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Towards structural reconstruction from X-ray
spectra†

Anton Vladyka, *a Christoph J. Sahle b and Johannes Niskanen a

We report a statistical analysis of Ge K-edge X-ray emission spectra simulated for amorphous GeO2 at

elevated pressures. We find that employing machine learning approaches we can reliably predict the

statistical moments of the Kb00 and Kb2 peaks in the spectrum from the Coulomb matrix descriptor with

a training set of B 104 samples. Spectral-significance-guided dimensionality reduction techniques allow

us to construct an approximate inverse mapping from spectral moments to pseudo-Coulomb matrices.

When applying this to the moments of the ensemble-mean spectrum, we obtain distances from the

active site that match closely to those of the ensemble mean and which moreover reproduce the

pressure-induced coordination change in amorphous GeO2. With this approach utilizing emulator-based

component analysis, we are able to filter out the artificially complete structural information available

from simulated snapshots, and quantitatively analyse structural changes that can be inferred from the

changes in the Kb emission spectrum alone.

1 Introduction

Core-level spectroscopy provides information of structure of
matter at the atomic level, and the constituent methods are
applied from standard material characterization to concep-
tually new experiments at large-scale facilities such as free-
electron lasers. Although reference data helps, interpretation of
core-level spectra is not always straightforward, especially in the
case of soft condensed or amorphous matter where ensemble
statistics plays a drastic role.1–7 Studies of this statistical
nature, and the implied repeated function evaluations, could
benefit from machine learning (ML), application of which to
core-level spectra has been studied rather intensively lately.8–15

In general, when working with atomic resolution studies have
raised the need to engineer features for both structure16–20 and
spectra.13,19

The pressure dependent evolution of the germanium coor-
dination by oxygen in glassy GeO2 has been a long standing
subject of study.21–24 Besides applications of amorphous GeO2

in technical glasses, the increased sensitivity of a-GeO2 to
pressure compared to amorphous SiO2 motivates the study of
structural changes similar to those expected to occur in
the pressurized analogue glass a-SiO2 but at greatly reduced

absolute pressures. Detailed knowledge of the compaction
mechanisms in these simple glasses will have direct conse-
quences for our understanding of geological, geochemical, and
geophysical processes involving more complex silicate glasses
and melts.

X-ray emission spectra (XES) of GeO2 is an inviting case for
development of spectroscopic analysis for soft and amorphous
condensed matter. First, large spectroscopic changes with
changing local structure are known to exist.24 Second, simula-
tions are known to reproduce the observed ensemble-mean
effects well.25 Third, XES is local-occupied-orbital derived and a
few orbital-bonding neighbor atoms are expected to be decisive
for the spectrum outcome. This would result in a minimal set of
structural parameters needed to predict XES. Last, owing to the
chemical simplicity and simple bonding topology due to non-
molecular structure, this system has promise to be reproduced
by ML with the limited number of data points that the con-
densed phase allows. Namely, for such systems the electronic
simulation needs to account for multi-electron effects in
numerous interacting atoms - typically on the level of density
functional theory. As a consequence, the number of individual
structural data points for spectroscopy can be expected to
be B 104 in an extensive contemporary simulation.

In this work, we focus on Ge Kb XES calculations of
amorphous GeO2 at elevated pressures. Our previous work on
the water molecule indicated that predicting spectral features is
easier than predicting structural features.14 In the condensed
phase, where the structural features to be predicted are more
numerous, the task is arguably even more complicated. As a
solution to this dilemma, we build a procedure on spectrum
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prediction for structures, dimensionality reduction and itera-
tive optimization algorithms. This approach is possible because
the evaluation of a ML model requires much less computa-
tional resources than the corresponding quantum mechanical
calculation does. We predict statistical moments of XES lines
from a Coulomb matrix16 that describes the local atomic
structure around the site of characteristic X-ray emission. Next,
we study obtainable structural information for the occurring
spectral changes in the pressure progression of the XES by
emulator-based component analysis (ECA).15 Last, we investi-
gate an approximate solution to the spectrum-to-structure
inverse problem by first transforming it into an optimization
task in the dimension-reduced ECA space, followed by expan-
sion to the full multi-dimensional Coulomb matrix. A dedicated
evaluation data set allows for assessment of performance of the
approach in each of the aforementioned tasks.

