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Transport coefficients from Einstein–Helfand
relations using standard and energy-conserving
dissipative particle dynamics methods

D. C. Malaspina, a M. Lı́sal, bc J. P. Larentzos,d J. K. Brennan,d A. D. Mackie a

and J. Bonet Avalos *a

In this article we demonstrate that contrary to general belief, the standard Einstein–Helfand (EH) formulas are

valid for the evaluation of transport coefficients of systems containing dissipative and random forces provided

that for these mesoscopic systems: (i) the corresponding conservation laws are satisfied, and (ii) the transition

probabilities satisfy detailed balance. Dissipative particle dynamics (DPD) and energy-conserving DPD

methods (DPDE), for instance, are archetypical of such mesoscopic approaches satisfying these properties.

To verify this statement, we have derived a mesoscopic heat flux form for the DPDE method, suitable for the

calculation of the thermal conductivity from an EH expression. We have compared EH measurements against

non-equilibrium simulation values for different scenarios, including many-body potentials, and have found

excellent agreement in all cases. The expressions are valid notably for systems with density- and

temperature-dependent potentials, such as the recently developed generalised DPDE method (GenDPDE)

[Avalos et al., Phys. Chem. Chem. Phys., 2019, 21, 24891]. We thus demonstrate that traditional EH formulas

in equilibrium simulations can be widely used to obtain transport coefficients, provided that the appropriate

expression for the associated flux is used.

1 Introduction

Mesoscopic simulation is a constantly growing field for study-
ing the behaviour of complex systems over time and length
scales beyond the capabilities of atomistic and molecular
simulations. The development of mesoscopic models inher-
ently introduces a certain degree of coarse-graining, as a
reduced number of degrees of freedom (DoF) are represented,
which are derived from the total number of DoF present in the
underlying physical system. Coarse-graining inevitably gives
rise to dissipative and random interactions, due to the interplay
between the resolved variables and the unresolved (smoothed-
out) physical DoF. Among many others, Dissipative Particle
Dynamics (DPD),1,2 and the variant to include heat transport
through the energy-conserving DPD (DPDE) method,3–5 have
become widespread tools for exploring the equilibrium and

dynamic properties of fluids. Extensions have been proposed,
which are targeted towards the description of more complex
systems, together with increasing the transferability of the
model parameters. These include density-dependent potentials
in both DPD6,7 (MB-DPD) and DPDE (MB-DPDE),8–10 along with
the introduction of density- and temperature-dependent poten-
tials (GenDPDE),11,12 and even chemical reactions13 or inter-
particle mass transfer.14,15 Many other applications can be
found in the literature.16–18 However, as it stands, GenDPDE
is the most complete method, as the others can be derived from
the latter as limiting cases.

Macroscopic transport coefficients (e.g., thermal conductivity,
diffusion or shear viscosity) can be obtained from molecular
simulations by applying equilibrium and non-equilibrium
methods. Although non-equilibrium methods19 are relatively
straightforward to implement, they often introduce complexity
in the simulation setup, and are specific for the given property
to be measured.20,21 In contrast, equilibrium methods allow all
desired transport coefficients to be calculated in one single
simulation with no special modification of the simulation
setup. Particularly in classical molecular dynamics methods, the
calculation of transport coefficients for systems in equilibrium
can be performed by applying Green–Kubo (GK) relations,22,23 or
alternatively Einstein–Helfand (EH) relations.24,25 Although GK
and EH formulas are directly related,26 in practice EH relations
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are often preferred over GK formulas since they allow a larger
degree of accuracy for the same computational cost. However, it
has been argued that both GK and EH formulas present con-
ceptual challenges when the dynamics of the system involves
stochastic and dissipative forces, as occurs in DPD and its
variants. The key argument is that such mesoscopic models do
not follow Hamiltonian dynamics and their trajectories are not
time-reversible. Addressing such systems, Ernst and Brito27

proposed modifications of the GK formulas for the calculation
of transport coefficients in systems with random forces and (or)
lack of time-reversal invariance. Jung and Schmid28 validated the
expressions of Ernst and Brito through the evaluation of both the
shear and bulk viscosities for isothermal DPD. More recently,
Panoukidou et al.29 proposed an EH relation for the shear
viscosity of a DPD polymer solution derived from the expressions
of Ernst and Brito. Although some authors have applied the
traditional GK and EH expressions to DPD with success,30 the
apparent community opinion is that GK and EH methods are
problematic when applied to DPD systems, and require specifi-
cally derived formulas, including complex formal expressions for
the observables, which are cumbersome.

However, the validity of GK and EH relations only relies on
the long wave-length and long-time behaviour of hydrodynamic
modes, together with the Detailed Balance (DB) condition.
These conditions stem from (i) the existence of mesoscopic
conserved properties, inherited from the microscopic conserva-
tion laws, and (ii) the time-reversal invariance of the underlying
microscopic system.31 Therefore, the time-reversibility of the
mesoscopic equations of motion is not a necessary condition
for the GK and EH formulas to be valid. Hence, if it is possible
to deduce the GK and EH expressions by considering only the
conservation laws and their associated macroscopic hydro-
dynamic behaviour,26 then they would be valid independent
of the presence of dissipative and random forces (more generally
dissipative and random fluxes) in the mesoscopic dynamics,
provided that the mesoscopic properties are conserved and the
random terms satisfy the appropriate Fluctuation-Dissipation
Theorem (FDT). However, the important point is that the tradi-
tional expressions for quantities such as the microscopic heat flux
or the stress tensor, need to be re-derived to properly include the
effect of these dissipative and random contributions, which are
not present in Hamiltonian systems.

