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Machine learning potentials (MLP) enable atomistic simulations with first-principles accuracy at a small
fraction of the costs of electronic structure calculations. Most modern MLPs rely on constructing the
potential energy, or a major part of it, as a sum of atomic energies, which are given as a function of the
local chemical environments up to a cutoff radius. Since analytic forces are readily available, nowadays it
is common practice to make use of both, reference energies and forces, for training these MLPs. This
can be computationally demanding since often large systems are required to obtain structurally
converged reference forces experienced by atoms in realistic condensed phase environments. In this

Received 22nd December 2022, work we show how density-functional theory calculations of molecular fragments, which are too small

Accepted 20th March 2023 to provide such structurally converged forces, can be used to learn forces exhibiting excellent
DOI: 10.1039/d2cp05976b transferability to extended systems. The general procedure and the accuracy of the method are

illustrated for metal-organic frameworks using second-generation high-dimensional neural network
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1 Introduction

In recent years, machine learning potentials (MLPs)'”” have
become an important tool for atomistic simulations like mole-
cular dynamics (MD) and Monte Carlo (MC), because they
allow transfer of the accuracy of electronic structure calcula-
tions, most prominently density functional theory (DFT), to
much larger systems containing thousands of atoms at a small
fraction of the computational costs. Hence, the develop-
ment of MLPs is a very active field of research and several
generations have been proposed to date depending on the
types of systems they can be applied to and the physical
phenomena they are able to describe.®>° Almost all MLPs
applicable to large systems rely on atomic properties,
which depend on the local environment up to a given cutoff
radius R.. As proposed in 2007 by Behler and Parrinello
with the introduction of high-dimensional neural network
potentials (HDNNP),"®'! in second-generation MLPs these
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properties are the atomic energies E; of atoms i, which
according to

(1)

yield the total potential energy E of the system. In third®> " and

fourth-generation'’™® MLPs this short-range energy can be aug-
mented by long-range electrostatics, but still the atomic energies
remain an essential component of most modern MLPs.

Nowadays, many types of second-generation MLPs are available,
like various forms of neural network potentials,'®*** Gaussian
approximation potentials (GAPs),>*** moment tensor potentials
(MTPs),* spectral neighbor analysis potentials (SNAPs),”® atomic
cluster expansion (ACE)*” and many others.”*** They have been
applied with great success to numerous systems, and to date they
have remained the dominant type of MLP applied in large-scale
simulations.

A consequence of the cutoff defining the local atomic
environments is the possibility to use small systems accessible
in electronic structure calculations for training MLPs. These
can then be applied to simulations of much larger systems,
which has been demonstrated, e.g., for metal clusters providing
bulk properties,>*®*' molecular fragments representing
extended systems, and clusters of water molecules describ-
ing the liquid phase.**® This strategy does not only decrease
the computational effort enabling the use of more accurate
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electronic structure methods but also reduces the complexity of
the configuration space to be sampled to the energetically
relevant degrees of freedom.

Still, the generation of the reference data is the most time-
consuming part in the development of MLPs, and thus identifying
the smallest possible systems which provide all required informa-
tion about the atomic interactions, ie., the potential-energy
surface (PES), is of high interest. This is not only important for
the generation of initial training sets but in particular also for the
systematic improvement of MLPs by active learning.*>*”™* In
the latter case the missing atomic environments are typically
identified in production simulations, ie., using systems which
are often too large for the direct application of electronic structure
methods. Consequently, strategies for reducing the systems to the
most essential structural features still containing the required
information are needed.

Nowadays it is common practice to employ energies and
forces to train MLPs,>*>***® which allows to extract a lot of
information from electronic structure calculations. Several proce-
dures have been proposed in the literature to determine the cutoff
radius required for obtaining converged atomic forces. In a study
on the development of a GAP for carbon, a statistical approach
has been suggested in which the local environment of the atom of
interest is frozen while the positions of the atoms outside the
cutoff sphere are modified.*” For a sufficiently large cutoff radius
there is only a negligible influence of these displacements on the
variance of the forces of the central atoms.

Here, we build on an alternative approach making use of the
Hessian, which provides the analytic derivatives of the forces.*®
This method allows to identify the influence of each individual
atom in the system on a given force of interest, and a rigorous
procedure to determine the required reference system size can
be established for a desired degree of force convergence. This
system size can be expressed in terms of a converged fragment
radius Rfmg including all neighboring atoms that have to be
included for obtaining accurate forces in electronic structure
calculations. If molecular or cluster fragments of this size are
used, training of MLPs can be performed with forces numeri-
cally corresponding to those in much larger, condensed sys-
tems. Further details about this method can be found in ref. 48.

In the present work we show that the use of such converged
fragments is not necessarily required for constructing MLPs and
that it is possible to further decrease the size of the reference

1
systems to about ER?&"gV.

with a homogeneous distribution of atoms, the volume and thus
the number of atoms can be reduced by approximately a factor of
eight. This results in a drastic reduction of the computing time
in electronic structure calculations, which often have a very
unfavorable scaling with respect to system size.

Our approach is based on the insight that, as detailed below,
the analytic atomic forces corresponding to the total energy
expression eqn (1) depend on up to twice the cutoff radius
defining the atomic energy contributions in MLPs.'' On the
other hand, if converged electronic structure forces of bulk-like
environments shall be learned directly, often large fragments

Assuming three-dimensional systems
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with radii of about 8-12 A are required in electronic structure
calculations. Here we show that as a consequence of the
relation between forces and atomic energies molecular frag-
ments of only about half this radius (with a numerical value
depending on the specific system) are sufficient to extract the
relevant information needed to predict accurate MLP forces in
systems of arbitrary size. This is possible although these small
fragments, which fully define the atomic energies according to
eqn (1), yield numerical reference forces strongly differing from
the target forces in the condensed phase, since the atomic
environments are incomplete with respect to the information
needed to obtain bulk-like forces.