2 Methods

After ionisation from a Ge 1s orbital, the electronic system is
left in a highly excited state, which decays by either Auger decay
or by emission of a photon, accompanied by a transition of an
electron from a higher-energy orbital. For germanium, transi-
tions from 3p to 1s orbital give rise to so called Kb emission
spectra. Since the Ge 3p orbitals constitute valence orbitals, Ge
Kb XES is highly sensitive to chemical bonding of the active
Ge site.

We study data of amorphous GeO2 from statistical spectral
simulations over a range of 11 pressure values from 0 GPa to
120 GPa. These XES spectra, simulated using the OCEAN
code26,27 (version 2.5.2), are based on real-space configurations
from ab initio molecular dynamics simulations reported earlier
by Du et al.28 We used the Quantum ESPRESSO program
package (version 5.0)29,30 for sampling the ground state wave
functions and electron densities at the gamma point with a
plane wave cutoff of 100 Ry (see Ref. 25 for more details).
Transition matrix elements are then calculated using the
Haydock recursion method31 as implemented in the OCEAN
code using a Lorentzian width of 1.0 eV for the continued
fraction. At each pressure point, Ge Kb XES spectra of 18
structurally uncorrelated AIMD simulation snapshots contain-
ing 72 GeO2 formula units were calculated for each Ge atom.
For 5 pressure points only 17 out of 18 snapshots yielded
spectra in a finite time frame due to convergence issues,
resulting in 13 896 XES spectra. The spectra of individual Ge
sites were aligned and normalized for each pressure to yield a
constant Kb5 line peak position and intensity in its ensemble
average spectrum.

Even though extensive from a statistical simulation view-
point, the available dataset is still rather limited for sophisti-
cated ML algorithms. In this case, using a descriptive numerics
allows for condensing structural and spectral information to a
few parameters, resulting in an improvement of ML performance.
We apply descriptors to both the spectrum and the atomic
structure of the system (see below).

2.1 Spectral-line descriptor

The XES spectrum is given as a function presenting intensity
against photon energy in eV (I = I(E)). For a distinguishable
peak in the spectrum, we use raw moments defined as follows:

M1 ¼
Ð
IðEÞEdEÐ
IðEÞdE ; (1)

Mn ¼
Ð
IðEÞðE �M1ÞndEÐ

IðEÞdE ; for n ¼ 2; 3; 4: (2)

Corresponding spectral descriptors used in the model are
spectrum peak position mean m = M1 (eV), standard deviation
s ¼

ffiffiffiffiffiffiffi
M2

p
(eV), skewness sk =M3/s3 and excess kurtosis ex =

M4/s4 � 3. These descriptors are referred to as ‘‘spectral
moments’’, and are presented as a vector m throughout
the manuscript. In this work, 4 moments were calculated for
both Kb00 and Kb2 peaks, which resulted in 8 descriptors per
spectrum.

2.2 Structural descriptors

As the structural descriptor we use the Coulomb matrix,16 the
elements of which are defined as

Cij ¼
0:5Z2:4

i if i ¼ j;

ZiZj

Rij
if iaj;

8><
>: (3)

where Zi is the atomic number of the i-th atom, and Rij is the
distance between the i-th and j-th atoms. In this work, we
arrange the atoms by the distance from the active site in
ascending order, and grouped Ge atoms first, followed by the
O atoms. Since in this approach the order of atoms is the same
for a given number of Ge and O atoms, the diagonal elements
of the Coulomb matrix are identical for each structure.
Therefore, owing to symmetry of the matrix, only the upper
triangle of the Coulomb matrix is used (see Fig. 1) as vector p as
an input data. From an optimization search, we deduced the
optimal number of the atoms used for the Coulomb matrix
calculation to be the 10 closest Ge and 7 closest O atoms, which

Fig. 1 The principle of spectral moment prediction for a Ge Kb XES peak
for amorphous GeO2. A Coulomb matrix is generated from a structure, and
its upper triangle is fed as input for MLP, which is trained to predict spectral
moments of the line of interest.
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leads to 153-dimensional feature vectors (see details in ESI,†
Fig. S1).

