent systems at 298 K. With this multi-task learning
approach, three thermodynamic parameters fundamental to
solvation processes can be accurately obtained without the
need for extensive sampling, and can be determined as part
of a standard 1D-RISM calculation with minimal additional
computational expenditure.
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