In this work we focus on the application of the EH formulas
to transport coefficients in GenDPDE. The conclusions drawn
are therefore also valid for DPD, MB-DPD, DPDE, and MB-
DPDE. We prove that the formal expressions traditionally
used26 are applicable to this type of dissipative systems, provided
that their dynamics satisfy the aforementioned conditions (i) and
(ii), contrary to the present community consensus. However, the
major novel contribution in this article is the mesoscopic expres-
sion for the heat flux to be used in the corresponding EH formula
for thermal conductivity in DPDE, GenDPDE, and all possible
related methods. The validity of our analysis is strongly supported
by the comparison of our EH data against a collection of non-
equilibrium results with different conditions, involving a wide
range of densities, different values of the mesoscopic heat

conduction parameter, and the presence of potential inter-
actions between the particles.

For completeness, we have also compared our EH values for
shear viscosity with non-equilibrium data existing in the
literature,28 used as a benchmark, and also with other equili-
brium approaches. We have found that, while our EH calcula-
tions are in excellent agreement, the EH formula obtained in
ref. 29 produce results that systematically underestimate these
benchmark non-equilibrium simulations. Although the latter
are obtained from the GK expressions given in ref. 27,
some correlations are missing in the derivation due to the
non-symmetrical nature of the referred GK expression, which
cannot straightforwardly be cast under an EH form. We have
also carried out the evaluation of the shear viscosity from this
GK expression of ref. 27. As found also in ref. 28, the values
obtained are in better agreement with the reference ones, as
well as with our EH calculations. The agreement is more
striking as our approach and the one in ref. 27 stem from
completely different starting points. Indeed, the detailed simu-
lations for rather broad conditions conducted in this work
show that despite their formal differences they produce only
tiny numerical variations of the order of the statistical error
in the measure, which suggests that they are equivalent.
We provide in the manuscript the comparison between the
different data, but leave the deeper questions for a separate
analysis.

The article is organised as follows. In Section 2, we introduce
the derivation of the EH formulas based on property conserva-
tion and DB for a generic property. The theoretical analysis also
includes the description of the GenDPDE algorithm used in
the derivation of its corresponding mesoscopic heat flux expres-
sion. In Section 3, we provide the simulation details for
the equilibrium and the boundary-driven non-equilibrium
simulations performed for validation. In Section 4, the results
for the different situations studied are presented and dis-
cussed. Finally, Section 5 is devoted to a review of the main
conclusions of this work.

2 Theoretical analysis
2.1 Einstein–Helfand formulas

The derivation of the expression for the diffusion coefficient of
suspended particles by Einstein24 was the first example of a
relation that provided a macroscopic coefficient in terms of the
microscopic physical details. The method was based on the
calculation of the mean square displacement of a suspended
particle. This approach was later generalised by Helfand25 to
other transport coefficients. Notably, Green–Kubo relations22,23

have the same objective, but use a different correlation function
to establish the link between the macroscopic and the micro-
scopic levels. In this section, we present the derivation of the
EH relations for systems that satisfy conditions (i) and (ii).
A complete description and derivation of general EH relations
can be found in the basic monographs on liquid theory, notably
in the book by Hansen and McDonald.26 Most of the
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considerations discussed here regarding the hydrodynamic
limit and the calculation of transport coefficients in systems
with periodic boundary conditions are also addressed in detail
elsewhere.32

We begin the derivation of the general transport relations by
considering a conserved property ai transported by the meso-
scopic particles, i.e., GenDPDE type-particles in our case study.
This property may be exchanged between mesoscopic particles
due to the particle–particle interactions, thus its value is
susceptible to changes with time. This quantity may simply
be the numerical value of 1, associated with the invariability of
the number of particles in the simulation, particle momenta pi,
or particle energy ei. Given a conserved property, the associated
field A(r,t) can be defined as

Aðr; tÞ ¼
XN
i¼1

aiðtÞd r� riðtÞð Þ (1)

and the corresponding Fourier modes as

AkðtÞ ¼
XN
i¼1

aiðtÞe�ik�riðtÞ (2)

Given that ai is a conserved quantity implies that
Ð
drAðr; tÞ ¼PN

i¼1
aiðtÞ ¼ Ak!0ðtÞ ¼ constant.