The definition of the Coulomb matrix implies that it can be
inverted to a distance matrix containing interatomic distances by

Rij ¼
ZiZj

Cij
with iaj; (4)

where Rij is the distance between atoms i and j. This conversion is
possible as the Zi of the chemical elements in each matrix element
Cij is known. Furthermore, apart from the handedness of the
coordinate system, the atomic geometry can be reconstructed
from the distance matrix R, and therefore, from the Coulomb
matrix C (see ESI† for algorithm).

To check the performance of the Coulomb matrix descriptor
against a many-body-tensor-representation32 spirited descrip-
tor, we used snapshot-wise evaluated radial distribution func-
tions (RDF) from the active site. Although similar predictive
power was obtained via the RDF, its performance in the later
steps of the analysis (spectral coverage of decomposition) was
inferior to that of the Coulomb matrix.

2.3 Algorithms

The structural and spectral data are presented as feature-wise
standardized matrices P̃ and M̃, respectively (individual data
points p̃ and m̃ occupy rows in these matrices). The analysis
algorithms aim at discovering the correlations between the
two data sets, for which we first applied the emulator-based
component analysis (ECA) method as described in ref. 15. This
algorithm relies on a machine-learning based emulator for
spectral features at a vector of structural descriptors, that may
be previously unseen to it. The algorithm uses projection of
structural data on a subspace so that projected data maximize
the generalized covered spectral variance (R2 score) when a
prediction is made using the emulator. Here, ECA is applied to
standardized Coulomb matrix parameters p̃ and the corres-
ponding standardized spectral moments M̃. The decomposition
algorithm results in orthonormal standardized-structural-
parameter-space vectors ṽ1,ṽ2,. . . so that spectral moments
m̃emu = Semu(p̃(k)) for projections

~pðkÞ ¼
Xk
i¼1

~vi ð~vi � ~pÞ|fflfflffl{zfflfflffl}
¼:ti

; (5)

predicted using trained neural network Semu, cover most of
spectral variance of the respective set of points p̃ at the given
rank k. Scores ti are coordinates of the approximate point p̃(k) in
the k-dimensional subspace.

The ECA method requires an emulator capable of predicting
spectral moments for new structural data points. As an emu-
lator, a trained multilayer perceptron (MLP) with 2 hidden
layers and 64 neurons in each layer was used. We dedicated
80% of data for training, and 20% for evaluation of
the prediction. Overall, all configurations of MLPs with 2–3
hidden layers and 64 or 128 neurons were evaluated on the
training dataset (B11 000 spectra) using mean squared error as
a training metric.

For comparison, we used partial least squares fitting based
on singular value decomposition (PLSSVD)33 as applied to the
X-ray spectroscopic problem in ref. 15. The PLSSVD algorithm
relies on projections of spectral and structural feature vectors
on latent variables between which a linear fit is made. The
method results in an approximation of the data up to rank k

~M � ~P
Xk
i¼1

UðiÞciV
ðiÞT; (6)

where U(i) is the i-th (column) basis vector of the structural
descriptors and V(i) is the i-th (column) basis vector of the
spectral descriptor space. The coefficient ci is obtained by a fit
to the scores (P̃U(i),M̃V(i)). The orthonormal basis vectors are
obtained from a singular value decomposition of the covariance
matrix of the data cov(P̃,M̃) =P̃TM̃; ordering along descending
magnitude of the singular values li is applied. For analysis
using the PLSSVD algorithm, the same evaluation data set as
for ECA was used.

3 Results

The ensemble-averaged Ge Kb XES of GeO2 shows a transition
induced by pressure, as seen in Fig. 2. Even though a smooth
progression of the spectrum as a function of pressure is
observed, the underlying statistical variation in the condensed-
phase XES is large.3,5,25 This is manifested by gray shading in
Fig. 2 that shows the minimum–maximum variation of intensity
in the data set. We proceed with our analysis for the two lines with
clear pressure dependence: the Kb00 and the Kb2.