We illustrate our approach using the iso-reticular metal-
organic framework IRMOF-1 (also called MOF-5), and general-
ize our findings by including also some data for the larger
systems IRMOF-10 and IRMOF-16." MOFs are nanoporous,
crystalline materials consisting of two parts — organic linker
molecules, which interconnect inorganic secondary building
units (SBUs) - with a large diversity of possible linker molecules
and SBUs.*** The simulation of MOFs is a challenging task
due to their often large unit cells. Furthermore, postsynthetic
modifications®*****> and functionalizations®>*® increase the
structural variety of MOFs. Hence, MOF properties can be
designed for many different applications like gas storage,
separation, catalysis and optical devices.’***>° Consequently,
theoretical studies are of high interest for the analysis and
prediction of MOF properties,*® and reliable and accurate
interatomic potentials are urgently needed.®®* Accordingly,
several MLPs for MOFs have been reported in the literature to
date.33’63'64

For our benchmark study, two types of HDNNPs are con-
structed based on either converged fragments providing bulk-
like DFT reference forces, or making use of smaller fragments
of about half this diameter yielding forces strongly differing
from the bulk material. We show that in both cases HDNNPs of
comparable quality can be obtained predicting reliable forces
suitable for simulations of large systems.

2 Methods

In this work we demonstrate our approach using high-dimensional
neural network potentials of the second generation.'®"" Starting
from the total energy expression in eqn (1), the atomic energy
contributions are provided as outputs of separate atomic feed-
forward neural networks, which have the same architecture and set
of numerical weight parameters for a given element. Accordingly,
each element-specific atomic neural network has to be evaluated as
many times as atoms of the respective chemical species are present
in the system resulting in a close-to linear scaling of the method.

The input vectors of the individual atomic neural networks
consist of descriptors containing the structural information
about the respective atomic environments up to the cutoff
radius. They need to take into account the mandatory permuta-
tion, translation and rotation invariances of the atomic ener-
gies. In the present work atom-centered symmetry functions

This journal is © the Owner Societies 2023
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(ACSF) are used for this purpose,®® which smoothly decay to
zero in value and slope at the cutoff radius.

In the iterative training process the weight parameters of the
atomic neural networks are adjusted to accurately reproduce total
energies and forces for a given reference data set obtained from
electronic structure calculations. No energy partitioning is
required in the process since the total potential energy is auto-
matically distributed among the atoms during the weight optimi-
zation. Simultaneously, also the available force information can
be used to optimize the weights, since the analytic forces depend
on the same weight parameters as the atomic energies.

For HDNNPs, the atomic force components acting on atom
A with respect to the Cartesian coordinate Ry with o = {x, y, z}
are given by

E
o - 9E

Natom 8El

i=1 8Rj(\

) @)
Natom Vsym OE, 8Gi/
Lo 220Gy ORY,

i=

where the chain rule has been applied to take into account the
intermediate mapping of the atomic Cartesian coordinates onto
the Ny, ACSFs {G;}. The first derivative is given by the architec-
ture of the atomic neural networks, while the second term is
provided by the definitions of the ACSFs.** Further details about
HDNNPs and their properties can be found in several recent
reviews.”**®” An interesting consequence of the analytic forces in
eqn (2) is that the force components of atom A depend on the
energies of all atoms inside its cutoff sphere, which in turn also
depend on all neighboring atomic positions in their respective
cutoff spheres. This results in a functional coupling of the
position of atom A even with rather distant atoms B, as illustrated
in Fig. 1a for IRMOF-1, extending the structural dependence of the

b)

a)

Fig. 1
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FX up to twice the cutoff radius R. of the ACSFs defining the
atomic environments and thus the E;. Consequently, for obtaining
numerically bulk-like HDNNP forces the atomic environments
need to be equivalent to the bulk environments up to 2-R.. This
value corresponds to the converged fragment radius Rip,g provid-
ing bulk-like DFT force that can be rigorously determined using
the methodology described in ref. 48. This relation finally allows
to determine the minimum value of R. by DFT calculations for the
specific system of interest.

However, since according to eqn (2) the individual force
components consist of the derivatives of the atomic energies, in
principle it should be possible to derive the forces in extended
bulk-like environments from atomic energies defined by all neigh-
bors within R, only. Therefore, training HDNNPs with information
restricted to the close atomic environments within R. only should
be sufficient to describe the PES even in the condensed phase.