Conservation imposes that field A satisfies a balance equation,
whose general form is given by

@A

@t
¼ �r � JA (3)

where JA is the macroscopic flux of A. In the domain of validity of
linear response,33,34 which allows us to disregard advective terms,
the fluxes are related to gradients of A, i.e.,

JA = �arA + JA,R (4)

where a is the associated transport coefficient and JA,R is a
random flux due to the thermal fluctuations. Here, since our
intent is to be merely illustrative, we have only considered a
single field with no coupling with other conserved fields, as
occurs, for example, in the Ludwig–Soret effect.34 For the
general case, the reader is referred to the classical monographs
on liquid theory and simulation.26

Thus, in the hydrodynamic limit, the relaxation of the
fluctuations of Ak in a system that is in overall thermal
equilibrium satisfy

@Ak

@t
¼ �ik � JAk (5)

with

�ik�JA
k - �ak2Ak � ik�JA,R

k (6)

However, from eqn (2), we can also write the balance equation
in terms of the microscopic variables

@Ak

@t
¼
XN
i¼1

_aiðtÞ � ik � uiaið Þe�ik�riðtÞ (7)

where ui�
:ri, which is assumed to exist in the sense fixed by the

dynamic integration algorithm, as we illustrate in Section 2.1.2.
If ai can be exchanged between particles, the equation of
motion for ai needs to be provided, which also determines :

ai.
It is important to realise that, despite its apparent form, the
right-hand-side of eqn (7) can be written as �ik�JA

k in the
hydrodynamic limit, which is a necessary consequence of
the conserved nature of property ai. Hence, the right-hand-side
of eqn (7) has to be formally identical to the macroscopic
counterpart, eqn (6).

Before proceeding further with the derivation, the properties
of the random flux need to be specified. On the one hand, an
equilibrium probability distribution for the variable Ak, namely
Peq(Ak), can be derived from the underlying microscopic Hamil-
tonian system, according to the coarse-grain procedure. On the
other hand, the dynamics of the transitions between states in
equilibrium must satisfy DB, with a transition probability
w(Ak(t) - Ak(t + dt)) consistent with eqn (5), together with
eqn (6). The general expression for DB takes the form

Peq Akð Þw Ak ! A
0
k

� �
¼ Peq Âk

� �
w Âk ! Â

0

k

� �
(8)

where A
0
k ¼ Akðtþ dtÞ and Ak = Ak(t) for the direct trajectory

while Â
0

k ¼ Âkðtþ dtÞ ¼ sAk and Âk ¼ ÂkðtÞ ¼ sA
0
k for the

reverse trajectory. The sign s depends on whether the variable
A is even (s = +1) or odd (s = �1) under time reversibility. The
transition probabilities can be derived from the stochastic
dynamics of the field, eqn (5) and (6), i.e.,

w Ak ! A
0
k

� �
dt ¼ d A

0
k � Ak � �ak2Ak � ik � JA;Rk

� �
dt

h iD E
R

(9)

where the subscript R indicates that the average is taken over
the probability distribution of JA,R

k . In Appendix A we show that
from eqn (8) and (9), it follows that the random flux has zero
average

h JA,R
k iR = 0 (10)

together with the corresponding FDT

kk: J
A;R
k ðtÞJ

�A;R
k t 0ð Þ

D E
R
¼ 2ak2 AkðtÞA�kðtÞ

� �
d t� t 0ð Þ (11)

Here (*) represents the complex conjugate of the variable,
which is necessary to maintain the translational invariance
of the correlation function. Note that AkðtÞA�kðtÞ

� �
¼

Akð0ÞA�kð0Þ
� �

� AkA
�
k

� �
eq

is the equilibrium equal-time correla-

tion, which is independent of time, due to the time-
translational invariance of the equilibrium properties.

2.1.1 Derivation of Einstein–Helfand relations. Next, we
derive the general EH relations. At the macroscopic level,
eqn (5) and (6) can be integrated yielding

AkðtÞ ¼ Akð0Þe�ak
2t � ik �

ðt
0

dt 0e�ak
2 t�t 0ð ÞJA;Rk t 0ð Þ (12)
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Hence, the following correlation function can be expanded as,

AkðtÞ � Akð0Þj j2
D E

¼ Akð0Þ e�ak
2t � 1

� �
� ik �

ðt
0

dt 0e�ak
2 t�t 0ð ÞJA;Rk t 0ð Þ

� 	


� A�kð0Þ e�ak
2t � 1

� �
þ ik �

ðt
0

dt 0e�ak
2 t�t 0ð ÞJ�A;Rk t 0ð Þ

� 	�
(13)

This expression produces three distinct terms: (i) the product
of the two terms related to the initial condition Ak(0), (ii) the
product of the terms related to the random flux JA,R

k , and (iii) the
crossed terms involving the product of both. In the hydro-

dynamic limit, k - 0 prior to t - N, e�ak2t � 1 C �ak2t - 0.
Hence, the first of the three terms is of the order (�ak2t)2. The
third term vanishes due to eqn (10) and the fact that the initial
condition is not correlated to the random fluxes. Thus, we are
left only with the second term, which gives

AkðtÞ � Akð0Þj j2
D E

’
ðt
0

dt 0
ðt
0

dt 00e�ak
2 t�t 0ð Þe�ak

2 t�t 00ð Þkk: J
A;R
k t 0ð ÞJ�A;Rk t 00ð Þ

D E
(14)

Therefore using eqn (11)

AkðtÞ � Akð0Þj j2
D E

’2ak2 AkA
�
k

� �
eq

ðt
0

dt 0e�2ak
2 t�t 0ð Þ

’ AkA
�
k

� �
eq

1� e�2ak
2t

� �
! 2ak2t AkA

�
k

� �
eq

(15)

where the limit in the last line corresponds to the hydro-
dynamic limit k2t - 0. Thus, the last contribution, being
linear in k2t, is the dominant contribution in the hydro-
dynamic limit. Therefore, the EH relation takes the form,

a ¼ lim
t!1

lim
k!0

1

2k2t

1

AkA
�
k

� �
eq

AkðtÞ � Akð0Þj j2
D E

(16)