Fig. 3a–c present structures and spectra of three individual
snapshots at pressures of 0, 30, and 120 GPa, respectively.
Fig. 3d–k in turn show the prediction and training performance
of the chosen MLP for these descriptors. In the figure, perfect
match between known and predicted data lie on the diagonal
dashed line. Furthermore, the positions of the three illustrated
spectra of Fig. 3a–c, as well as the mean moment values for

Fig. 2 Raw XES spectra. Colored curves depict the mean spectra for each
pressure, black curve shows the global mean spectrum. Dark and light
shaded areas indicate �s from the mean spectrum and max/min range,
respectively. Vertical dashed lines mark the intervals of the two studied
peaks, Kb00 and Kb2.
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each pressure point against moment values of the known mean
spectrum are indicated by crosses.

The spectra and their statistical moments show a clear trend
as a function of pressure. Moreover, the overall quality of the
prediction performance yields Pearson correlation coefficients
above 0.94. The pressure-induced progression in the spectra is
transferred into spectral moments, for which the ML task proved
to be easier than predicting spectra as vectors of channel-wise-
listed intensity values (see Fig. S2, ESI†). Analogously with simple
intensity prediction, spectral moments of an ensemble-averaged
spectrum can be estimated by the mean of predicted moments to
a good accuracy (see crosses in Fig. 3d–k). However, this is an
approximate finding instead of a mathematical equality.

For the evaluation data set, some 77% of generalized cov-
ered spectral variance (R2 score) can be explained by only a
single ECA component ṽ1 (83% with two components {ṽ1,ṽ2}).
These components represent individually standardized ele-
ments of a Coulomb matrix unrolled to 153-dimensional vec-
tors (for {ṽ1,ṽ2} rolled back to the standardized Coulomb matrix
differences, see Fig. S3, ESI†) For PLSSVD, corresponding
spectral variance coverages were 73% and 77% for one and

two components, respectively. The added contribution of the
second component indicates a rapid drop of improvement in
higher ranks.

Before entering the inverse problem, it is instructive to
analyse the decomposition of first rank i.e. along the path
p̃(1) = t1ṽ1. Since the emulator provides the nonlinear response
to the input vector, ECA is able to mimic the behavior of the
moments more closely than PLSSVD, which is linear by defini-
tion (for the spectral moments along t1 see Fig. S4, ESI†). For
this reason, dimensionality reduction by ECA will be better
adjusted to the spectral response; even with inaccuracies in
prediction by the emulator, higher covered spectral variance is
still obtained than from PLSSVD. For a majority of the atoms,
both PLS and ECA trajectories follow the pressure-wise ensemble
mean interatomic distances R0i from the active Ge site along the
path (Fig. S5, ESI†). However, for atoms Ge3, Ge4, O3, O4 and O7

the ECA trajectories show a different behavior, which indicates
that the role of these atoms in deciding the spectral outcome is
low compared to other atoms.

The interpretation of spectra would ideally lead to structures
constructed from the spectroscopic information. However, already

Fig. 3 (a–c) Sample XES spectra at different pressures. For each spectrum the inset shows the corresponding 3D structure, where the active Ge site is
yellow, other Ge sites are pink and O sites are red. The symbols are used to indicate the data point in the panels below. (d–k) Results of the MLP training:
predicted spectral moments of the evaluation data set for the Kb00 (d–g) and Kb2 peak (h–k). The color of each point indicates the corresponding pressure
for the structure, and colored crosses in every panel depict the mean values for each pressure subset (known: moments of known mean spectrum,
predicted: mean of predicted moments). Positions of the sample spectra from panels (a–c) are marked with black markers. Number in every panel shows
the Pearson correlation coefficient r between known and predicted data.
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with a few number of degrees of freedom (here 153) this problem
is tedious. In line with findings in ref. 14, training an emulator to
directly predict the Coulomb matrix from the spectral moments
was not successful with the model selection grid, data and
descriptors used here (the mean Pearson correlation coefficient
of 0.33 was obtained). Therefore we looked at approaches
that would rely on spectrum prediction by an emulator, that has
in general better performance. However, an emulator-based
approach of iteratively fitting the parameters p̃ to yield the 8
desired spectral moments proved also to be an unstable high-
dimensional problem, that we were unable to solve. Instead,
fitting a few ECA component scores for matching spectral
moments is a much simpler task that could be solved.