The procedure to derive such a HDNNP for a given system
consists of several steps. First, DFT calculations can be used to
determine Rfgyy, ie. the physical interaction range, providing
converged bulk-like forces. Then, it is possible to derive the

- 1
minimal cutoff R, = ERgfa“gV

the atomic energies. DFT calculations for fragments of this
reduced size can then be used to train a HDNNP. This HDNNP,
which consequently has not been trained to fragments large
enough to contain bulk-like forces, should then be transferable
to extended systems. In the present work we will demonstrate
this workflow for the case of metal-organic frameworks.

required in the HDNNP to define

3 Computational details

All DFT calculations reported in this work have been carried
out using the FHI-aims code®® (release version 171221). FHI-
aims is an all-electron code employing a numerical atomic

c)

(a) lllustration of the environment-dependence of the atomic forces in bulk IRMOF-1. While the atomic energy Ex of carbon atom A only depends

on the positions of the neighboring atoms within a sphere of radius R. (red circle), the force vector F5 depends on all atomic positions in a sphere of
radius of up to 2R. (dotted circle). The reason for this extended range is the definition of the force as the negative derivative of the total energy, which
according to egn (2) consists of the derivatives of all atomic energies depending on the coordinates of atom A. Since in turn these atomic energies involve
atoms as far as 2R from atom A (as shown by the yellow sphere of atom B). Atoms beyond twice the cutoff radius do not interact with atom A. Panel (b)
shows a large molecular fragment (fragment radius Rfag’ = 8.718 A) providing converged DFT forces at the central atom A, closely approximating the
forces in the periodic bulk system. The fragment has been constructed by removing all atoms beyond the dashed black lines shown in (a) following the

procedure described in ref. 48. Panel (c) shows a much smaller fragment with about half fragment radius (Rgag = 4.359 A) containing only atoms within Re.
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orbital basis, which is determined in free atom calculations.
The RPBE functional® has been employed to describe electro-
nic exchange and correlation in combination with dispersion
corrections according to the method of Tkatchenko and
Scheffler.”® Furthermore, relativistic corrections were included
by the atomic zero-order regular approximation (ZORA).*®

The DFT parameters were chosen to converge total energy
differences to about 1 meV per atom. For all elements the basis set
includes the FHI-aims recommended functions of the minimal
basis, the functions of tier 1 and the first basis function of tier 2.
The confinement potential has a width of 2 A at the onset radius
of 4 A. The number of radial shells of the numerical integration
grid corresponds to the element-specific tight settings. The angu-
lar integration grids and the atom-centered charge density expan-
sion are equivalent to the light settings. For the calculations of the
large periodic IRMOF bulk structure the I" point has been used,
while molecular fragments have been computed without periodic
boundary conditions. The applied convergence criteria for
the self-consistent calculations are 10, 1072 eV, 10~ ° eV and
1072 eV A~ for the electron density, the energy eigenvalue sum,
the total energy, and the atomic forces, respectively. For struc-
tural optimizations, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm’" has been employed using an atomic force
convergence criterion of 10 > eV A™".

The HDNNPs have been trained using the program RuNNer
employing two hidden layers containing 15 neurons each in the
atomic neural networks. The hyperbolic tangent and a linear
function have been used as activation functions for the hidden
layers and the output node, respectively. The parameters of the
ACSFs are given in the ESL{ A global extended Kalman filter has

11,66

IRMOF-1

IRMOF-10
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been applied for optimizing the weight parameters’ using refer-
ence energies and forces. The reference data set has been split in
90% training data set and 10% test data set.

The IRMOF structures investigated in this work (Fig. 2)
contain the same zinc-oxo-cluster SBU and share the overall
topology. The only difference is in the linker molecule, which is
benzene-1,4-dicarboxylate (BDC) in IRMOF-1, biphenyl-4,4’
-dicarboxylate (BPDC) in IRMOF-10, and terphenyl-4,4"-
dicarboxylate (TPDC) in IRMOF-16. Initially, the atomic posi-
tions and lattice parameters of the IRMOF bulk structures have
been optimized by DFT. The geometrically nonequivalent
atoms of IRMOF-1, -10, and -16 are shown in the lower part
of Fig. 2, and the initial training structures consist of molecular
fragments cut from the bulk centered at these atoms. These
fragments have then been saturated by hydrogen following the
procedure described in ref. 48. Two different fragment
radii have been employed as shown in Fig. 1b and c. The larger
radius Rfay = 8.718 A corresponds to the converged radius
providing bulk-like DFT forces with a maximum error of
0.125 eV A as determined in ref. 48. and is equivalent to 2-R.,
while the smaller radius Rgag = 4.359 A corresponds to R.. The
value of Rfy = 8.718 A has been identified in previous work
using an analysis of the DFT Hessian, which provides the
second derivatives of the energies or the first derivatives of
the energy gradients (negative forces) with respect to the atomic
coordinates. This allows to decompose the Hessian into 3 x 3
submatrices containing the information about the dependence
of a force vector on the Cartesian coordinate vector of any other
atom. The norm of this Hessian submatrix then allows to
quantify this interaction by a single number that can be related

IRMOF-16

A

AN Al

C1 C2 C4 C5

1 N
02 H1C3 H2

C1 C2 C4 C5 C7

D y
02 H1C3 H2 H3 C6

Fig. 2 Bulk unit cells of IRMOF-1, -10, and -16 and definitions of the in-equivalent atomic sites in the lower panels. Atoms have been colored by element

(zinc: violet, oxygen: red, carbon: grey, hydrogen: white).

12982 | Phys. Chem. Chem. Phys., 2023, 25,12979-12989

This journal is © the Owner Societies 2023


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cp05976b

Open Access Article. Published on 29 March 2023. Downloaded on 7/17/2025 9:34:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

PCCP

to the error in the force when truncating the system beyond the
respective neighboring atom. For a series of model systems we
found that this relation is rather universal and can be applied
to determine the interaction range for a desired level of force
convergence.