However, due to the fact that the real simulations are
performed in systems of finite size, the true minimum value
of kmin B p/L, where L is the lateral size of the box. As a
consequence, the direct use of the correlation h|Ak(t) � Ak(0)|2i
p k2 in a system with periodic boundary conditions, is not
convenient due to such an explicit k-dependence.32,35,36

Instead, we can replace the displacement Ak(t) � Ak(0) by the
time-integral of the right-hand-side of eqn (5). Thus, the explicit
k-dependency is cancelled, leaving only the direction of the
wavevector, and therefore

a ¼ lim
t!1

lim
k!0

1

2t

1

AkA
�
k

� �
eq

k̂k̂:

ðt
0

dt 0JAk ðtÞ
�  ðt

0

dt 0J�Ak ðtÞ
� 
 �

(17)

where k̂ = k/k. The microscopic expression of JA
k is to be used in

eqn (17). Such an expression should be derived from the fact

that ik � JAk ¼
PN
i¼1

_aiðtÞ � ik � uiaið Þe�ik�riðtÞ, in agreement with

eqn (7). Under this form, one can consistently take the formal
limit k - 0. The k̂ vectors are arbitrary as they merely indicate
the wavevector direction of the relaxing plane wave whose
relaxation is formally being studied.

2.1.2 Self-diffusion as a simple example. The self-diffusion
of a single colloidal particle in a fluid is an example of a system
with no Hamiltonian dynamics, where neither momentum nor
energy are conserved. In this simple example, only the particle
number is conserved, which from a macroscopic viewpoint,
produces a diffusion-type hydrodynamic equation. Thus, this
simple example can be considered as a direct application of the
EH formula to non-Hamiltonian systems.

Let us assume that the dynamics of a colloidal particle is
described by a classical Langevin equation of the form

uðtþ dtÞ ¼ uðtÞ � g
m
uðtÞdtþ duR (18)

r(t + dt) = r(t) + u(t)dt (19)

where g is the friction coefficient, m is the particle mass, and
duR is a Wiener process that can be approximated for discrete
times as Gxdt1/2. The amplitude G is given by the FDT as

G2 = 2kBTg (20)

where kB is the Boltzmann constant and T is the system
temperature. In turn, x(t) = (Ox(t),Oy(t),Oz(t)) is a collection of
normalised Gaussian random numbers satisfying hOai = 0 and

OaðtÞObðt 0Þ
� �

¼ dabdtt 0 (21)

where Greek letters represent Cartesian coordinates, d is the
Kronecker delta, and dtt0 is 1, if |t � t0| o dt and 0 otherwise.
In this example, the only conserved field is the particle density,
as the number of colloidal particles remains constant during
the simulation. We thus identify the observable Ak as the
particle density d(r � r(t)), which in Fourier space becomes

Ak(t) = e�ik�r(t) (22)

which implies that both a = 1 and the equilibrium average
hA0A0ieq = 1. Next, we determine the particle flux JA

k from eqn (7),
yielding

JA
k = ue�ik�r(t) (23)

Arbitrarily selecting k̂ = (1, 0, 0) in eqn (17), we obtain the well-
known result for the diffusion coefficient

D ¼ lim
t!1

1

2t

ðt
0

dt 0uxðtÞ
�  ðt

0

dt 0uxðtÞ
� 
 �

¼ lim
t!1

1

2t
xðtÞ � xð0Þð Þ2

D E (24)

Solving eqn (18) with respect to time, inserting the result into
eqn (24) and integrating, we arrive at the well-known Stokes–
Einstein result, D = kBT/g. Furthermore, note that eqn (18)
indicates that u is discontinuous in the limit dt - 0. In turn,

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
7/

20
25

 1
1:

05
:0

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cp04838h


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 12025–12040 |  12029

r(t) is a continuous function in the same limit, as follows from
eqn (19), although its derivative is not well defined. Therefore,
the algorithm, eqn (18) and (19), formulated in a discrete form,
defines the meaning of the time-derivative operators used in
the derivation, i.e.,

uðtÞ ¼ rðtþ dtÞ � rðtÞ
dt

� _rðtÞ (25)

with no ambiguity.

2.2 GenDPDE: generalised energy-conserving dissipative
particle dynamics

To obtain explicit expressions for the EH relations for DPD-
related methods, we introduce the GenDPDE algorithm
because the final expressions for the stress tensor and the heat
flux density depend on the form and the parameters appearing
in the model dynamics. In this section, we briefly present the
GenDPDE method, because it is the most general method and
embraces all other DPD-type models as special cases.

GenDPDE is the generalisation of DPDE3,4,37,38 to many-
body density- and temperature-dependent interparticle poten-
tials. GenDPDE is a particular type of DPD method that
includes an internal energy term u as an additional property
carried by the particle, along with the particle number
(i.e., mass) and momentum. In this way, in addition to the
conservation of particle number and total momentum, the
system also conserves energy despite the presence of dissipative
and random forces. In GenDPDE, associated with the particle
internal energy u is the particle temperature, which is respon-
sible for the heat exchanged with neighbouring particles due to
their temperature differences. Therefore, with the GenDPDE
framework, heat transport can be simulated. Fig. 1 depicts the
transport processes present in GenDPDE.