We searched for the coordinates t in the standardized
dimension-reduced space by minimization of the least-squares
error

JðtÞ ¼ ~Semu

Xk
i¼1

ti~vi

 !
� ~m

�����
�����
2

(7)

for a data point ~pðkÞ ¼
Pk
i¼1

ti~vi with given standardized spectral

moments m̃. Here, S̃emu(p̃) is the standardized output of the
moment emulator. We limit the study to two components t1

and t2.
Fig. 4 shows coordinates t = (t1,t2) for each point from the

evaluation data set from fitting of eqn (7). Deduced coordinates
for the set of moments of each mean-ensemble spectrum (blue
line) are in a good agreement with projections of known mean
points (black line) for a given pressure ensemble on the same
subspace. It appears though, that this reconstruction of the
scores ti misses the second component, possibly due to the
fact that the component is already insignificant and the emu-
lator is known to be imperfect. Knowledge of scores ti allows
construction of an approximate Coulomb matrix p̃ as a linear

combination up to rank k. The absolute p is obtained after
inverse standardization, as are C and R.

Even though the mean interatomic distances are not neces-
sarily obtainable from mean Coulomb matrix elements, and
even though this matrix is not necessarily obtainable from
the spectral moments of the ensemble-mean spectrum (which
closely match with the ensemble mean of the spectral moments),
we find both to be the case. Fig. 5 depicts the reconstructed
atomic distances from the spectral moments with one-
dimensional and two-dimensional ECA space, indicating rapid
convergence. Moreover, the reconstruction is at least qualitatively
correct as seen from comparison with the known values for the
evaluation data set, the most notable discrepancy being the 5th
closest O atom at low pressures. This behavior can be understood
in terms of reduced sensitivity of the spectra to these atomic
distances; the first ECA component does not capture the drastic
relative change in the parameter value (Fig. S5, ESI†), and even
the second component does not fix this shortcoming. Likewise,
for the overall match on the data set, the vector ṽ1 results
in underestimation of O6 distance at large t1 (high pressures),
which leads to the line crossings in Fig. 5a. However, the
pressure-induced coordination change from 4-coordinated Ge
to 6-coordinated Ge21 is clearly discernible around the pressure
of 10 GPa by the increase of the Ge–O separation for the first four
oxygen atoms and the concomitant decrease of Ge–O distance for
the fifth and sixth nearest oxygen neighbor. We note that while
the first row of the constructed Coulomb matrix represent
ensemble-averaged distances, the structure constructed from
the mean Coulomb matrix is nonsensical.

4 Discussion

With the limited data available it is essential to have structural
and spectral descriptors that are linkable by rather simple
MLPs. Consequently, the used descriptors dictate the analysis

Fig. 4 Reconstructed t1, t2 coordinates for evaluation data. Individual data points are shown as colored markers, where color indicates the
corresponding spectral moment. Black markers represent the projected mean coordinates for each pressure, and blue markers depict the reconstructed
projections from the moments of ensemble-mean spectra.
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to follow. While the relative positions of atoms for a Coulomb
matrix can be evaluated (see ESI†), there is dropout of more
remote, potentially significant atoms. Furthermore, the obser-
vation that spectral moments are more suitable than tabulated
intensities complicates spectral analysis as they may not be
applicable in all cases, e.g. when clearly distinct and identifi-
able peaks are not formed for all data points.

Instead of more direct approaches, approximate solution of
the inverse problem by reconstruction of the first ECA compo-
nents proved to be a feasible task to solve by optimization. It is
natural to select these parameters so that they explain most
spectral variance. As a result converging expansion of less
and less relevant degrees of freedom are added and finally,
irrelevant are identified and filtered out. Imperfection of
emulator and incompleteness of the basis are likely reasons
for the crossings of lines in Fig. 5a.