The required training structures have been generated initi-
ally by molecular dynamics simulations of the fragments in
vacuum followed by active learning of bulk systems using the
RuNNerActiveLearn tool.”>”* The second HDNNP required for
the active learning has been constructed using 2 hidden layers
containing 20 neurons per layer. Molecular dynamics simula-
tions in the NPT ensemble (1 bar, 300-1000 K, 1 fs time step,
200 ps simulation time) employing preliminary potentials have
been carried out with the n2p2 program package’ and the
LAMMPS code’® to generate IRMOF bulk geometries, which have
then been searched by active learning for structures with forces
deviating substantially between different preliminary HDNNPs.
The applied selection criterion has been a force deviation of
1 eV A™%. Fragments have then been cut from the bulk centered
at these atoms and included in the reference set. Moreover,
atomic environments giving rise to extrapolations beyond the
covered ACSF values have also been included in the data set.

4 Results and discussion
4.1 General strategy

For the construction of the HDNNPs we have combined data for
all three MOF systems. Three different setups have been used to
investigate the role of the fragment radius of the DFT reference
structures and of the symmetry function cutoff radius describ-
ing the atomic environments in the HDNNP:

e HDNNP1 is based on DFT calculations of small molecular
fragments with Rgag = 4.359 A only, which are too small to
provide converged bulk-like forces. Due to this small size only a
small cutoff R. = 4.359 A can be applied in the construction of
the HDNNP, since otherwise the atomic environments of the
central atoms would be incomplete inside their cutoff spheres.
This incompleteness would result in extrapolations when applying
the potential to large periodic systems. The molecular fragments
centered at the nonequivalent atomic sites are shown in Fig. 3.
The upper part of Table 1 contains a compilation of the number of
atoms and the number of central atoms in complete environ-
ments within a sphere of radius R. = 4.359 A for all fragments.
HDNNP1 is constructed to answer the question if small fragments

11-As I11-Bs 116-Cs

3T

Fig. 3 Small molecular fragments for IRMOF-1, -10, and -16 covering all
nonequivalent atomic sites. The molecular fragment structures are repre-
sented by sticks, while the central atoms of the fragments embedded in a
complete environment up to a radius of Reag = 4.359 A are shown as balls.
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Table 1 Numbers of atoms Nzom, NUMbers of central atoms Neentral With
complete environments up to the cutoff radius R. = 4.359 A, and their ratio
Neentral/Natom for the small fragments (Rpaq = 4.359 A, Fig. 3) and the

conv

extended large fragments (Rf2g" = 8.718 A, Fig. 5)

Small fragments

11-As 11-Bs 110-Bs 116-Cs
Natom 59 42 49 32
Neentral 17 11 17 16
Neentral 0.29 0.26 0.35 0.5
Na!om
Extended large fragments
I1-A/ I1-B’ 110-A’ 110-B’ 116-B’ 116-C’
Natom 107 146 149 156 209 38
Neentral 65 62 101 68 161 24
central 0.61 0.42 0.68 0.44 0.77 0.63
Nalom

are indeed sufficient to construct a potential for the condensed
system.

e HDNNP2 is trained to large molecular fragments con-
structed using the radius Rfay = 8.718 A, which provide
structurally converged DFT forces numerically corresponding
to bulk forces in the condensed phase. The original fragments
are shown in Fig. 4. Since several of these fragments exhibit a
rather small number of bulk-like atoms with converged DFT
forces, the fragments have been slightly extended as displayed
in Fig. 5 to achieve a more favorable bulk atom-to-surface atom
ratio (¢f. Table 2). These extended fragments have finally been
used for training HDNNP2. Still, the same small symmetry
function cutoff R. = 4.359 A as in case of HDNNP1 is applied,
which results in a rather large number of central atoms with
complete environments within R, as listed in the lower part of
Table 1. HDNNP2 will allow to answer the question if a small
cutoff radius is sufficient in combination with fully converged
reference DFT forces to describe the bulk.

¢ Finally, HDNNP3 is trained using the same extended, size-
converged molecular fragments (Rfay = 8.718 A) as HDNNP2,
but applying an increased symmetry function cutoff 2R, = 8.718 A
such that all information required to compute numerically bulk-
like forces using HDNNP3 is available. The number of central
atoms embedded in complete environments with this extended
cutoff is given in the bottom part of Table 2. HDNNP3 will serve as
reference potential trained to converged DFT data making use of
all structural information relevant for the DFT forces.

Our goal is now to investigate by comparing these HDNNPs,
if the information content of the small molecular fragments,
which fully define the atomic energies but not the forces in a
bulk-like environment, is sufficient to accurately represent the
PES of large condensed systems. In this case HDNNP1,
HDNNP2 and HDNNP3 should be of similar quality, and the
use of small fragments with a radius rigorously derived from
DFT calculations*® would allow to drastically reduce the com-
putational effort for the generation of the reference data. Our
focus is on IRMOF-1, but also data of IRMOF-10 and IRMOF-16
is included to generalize our findings, although we do not aim

Phys. Chem. Chem. Phys., 2023, 25,12979-12989 | 12983
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116-B 116-C

Fig. 4 Large, size-converged molecular fragments of IRMOF-1, -10, and -16. The molecular fragment structures are represented by sticks, while the
central atoms of the fragments embedded in a bulk-like environment up to a radius of Rf3g" = 8.718 A are shown as balls.

I1-A' 11-B' 110-A

110-B' 116-B'

Fig. 5 Extended large molecular fragments of IRMOF-1, -10, and -16 with an increased number of atoms in bulk-like environments. The molecular

conv

fragment structures are represented by sticks, while the central atoms of the fragments embedded in a bulk-like environment up to a radius of Rfag’ =
8.718 A are shown as balls. The fragments I1-B’ and 116-C’ are identical to their counterparts shown in Fig. 4.