In the GenDPDE algorithm, the mechanical DoF evolve
according to the same dynamics as in standard DPD and
DPDE,3,37,38 i.e.,

r
0
i ¼ ri þ

pi

mi
dt (26)

p
0
i ¼ pi þ fCi þ fDi

� �
dtþ

X
jai

dpRij (27)

where prime and non-prime variables refer to the time t + dt
and t, respectively, dt is the timestep, and fC

i and fD
i are the

conservative and dissipative forces, respectively; dpR
ij is the

random contribution to the momentum defined as propor-
tional to a Wiener process. As such, one can define a timestep
dependent random force as

fRij �
dpRij
dt
� OðdtÞ�1=2 (28)

More importantly, note that the distinction between the different
many-body variants lies in the specific form of the conserva-
tive force fC

i , which can be density-dependent (MB-DPD and
MB-DPDE), density- and temperature-dependent potentials
(GenDPDE), or contain merely pair potentials depending on the
interparticle distance (DPD and DPDE). However with regards to

the main thesis of this article, there is no need to specify the type
of force involved, as fC

i can be left undefined in the expressions,
being a completely general function satisfying only the action–
reaction principle. Here for completeness and illustrative pur-
poses, we provide the form of the conservative force used in the
GenDPDE simulations, in which the definition of a local particle
volume Vi; related to the local particle number density ni, is
required. The ni and Vi are related by

ni ¼
X
jai

w rij
� �

� 1

Vi
(29)

where rij = ri � rj. The weighting function w(rij) is a smooth
monotonously decreasing function of the interparticle distance
rij = |ri � rj|, which is zero if rij 4 rc; rc is the spherical cut-off
distance. In GenDPDE, the reversible dynamics of the resolved
mechanical DoF follows from the effective Hamiltonian

H ¼
XN
i¼1

pi
2

2mi
þ u ~yi;Vi

� �� 	
(30)

In the absence of external, dissipative and random forces, H is
constant and equal to the total energy of the system E. The u
depends on the particle volume Vi, i.e., the local density ni and

Fig. 1 Schematic of the GenDPDE simulation method. (a) Mechanical
balance governed by eqn (26) and (27). (b) Energy balance governed by
eqn (39).
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on the particle bare temperature ~y.11,12 The conservative force is
thus fC

i = � qui/qri|s̃i
, which can be separated into pairwise

contributions of the form

fCij ¼
@ui
@ni

����
~si

þ@uj
@nj

����
~sj

 !
dwij

drij
eij ¼

pi
ni2
þ pj
nj2

� 
dwij

drij
eij (31)

where eij = rij/rij, pi ¼ �@ui
.
@Vij~si is the particle pressure, and

dwij/drij o 0. The subscript s̃i emphasizes that the derivative is
taken under adiabatic conditions (i.e., no simultaneous heat
transfer between particles occur while updating velocities and
positions). The bare entropy is defined from the density of states
gðu;VÞ of the non-resolved DoF of the mesoscopic particle

~s ¼ kB ln gðu;VÞ (32)

i.e.,

1

~y
¼ @~s

@u

����
V

(33)

relates the particle temperature to the thermodynamics of the
non-resolved DoF of the mesoparticle.†

Regarding the dissipative force, we assume the traditional
pairwise additive form

fDij ¼ �go rij
� �

eijeij �
pi

mi
�

pj

mj

� 
(34)

where g is the friction coefficient and o(rij) is the weighting
function, which is also a smooth uniformly decreasing function
of the interparticle distance with range rc.

The random contribution to the momentum, dpR
ij, satisfies

the FDT3

dpRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBYijgijo rij

� �q
xijeijdt

1=2 (35)

with dpR
ij = �dpR

ji and

1

Yij
¼ 1

2

1

~yi
þ 1

~yj

 !
(36)

Here, the normalised Gaussian random numbers xij satisfy

hxiji = 0 (37)

xijxkl
� �

¼ dikdjl � dildjk
� �

dtt 0 (38)

where the average is taken over the probability distribution of
xij.

In addition to the momentum transfer, GenDPDE particles
can exchange heat :

qi related to particle temperature differ-
ences. Given that Ė = 0 if the total energy is to be conserved,
we define the variation of the particle internal energy. Follow-
ing the standard procedure,11 the energy balance over a single

timestep permits us to define the internal energy variation as

u
0
i ¼ ui �

1

2

X
jai

pi

mi
�

pj

mj

� 
� fCij þ fDij þ fRij

� �
dt

� 1

2mi

X
jai

X
lai

dpRij � dpRil þ _qidt

(39)

Note that the heat flow :
qi has been included in the energy

balance as an additional DoF involved in the particle energy
change. It can be expressed as the summation over contribu-
tions from all the particle pairs, according to a mesoscopic
analogue of Onsager’s linear relationships between fluxes and
forces, _qi ¼