Structural analysis of the AIMD trajectory results in a
complete analysis of structural changes across the data set.
However, this information does not indicate what can be
concluded based on the XES alone, as the sensitivity of core-
level spectra to structural parameters may vary greatly.15,34

A parameter without an effect on a spectrum certainly cannot
be expected to be reconstructed from it, and thus spectral
insensitivity to a structural degree of freedom presents a danger
of misinterpretation. The design of ECA means that a spectrally
irrelevant structural degree of freedom obtains zero projection
in the basis vector and is, in principle, omitted in subsequent
analyses. Therefore, effects shown by ECA, and analysis based
on it, can be considered to be inferred from a spectrum and its
change. This reasoning is supported by Fig. 5, where the
magnitudes of change from 0 GPa to 120 GPa in the known
distance curves mostly exceed those of the predicted ones.
For the end-to-end difference oxygens O3 and O4 with negligible
(o 0.05 Å) total change exceed that of the known data.

Depending on details of an analysis other - rather minor -
violations to the tendency can be found in the data.

For the 17 atoms and 11 pressures, the mean absolute
deviation from the known ensemble-mean distances for
2-component decomposition was 0.091 Å for ECA and notably
0.051 Å for PLSSVD with which we also carried out the analysis
(see Fig. S7–S9, ESI†). We interpret the better performance of
PLSSVD to be due to more emphasis placed on structural
variance in the method, whereas ECA focuses strictly on spectral
significance. Thus PLS is allowed to know more from the
simulated structural parameter space than the spectra alone
would allow. However, the method undoubtedly benefited of
the choice of descriptors by ML studies, making the data
suitable for a linear model. In addition, imperfection of ECA
results come from the imperfection of the emulator.

Since the studied XES involves transitions of electrons from
the occupied valence to localized deep core levels, the asso-
ciated transition matrix elements become naturally limited to
the immediate neighbourhood of the active atomic site. The
occupied valence orbitals, in turn, can be expected to partici-
pate in chemical bonding, and thus to render these transitions
sensitive to e.g. coordination number of the active site. It is an
interesting yet open question to which degree the findings
presented here generalize in other systems, and specifically to
those posed by XES of high-pressure science. When assuming
no exceptionality for GeO2 studied here, these spectra are
potent of delivering far more structural information than it
may at first seem.

5 Conclusions

For Ge Kb XES of GeO2 at elevated pressures, Coulomb matrix
and statistical moments of spectral peaks prove to be descrip-
tors feasible to be linked by machine-learning applications with
B 104 simulated data points. We find the statistical moments
of ensemble mean spectra to match closely with the ensemble
mean of individually predicted moments. Dimensionality
reduction by the ECA decomposition technique provides a
means for a stable approximate solution of a spectroscopic
inverse problem. We find the first row of a Coulomb matrix
reconstructed from the spectral moments of the ensemble-
mean spectrum to represent that obtained from ensemble-
mean interatomic distances from the active site. Therefore,
without a strict mathematical necessity, we find that these
distances can be reconstructed to a good accuracy from the
ensemble mean spectral statistical moments.

Decomposition of structural sensitivity of spectra reduces
the number of free parameters to be solved in the inversion
problem, to only a few that have been chosen a priori for their
spectral significance. The basis vectors of such decomposition
span a subspace of degrees of freedom with most spectral
response, and therefore reconstruction via this subspace will
show structural effects with true inference from the change of
spectra. This prevents spectrally irrelevant structural informa-
tion, available in a simulation work, from affecting the analysis.

Fig. 5 Mean-structural-parameter-based distances from the central Ge
atom. (a) Reconstructed distances for the t1 component. The inset shows
distances for the 4 closest O atoms (dashed area). Dashed lines depict
corresponding distances for sum of two projections (t1,t2). Arrow indicates
the sequence of the atomic indices as mentioned in the text. (b) Known
mean distances calculated from the atomic coordinates of the evaluation
data set.
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Partial least squares fitting such as PLSSVD offers a usable and
much lighter alternative where machine learning is not feasi-
ble, but the method is not as strict in spectrum-only inference.
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M. Kavčič, M. Žitnik, K. Bučar, M. Petric, M. Hakala and
S. Huotari, Sci. Rep., 2016, 6, 21012.

4 J. Niskanen, C. J. Sahle, K. Gilmore, F. Uhlig, J. Smiatek and
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