Table 2 Numbers of atoms N,iom, NUMbers of central atoms Neentrar With
complete environments up to a cutoff radius R = 8.718 A, and their ratio
Neentrat/ Natom fOr the large fragments of radius Rfeg” = 8.718 A shown in
Fig. 4 and the extended fragments given in Fig. 5

Original large fragments

I1-A I1-B 110-A 110-B 116-B I16-C
Natom 98 146 119 116 99 38
Neentral 8 12 17 11 14 4
Neentral 0.08 0.08 0.14 0.09 0.14 0.11
Namm

Extended large fragments

11-A’ 11-B 110-A’ 110-B’ 116-B’ 116-C’
Natom 107 146 149 156 209 38
Neentral 17 12 35 22 101 4

central 0.16 0.08 0.23 0.14 0.48 0.11

Natom

to construct comprehensive PESs for atomistic simulations of
these systems here.

4.2 High-dimensional neural network potentials

4.2.1 Construction of HDNNP1. For the small fragments,
the cutoff radius of the ACSFs has been set to R, = 4.359 A. For
each element combination initially five radial ACSFs have been
defined, while for the angular ACSFs eight different sets of
parameters have been chosen per element combination. To
reduce the total number of ACSFs we analyze the DFT Hessian

12984 | Phys. Chem. Chem. Phys., 2023, 25,12979-12989

following our procedure described in ref. 48. This analysis
provides individual maximum interaction distances for each
atomic site for a desired level of force accuracy. We find only
negligible interactions between zinc and distant hydrogen
atoms, as well as only small hydrogen-hydrogen and hydro-
gen-oxygen interactions (see Section S-I, ESIT), resulting in a set
of 20 radial ACSFs for the carbon atoms, 18 radial ACSFs for the
oxygen atoms, 15 radial ACSFs for the zinc atoms, and 11 ACSFs
for the hydrogen atoms. The details of these radial ACSFs are
given in Table SII in the ESI.f The parameters of the angular
ACSFs are given in Table SIII (ESIT).

An initial training data set (“HDNNP1-initial”) has been
generated from ab initio MD simulations at 600 K and a time-
step of 1.5 fs for the four small fragment structures in vacuum
(¢f Fig. 3), resulting in 3498 structures (I1-As: 682, I11-Bs: 908,
110-Bs: 908, I16-Cs: 1000) with their associated energies and
forces. A first preliminary HDNNP represents this initial data
with a good accuracy, exhibiting low root mean squared errors
(RMSE) for the energies of the training (E™" = 0.0012 eV
atom ') and test data set (E*** = 0.0013 eV atom '), as well
as acceptable errors for the force components of the training
(F™" = 0.1436 eV A™") and test data set (F*°** = 0.1453 eV A ),
respectively (upper part of Table 3). Also the individual RMSEs
of the fragments I1-As, I1-Bs and I10-Bs are small, while the
errors for the 116-Cs fragment are only moderately larger.

Based on this initial HDNNP1, the training data set has been
iteratively expanded by active learning using MD simulations of
bulk systems and cutting fragments around atomic sites with

This journal is © the Owner Societies 2023
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forces different substantially between different HDNNPs. The
final data set consists of 13220 structures (11 875 training and
1345 test structures) and has been used for the training of the
final HDNNP1, which shows slightly increased RMSEs for the
training and test set energies due to the larger diversity of
structures to be covered, while the representation of the forces
is improved (lower part of Table 3) indicating a smooth PES
with essentially no overfitting, which is also supported by the
nearly identical energy RMSEs of the training and the test set.

4.2.2 Construction of HDNNP2 and HDNNP3. In order to
generate training data for the larger fragments with radius
Ri' = 8.718 A (¢f. Fig. 5), instead of running initial ab initio MD
of the fragments in vacuum we can now employ the initial
HDNNP1 to perform efficient dynamics of the bulk directly to
determine the large fragments by active learning. The selected
training structures have then been recomputed by DFT and
used for the iterative refinement of HDNNP3. The same data set
finally obtained has then been used also for the construction of
HDNNP2.

The final DFT data set consists of 13503 fragment struc-
tures, which have been split into a training and a test set
containing 11875 and 1345 fragments, respectively. For
HDNNP2, the same small cutoff and ACSFs as for HDNNP1
(Tables SII and SIII, ESIT) have been employed, and conse-
quently for the training of HDNNP2 a strongly increased
number of central atoms with completely filled cutoff spheres
is available in the reference set. Moreover, the large fragment
radius now also allows to make use of a larger symmetry
function cutoff of 2R. = 8.718 A, which we have employed in
HDNNP3. This cutoff includes all neighboring atoms, which are
relevant to obtain converged bulk-like forces in DFT calcula-
tions. To ensure a radial resolution of the ACSFs comparable
to HDNNP1 and HDNNP2, 17 radial ACSF have been defined
for each element combination, while again zinc-hydrogen

Etram Etest

Table 3 RMSEs of the potential energy and in eV per atom as
well as of the force components F™" and F*' in eV A~* for HDNNP1
constructed for the small fragments (cf. Fig. 3) employing a small cutoff
R = 4.359 A. The values in the lines “initial” and “final” correspond to the
RMSE values of the complete data sets used in the training of initial
preliminary HDNNP1 as well as the final potential. In addition, the RMSEs
of the individual fragments are also given

RMSE RMSE
HDNNP1 Training points Test points ET™n  gfest — prain - prest
Initial 3166 332 0.0012 0.0013 0.1436 0.1453
11-As 609 73 0.0009 0.0008 0.1450 0.1450
I1-Bs 819 92 0.0009 0.0008 0.1483 0.1472
110-Bs 816 92 0.0008 0.0008 0.1224 0.1229
116-Cs 895 105 0.0018 0.0016 0.1626 0.1638