P
jai

_qij , with :
qij = � :qji. Then, we propose,

_qidt ¼ �
X
jai

kij
1

~yj
� 1

~yi

 !
dtþ

X
jai

duRij �
X
jai

_qDij þ _qRij

� �
dt

(40)

where kij = k�o(rij), k is the particle thermal conductivity and
�o(rij) represents a weighting function analogous to the weight-
ing function for the momentum interaction. The �o(rij) is also
limited to a given range rc, but it does not need to be the same
as for the momentum transport or the calculation of the local
density. In turn, duR

ij is the random heat exchanged between
particles i and j during the time step dt, which is also propor-
tional to a Wiener process. Here we define the time step-
dependent random heat flux between two particles as

_qRij � duRij
.
dt � OðdtÞ�1=2. To satisfy total energy conservation,

we require that duR
ij = �duR

ji. The amplitude of the random heat
exchange between particles is given by

duRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBkij �o rij

� �q
�xijdt

1=2 (41)

where the amplitude is fixed by the corresponding FDT, and �xij

is the normalised Gaussian number for the heat exchange with
properties:

h�xiji = 0 (42)

h�xij
�xkli = dikdjl � dildjk (43)

Note that the term
1

2mi

P
jai

P
lai

dpRij � dpRil in eqn (39) is � OðdtÞ.
The average of this term is non-zero, but exactly cancels the

average of
1

2

P
jai

pi

mi
�

pj

mj

� 
� fDij dt and therefore, the equilibrium

average u
0
i � ui

� �
¼ _uih idt ¼ 0. If the balance is calculated from

the continuous limit instead of the discrete algorithm, then
this term could be easily overlooked. Moreover, if this expres-
sion is extracted from the Fokker–Plank equation, instead
of this quadratic random term one obtains its equilibrium
average,3,4 which only guarantees energy conservation in the
mean but not at every timestep.

With regards to the other DPD-type methods, the dynamics
described by the previous algorithm reduces to standard DPD
or MB-DPD in the limit CV/kB - N, as this limit ensures
constant yi C T and the dynamics is thus isothermal. Here CV is

† In previous works we have used the so-called dressed entropy to define the
adiabatic conditions,11,12 since our control variable was s (see the definition of
control variable in ref. 12). Throughout this article, we consider that the control
variable is the internal energy u, which corresponds to the use of bare variables
instead of the dressed variables. Choosing one or the other is a matter of
convenience, as the physical behaviour is independent of the choice, once the
model has been established.
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the particle heat capacity, defined in the usual way from its

internal thermodynamics, CV = qui/q~yi|V. Effectively in the
canonical ensemble, energy fluctuations scale as hdE2i =

kBCVT2. Thus, writing for the mesoparticle dE C CV(T � ~y),

we can infer that ðT � ~yÞ2
D E

� kB

CV
T2 � 1. Thus, the choice of a

large heat capacity CV c kB in the DPDE method makes its
dynamics for the mechanical DoF identical to standard iso-
thermal DPD. Furthermore, the mesoscopic expression for the
heat flux can be used also in DPDE as well as in MB-DPDE, as
the latter follows from the former if the internal energy
per particle can be separated into two contributions, each
depending on a single variable, according to the form,

u ~yi;Vi

� �
¼
ð~yi

~y0

CVð~y0Þd~y0 þU ~y0;Vi

� �
(44)

2.3 Microscopic fluxes for viscosity and thermal conductivity

In this section, we derive the form of the stress tensor and the
heat flux density for our mesoscopic model. The derived
expressions are non-trivial and represent the cornerstone of
the application of the EH relations to the calculation of the
associated transport coefficients.

2.3.1 Einstein–Helfand relations for the thermal
conductivity. The relevant observable for the heat transport is
the associated conserved quantity, i.e., the energy density.
According to eqn (2), we get

AkðtÞ � ekðtÞ ¼
X
i

pi
2

2mi
þ ui

� 
e�ik�ri (45)

To obtain the expression for the energy density flux, from
eqn (7) and (5), the latter can be written as

�ik � Jek ¼
XN
i¼1

_aiðtÞ � ik � uiaið Þe�ik�riðtÞ (46)

In Appendix B, we expand this last expression to obtain,

Je ¼
1

2

X
i;jo i

rij
pi

mi
þ

pj

mj

� 
� fCij þ fDij þ fRij

� �"

� 1

2

X
i;jo i

rij
1

mj
fRij � dpRj

þ
X
i;jo i

rij _qDij þ _qRij

� �
þ
X
i

uiei

#
(47)

where Je � Jek-0 to simplify the notation. Eqn (47) is the main
result of this article together with our demonstration that the
EH formulas are also valid for conserved quantities in models
with dissipative and random interactions.

In comparison with standard molecular dynamics, the heat
flux density for the GenDPDE algorithm contains several addi-
tional contributions. Firstly, there is the work performed by the
dissipative and random forces, which adds to the traditional
work done by the conservative forces; the first term in eqn (47).

Secondly, there is an additional quadratic term in the random
forces, pfR

ij�dpR
j , that appears due to the energy balance carried

out for discrete times. Similar to other terms, this term is also
O dt0
� �

. Thirdly, there is the direct contribution to the heat
transport due to the mesoscopic heat exchange between the
particles, including the random heat exchange; the last two
terms in eqn (47). The last term in eqn (47) corresponds to the
advected energy with the motion of the particles. In comparison
with standard molecular dynamics, here ei also contains the
internal energy u in addition to the kinetic energy. Further-
more, the macroscopic advective transport of enthalpy needs to
be separated from the total energy flux density,26 i.e.,

Jq ¼ Je �
eþ P

r
j (48)

where j is the momentum density; therefore, j/r is the velocity
field. As remarked in ref. 26, if we choose the total momentum
of the simulation box to be zero then the momentum density
vanishes in the long-wavelength limit and this correction can
be ignored. It is important to realise that the latter condition
must be enforced in the simulations for the relation Jq = Je
to hold.