RMSE RMSE
HDNNP1 Training points Test points ET™n  gtest — prain - plest
Final 11875 1345 0.0014 0.0015 0.1267 0.1295
11-As 3921 449 0.0013 0.0013 0.1291 0.1315
I1-Bs 2566 294 0.0011 0.0010 0.1167 0.1181
110-Bs 3876 438 0.0013 0.0012 0.1212 0.1173
116-Cs 1513 163 0.0022 0.0021 0.1571 0.1572
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interactions are omitted, and a reduced number of radial
functions is used to describe hydrogen-hydrogen and hydro-
gen-oxygen pairs resulting in 68 radial ACSFs for carbon atoms,
54 for oxygen atoms, 51 for zinc atoms, and 23 for hydrogen
atoms. The angular ACSFs for all element combinations are
constructed in analogy to the ACSFs of HDNNP1 and HDNNP2.
The parameters of all symmetry functions of HDNNP3 are given
in Tables SIV, SV and SVI in the ESL.}

The RMSEs of the energies and force components of all large
fragments are compiled in Table 4 for HDNNP2 and HDNNP3.
Several comments should be made at this point. First, for both,
HDNNP2 and HDNNP3, the accuracy of the fragment energies
in the test set is essentially the same as for HDNNP1
(HDNNP2: 0.0011 eV per atom, HDNNP3: 0.0012 eV per atom),
which shows that that the representation of the PESs of the
small and the large fragments is of similar quality. Moreover,
increasing the cutoff radius, ie., the amount of information
about the atomic environments, in HDNNP3 compared to
HDNNP2 does not have a notable influence on the description
of the PES. The increased structural complexity of the extended
atomic environments to be learned by HDNNP3 seems to be
well represented by the increased set of ACSFs. Still, the
effective number of bulk-like atomic environments inside R.
in HDNNP2 (1051611 atomic environments) is substantially
larger than in case of HDNNP3 (400 885 atomic environments),
since in case of the large cutoff less atoms are surrounded by
completely filled cutoff spheres.

Both, the RMSEs of the energies and forces of HDNNP2 and
HDNNP3, are very similar for the data in the training and in the
test set indicating the absence of overfitting. The accuracy of
the forces is slightly reduced compared to HDNNP1, but it
should be noted that the reference forces are different in the
larger fragments underlying HDNNP2 and HDNNP3, and also
the number of topologically different fragments is increased as

Table 4 RMSEs of the potential energies ™" and £°*' in eV per atom as
well as of the force components F*" and F**tin eV At in the training and
test data sets consisting of the large fragments of HDNNP2 and HDNNP3.
Moreover, the RMSE values of the individual fragments (cf. Fig. 5) are
compiled

RMSE RMSE
Training points Test points E™"  pfest ~ pfain - prest

HDNNP2

All 12127 1376 0.0012 0.0011 0.1448 0.1441
11-A’ 1156 123 0.0008 0.0007 0.1174 0.1150
11-B’ 2946 325 0.0008 0.0008 0.1225 0.1204
110-A’ 1120 120 0.0009 0.0011 0.1422 0.1425
110-B’ 3876 438 0.0009 0.0009 0.1408 0.1436
116-B’ 1749 189 0.0010 0.0010 0.1720 0.1733
116-C’ 1320 141 0.0025 0.0021 0.2047 0.1946
HDNNP3

All 12147 1356 0.0011 0.0012 0.1654 0.1636
I1-A’ 1139 140 0.0007 0.0007 0.1323 0.1314
11-B’ 2937 334 0.0007 0.0008 0.1351 0.1337
110-A’ 1103 137 0.0010 0.0010 0.1666 0.1585
110-B’ 3859 455 0.0009 0.0009 0.1606 0.1614
116-B’ 1738 200 0.0010 0.0010 0.2014 0.1974
116-C’ 1303 158 0.0023 0.0024 0.2268 0.2233
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there are six fragment types for the large radius and only four
different types of small fragments. Similar to HDNNP1, the
largest force errors in HDNNP2 and HDNNP3 are found for the
atomic sites of the central phenyl rings in the TPDC linker of
IRMOF-16 indicating the relatively long-ranged interactions
mediated by the aromatic system.

4.3 Validation using molecular fragments

So far, the accuracy of the energies and forces has been
investigated for the training and test data sets. Since some of
these structures have been generated by MD simulations of the
fragments in vacuum, conformational changes in these simula-
tions might result in geometrical differences from the atomic
environments in the bulk MOFs. In order to assess the perfor-
mance of HDNNP1, HDNNP2, and HDNNP3 for fragments in
exclusively bulk-like geometries, HDNNP1 has been employed
to run MD simulations of the bulk crystals of IRMOF-1, -10, and
-16. Then, for each IRMOF, 251 bulk structures have been
created at 200 K and additionally at 500 K for IRMOF-1, at
450 K for IRMOF-10 and at 350 K for IRMOF-16, respectively. In
this way, structures exhibiting atomic forces up to ~8 eV A™*
have been obtained for each system, which provide an unbiased
assessment of the accuracy of the HDNNPs, since these struc-
tures have not been involved in the active learning process.
From these bulk structures, in total 3514 small validation
fragments with Reag = 4.359 A have been cut (I1-As: 1506, I1-Bs:
502, 110-B2: 1004, and I16-Cs: 502), saturated by hydrogen and
recomputed by DFT in the bulk-like geometries. The resulting
energies and forces have been compared to the predictions of
HDNNP1 and HDNNP2, and the corresponding RMSEs are
compiled in Table 5. Note that HDNNP3 is not applicable to
these small fragments since the atomic spheres resulting from
the large symmetry function cutoff would not be completely
filled by the small fragments resulting in extrapolation of the
potential. Overall, we find energy and force RMSEs of the