In eqn (17), Ak!0A
�
k!0

� �
eq
¼ kBT

2NmcP
26 is obtained from

the canonical ensemble, considered here to be the equilibrium
distribution (see comments regarding the ensembles in ref. 19).
Therefore, since macroscopically the hydrodynamic field Ak �
ek = rcPTk, with

rcP
@Tk

@t
¼ �lk2Tk � ik � Je;Rk (49)

then a � k = l/(rcP); cP is the heat capacity per unit mass, r is
the mass density, and l stands for the substance thermal
conductivity. The EH expression, eqn (17), thus takes the
usual form

l ¼ 1

kBT2V
lim
t!1

1

2t
k̂k̂:

ðt
0

dt 0Jq t 0ð Þ
�  ðt

0

dt 0Jq t 0ð Þ
� 
 �

(50)

although Jq has the form derived in this article, eqn (47). We
can then choose either one component of k̂, or use an average
over the three Cartesian coordinates to increase the statistics.

As no particular form of the conservative force is required in
the derivation, the expression can be applied to the different
variants of energy-conserving DPD methods including GenDPDE.

2.3.2 Einstein–Helfand relations for the shear viscosity.
The derivation of the relevant components of the stress
tensor starts by identifying one of the three components of
the momentum flux as the variable under scrutiny. Initially, let
us write the observable in its vectorial form

AkðtÞ � jkðtÞ ¼
X
i

piðtÞe�ik�ri (51)

From eqn (7), we evaluate the time-derivative of the observable
along the same lines as for the heat flux density, and obtain

@

@t
jk ¼ �ik �

X
i

pipi

mi
þ
X
jo i

rij fCij þ fDij þ fRij

� �" #
e�ik�ri (52)
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To study shear waves, the velocity field needs to be orthogonal to
the wavevector k̂. We thus arbitrarily choose the x-component of
the momentum in eqn (51) and the z-component of k. Thus,

Pzx ¼
X
i

pzi p
x
i

mi
þ
X
jo i

zij f xCij þ f xDij þ f xRij

� �" #
(53)

From eqn (53), it is evident that both the dissipative force and the
random force need to be incorporated in the calculation of the
stress since they contribute to the global momentum balance
along with the conservative forces.

Hence, using the fact that macroscopically

@

@t
jxk ¼ �Zk2

jxk
r
� ikzPR

zx (54)

then a � n = Z/r, where Z is the shear viscosity coefficient.
Moreover, as A0A

�
0

� �
eq
¼ NmkBT ¼ rVkBT ; we obtain from

eqn (17)

Z ¼ 1

kBTV
lim
t!1

1

2t

ðt
0

dt 0Pzx t 0ð Þ
�  ðt

0

dt 0Pzx t 0ð Þ
� 
 �

(55)

which is the standard expression for the viscosity found in the
literature.26

3 Simulation methods
3.1 Simulation details

For all the simulations performed in this work, the weighting
function for the dynamic properties, such as the friction forces
and interparticle heat transport, is given by

oðrÞ ¼ �oðrÞ ¼ 1� r

rc

� 2

for r 	 rc (56)

The weighting function to calculate the local density is normal-
ised such that its volume integral is unity, i.e.,

wðrÞ ¼ 15

2prc3
1� r

rc

� 2

for r 	 rc (57)

In all cases, the weighting functions are zero for r 4 rc.
3.1.1 Thermal conductivity measurements. We used an

internally developed GenDPDE code, which is implemented
in Fortran with OpenMP parallelisation, in all the simulations.
The algorithm to update the position and momentum follows a
velocity-Verlet integration scheme, while the energy is updated
following a simple Euler form; see ref. 3, 5 and 38. For
simplicity, we used the particle EoS given in eqn (44), in which
the many-body potential u is independent of the particle
temperature. All simulations were performed in reduced units,
where rc is the unit of length, m is the unit of mass, and kBT is
the unit of energy. Based on these choices then, the unit of time

is given by t ¼ rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= kBTð Þ

p
. The simulated systems contained

N = 20 000 particles in volume V. A cubic simulation box was
used (see Fig. 2c) with periodic boundary conditions. The box
volume was adjusted for each simulation to obtain overall
particle densities %n � N/V = 4, 8, 16, and 32 with a timestep of
dt = 0.001, 0.0005, 0.00005, and 0.00005, respectively. The timestep

was adjusted to obtain satisfactory energy conservation from
the integration of the equations of motion. The system is
initialised by rescaling the particle kinetic energy to reach a
temperature T = 1, prior to the constant energy simulation that
is performed to obtain the data. This initialisation scheme
implies that the dimensionless kinetic energy of the system is