Table 5 RMSEs of HDNNP1, HDNNP2, and HDNNP3 for the energies (in
eV per atom) and the force components (in eV A™Y) in the validation data
cut from MD simulations of bulk IRMOF-1, -10, and -16. Due to the large
ACSF cutoff radius R. = 8.718 A of HDNNP3 no RMSE values are given for
the small fragments (I1-As, 11-Bs, 110-Bs and 116-Cs) for HDNNP?3, as these
structures do not fill the entire cutoff spheres giving rise to extrapolations

HDNNP1 HDNNP2 HDNNP3

C 1. C . RMSE RMSE RMSE
Validation Validation
fragment points E F E F E F
Small fragments
I1-As 1506 0.0007 0.0780 0.0009 0.0957 — —
I11-Bs 502 0.0009 0.0795 0.0013 0.1023 — —
110-Bs 1004 0.0008 0.0842 0.0011 0.1114 — —
116-Cs 502 0.0015 0.1146 0.0016 0.1368 — —
Large fragments
11-A’ 502 0.0011 0.1092 0.0008 0.1128 0.0008 0.1254
11-B’ 502 0.0007 0.0908 0.0007 0.1037 0.0006 0.1130
110-A’ 502 0.0010 0.1138 0.0007 0.1337 0.0008 0.1539
110-B’ 502 0.0008 0.0915 0.0007 0.1061 0.0007 0.1184
116-B’ 502 0.0011 0.1147 0.0006 0.1344 0.0007 0.1517
116-C’ 502 0.0020 0.1281 0.0013 0.1309 0.0014 0.1454
12986 | Phys. Chem. Chem. Phys., 2023, 25,12979-12989
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validation structures, which are even slightly smaller than those
of the small training and testing fragments in Table 3. This
might be caused by the more homogeneous structures in bulk-
constrained geometries, which do not contain strongly dis-
torted fragments that might occur in vacuum MD simulations
and are more difficult to learn.

For computing the RMSEs of the energies of the small
validation fragments by HDNNP2, fragment-specific correc-
tions had to be applied to remove possible constant total energy
offsets as discussed in ref. 74. These offsets are a consequence
of different stoichiometries of the investigated small fragments
and of the large fragments underlying the construction of
HDNNP2. The reason is the flexibility of the internal energy
distribution in MLPs and offsets of varying size are commonly
found in potentials trained to systems with a limited variation
in the chemical compositions when applied to very different
systems. The offset corrections have been determined by cut-
ting the respective small fragment from the DFT optimized
bulk structure and by subsequently computing the energy
difference between DFT and HDNNP1 of this fragment. The
same offset correction has then be used for all fragments of a
given type. Forces, i.e. energy gradients, are not affected by such
total energy offsets.

Similar results have also been found for the six large valida-
tion fragments (Table 5) in that all three HDNNPs provide
energy and force RMSEs very similar to the training and testing
data in Table 4. For HDNNP1, which has not been trained to
large fragments, a similar offset correction has been applied.

In summary, all HDNNPs irrespective of the trained frag-
ment radius and the cutoff of the symmetry functions are able
to describe the energies and forces of molecular fragments in
bulk geometries with high accuracy. Further, it is particularly
interesting that even HDNNP1, which employs only a small
cutoff and has not been trained using forces numerically
corresponding to the forces in the condensed phase, provides
an excellent description of the atomic forces in bulk-like
environments. Of all three HDNNPs, HDNNP1 yields the lowest
force RMSE for the validation set, which might be a conse-
quence of the simplicity of the reduced configuration space in
the small cutoff spheres facilitating the learning process.

4.4 Transferability to the bulk

Finally, we test the accuracy of all three HDNNPs for periodic
bulk MOF structures. Before investigating the HDNNPs, we first
compute the deviations in the DFT forces between the periodic
bulk systems and the central atoms in the small and large
molecular fragments. This analysis is of interest as it allows to
quantify how close in value the DFT forces in the large
fragments are with respect to the DFT forces in the bulk and
to what extent the DFT forces in the small fragments, which
have been used in the training of HDNNP1, differ from the
periodic systems.

Fig. 6 shows the DFT force errors when comparing the
central atoms of the large fragments with the bulk. Only a
few fragments of types I1-A’ and I10-A’ exhibit deviations
exceeding the selected force tolerance of 0.125 eV A", up to

This journal is © the Owner Societies 2023
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Fig. 6 Norm of the DFT force errors ||AF4|| (in eV A™Y), ie., the absolute
difference between the force vectors in the periodic bulk structure and in

the large fragments (Rg2g" = 8.718 A, cf. Fig. 5), for all central atoms in a

bulk-like environment. The target accuracy for converged forces [|AF™®||
= 0.125 eV At (cf. ref. 48) is highlighted by the black line showing that the
vast majority of atomic forces in the fragments is very similar to the
periodic bulk system.

about 0.160 eV A~ at most, while the vast majority of force
errors is substantially smaller underlining the good representa-
tion of bulk-like forces in the large fragments and confirming
the converged fragment radius determined in ref. 48 The
varying effective interaction ranges for the atomic sites in the
different fragments are clearly visible in form of different
plateaus. For instance, the atomic linker positions C2 (except
in IRMOF-1), C3, C4, C5, C6, C7, H1, H2 and H3, which are
mainly represented by the fragments 110-B’, 116-B’ and 116-C’,
are only weakly effected by the atomic environment outside the
fragment radius (Table SI, ESIt) resulting in small atomic force
errors.

The situation is different for the small fragments compiled
in Fig. 7, which show clearly larger force errors. In particular a
large number of 11-As fragments show prominent deviations up

. w [%] v wn
0.35 A o < Q Q S
, — — o ©
o - =] =
0.30 4
0.25 -
= 0.20
o
=
0.15 4
0.10 4
0.05 -
0.00 -

central atom A

Fig. 7 Norm of the DFT force errors ||AFa|| (in eV A™Y), i.e., the absolute
difference between the force vectors in the periodic bulk structure and in
the small fragments (Rfrag = 4.359 A, cf. Fig. 3), for all central atoms with a
complete environment within R.. The criterion for converged forces
[JAF™|| < 0.125 eV A (conf. ref. 48) is highlighted by the black line
showing that a significant part of the atomic forces in the fragments is
substantially different from the periodic bulk system.
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Table 6 Energy and force RMSEs (in eV per atom and eV A~ respectively)

of the predictions of HDNNP1, HDNNP2, and HDNNP3 for the bulk
validation data sets with respect to DFT

HDNNP1 HDNNP2 HDNNP3
RMSE RMSE RMSE
Data
Validation set points E F E F E F

IRMOF-1 bulk 502 0.0009 0.1041 0.0008 0.1100 0.0014 0.1301

IRMOF-10 502 0.0014 0.1174 0.0010 0.1312 0.0009 0.1513
bulk
IRMOF-16 502 0.0015 0.1149 0.0008 0.1319 0.0016 0.1501
bulk

to about 0.35 eV A~'. Therefore, it is evident that the small
fragments do not provide bulk-like forces in DFT calculations
and thus these forces could not be learned directly by HDNNP1,
but can only be predicted based on the atomic energies.

Now we compute the energy and force RMSEs with respect to
DFT of the 502 bulk validation structures for each MOF system
using HDNNP1, HDNNP2, and HDNNP3. Again, a correction for
the energy offset has been determined using the energy of the
DFT optimized IRMOF bulk structures and the respective
HDNNP predictions. The results are compiled in Table 6. All
HDNNPs predict the bulk energies and atomic forces with
excellent accuracy, with the largest force RMSE of 0.15 eV A™*
found for IRMOF-16 predicted by HDNNP3, which is the most
challenging case due to the large atomic environments to be
sampled and the smallest number of training fragments for
this MOF in the reference data set. Overall, the energy and force
errors are at least comparable and in most cases even clearly
below the errors of the respective fragments in the training and
test sets in Tables 3 and 4. Most importantly, HDNNP1 provides
the smallest force errors of all HDNNPs demonstrating that
indeed the PESs of the periodic bulk MOFs can be learned from
small, underconverged molecular fragments without making
use of numerically bulk-like forces.

4.5 Conclusion

In this work, we have shown for the example of high-
dimensional neural network potentials that it is possible to
train transferable second-generation MLPs yielding accurate
forces for extended systems using only molecular fragments,
which are too small to provide numerically converged bulk-like
forces. The reason for this transferability from underconverged
fragments to large systems is the analytic relation between the
forces and the atomic energies, which have different formal
interaction ranges with respect to the atomic environments.
Since the forces can be derived as a sum of partial derivatives of
the atomic energies, it is possible to predict accurate forces
using the rather short-ranged environment-dependence of the
atomic energies within the applied symmetry function cutoff
only. A condition for this transferability of the forces is a rigorous
determination of the system-specific physical interaction range,
which can be determined from first principles for the case of the
forces using the Hessian-based method reported in ref. 48. Then,
half of this interaction range defines the minimum symmetry
function cutoff of the atomic environments in the small
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fragments, which corresponds to the fragment radius that has to
be applied in the construction of the reference data set.

The absolute values of the fragment and cutoff radii depend
on the system under investigation, and in the present work we
have chosen the metal-organic-frameworks IRMOF-1, -10, and
-16 for illustrating the feasibility of our approach. Moreover, the
fragment radius depends on the desired level of accuracy of the
forces. Following earlier work,*® for simplicity we have adopted
a force convergence level of about 0.125 eV A~" here. Applying a
more rigorous convergence criterion is possible, which then
results in larger reference systems but does not affect the
general finding of our work in that smaller fragments of half
the size are still sufficient for obtaining transferable potentials.
Using such fragments of decreased size enables to drastically
reduce the costs of the electronic structure reference calcula-
tions employed in the construction of MLPs.

Beyond these general considerations, we have shown that
for the explicit example of a series of MOFs the generation of
potentials with transferable forces is indeed possible. For this
purpose, three different HDNNPs have been developed employing
(1) small fragments and a small cutoff, (2) large fragments and a
small cutoff, and (3) large fragments and a large cutoff. For all
these potentials a similar accuracy for the energies and forces in
independent validation sets consisting of large fragments and
periodic bulk structures have been found, confirming the possi-
bility to construct transferable potentials for real systems. Inter-
estingly, overall the HDNNPs constructed using a small symmetry
function cutoff even show a generally better accuracy, which
might be a consequence of the increased structural complexity
to be described in case of large cutoff spheres and the corres-
ponding larger amount of information that has to be provided in
the reference data set. Our results are general and applicable to all
types of second-generation MLPs.
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