Ek ¼
3

2
ðN � 1Þ, and simultaneously the average particle tem-

perature
P
i

1=~yi ¼ N. Note that, unlike the momentum integra-

tion, the mechanical energy term in the balance equation
produces an energy drift, which increases with the size of the
time step. Such a drift impairs long simulations with explicit
algorithms. However, this drift can be avoided by absorbing the
numerical error D in every timestep, which is proportional to
kBT B 1, into the particles’ internal energy u, which causes an
internal temperature variation of the order of D/(CVT) { 1.
Note that if the timestep is not properly chosen, differences
between the kinetic temperature and the internal temperature

Fig. 2 GenDPDE simulation of thermal conductivity: (a) snapshot of the
non-equilibrium simulation box for density 32 where the particle colour
represents different particle temperatures, (b) final particle temperature
gradient for a non-equilibrium simulation at density 32, red and blue
shading represent hot and cold regions respectively, and (c) snapshot
of the equilibrium simulation box for density 32, the particle colour
represents different particle temperatures.
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averages may occur. The friction coefficient g was set to 4.5, the
heat capacity CV to 60, and the particle thermal conductivity k
to either 5 or 50 to test different heat transport regimes.

For the purposes of testing different conditions, we simu-
lated: (a) systems with no conservative force, i.e., u(~y,n) = CV

~y, cf.
eqn (44), which is referred to as the ideal GenDPDE system, and
(b) systems with a conservative force fC, obtained from a many-
body force potential given by a quadratic well, i.e.,

uð~y; nÞ ¼ CV
~yþ b

2
n� n0ð Þ2 (58)

n0 is a reference particle density, which eventually determines
the pressure of the system. The parameter b was set to 0.2 and
the target density n0 was set equal to the overall density of the
system %n for each case.

For the analysis of the EH relation, we used different time
windows for every density, each sufficiently long so that the
linear diffusive regime of the correlation

1

2kBT2V

ðt
0

dt 0Jq;xðt 0Þ
�  ðt

0

dt 0Jq;xðt 0Þ
� 
 �

(59)

is observed, and the linear regression can be applied. The slope
of the regression directly yields the thermal conductivity. Fig. 3
shows the typical results for the EH correlation for the viscosity
measurements; the EH correlations for the thermal conduc-
tivity have the same appearance. The chosen correlation time
steps, ncorr, were 100 000, 100 000, 15 000, and 1000, for %n = 4, 8,
16, and 32, respectively. To increase statistical sampling, new
overlapping time-series were created after ncorr/10 time steps,
while the total duration of each simulation was 107 time steps.

3.1.2 Shear viscosity measurements. For the viscosity mea-
surements, we performed simulations under the conditions
described in ref. 28. We used a standard DPD isothermal
algorithm to match the exact same conditions of the benchmark
simulations that will be discussed in the comparison. However,
we also include values of shear viscosity obtained from GenDPDE
simulations, with a large heat capacity (CV = 1000), to show the
equivalence with isothermal DPD simulations under these

conditions. As in the reference work, no potential forces between
the particles were considered. The number of particles was set to
20 000, and different box volumes were chosen to obtain %n = 3, 4,
5, 6, 7, quoted in the benchmark reference, plus %n = 8, 16 and 32,
which we have computed to extend the parameter range. The
simulations were performed at T = 1, g = 5 and dt = 0.01, for
densities from 3 to 7, as in the benchmark, and dt = 0.005, 0.002
and 0.001 for densities 8, 16 and 32, respectively. Correlation
windows of sizes ncorr = 2000, 1500, 1000, 1000, 1000, 1000, 1000
and 500 time steps were used for %n = 3, 4, 5, 6, 7, 8, 16 and 32,
respectively. New time-series were created after 20 timesteps,
while the total simulated time was 107 time steps.

3.2 Thermal conductivity via non-equilibrium simulations

For comparison to the EH data, we also performed independent
non-equilibrium simulations. The box was orthorhombic in the
x-direction, where a thermal gradient is present. The box length
in the x-direction Lx was three times larger than in the other two
directions, i.e., Ly = Lz = Lx/3, and periodic boundary conditions
were applied in all directions; for details see Fig. 2a. The non-
equilibrium system contained a hot and a cold slab, whose
mid-plane was located at x = Lx/4 and x = 3Lx/4, respectively. The
width of the hot and the cold slabs was Lx/10 in the x-direction.
We enforced heat flow in the system by artificially pumping
heat from the internal energy of the particles located in the cold
region into the internal energy of the particles located in the
hot region, such that the total energy of the system is constant.
This method corresponds to an extension of the PeX algorithm
to GenDPDE systems.39,40 Using this approach, a heat flow rate
:
Q = 500 was sustained, such that when steady-state conditions
were reached, a linear temperature gradient developed between
the hot and cold slabs. The value of the externally imposed heat
exchange rate was chosen to create a relatively small tempera-
ture gradient between the regions to avoid non-linearities due
to variations in the local particle density, which may influence
the thermal conductivity; see Fig. 2b.

The values of the thermal conductivity coefficient l from
the non-equilibrium simulations were obtained from a direct
application of Fourier’s law

:
q = �lrT (60)

For our non-equilibrium system with the hot and cold regions,
we obtained the thermal conductivity from

l ¼ � _q

rT ¼ �
_QDx
ADT

(61)

where
:
Q is the amount of heat transferred from the cold region

to the hot region during a timestep, and A is the cross-sectional
area along the yz-plane. Both were set a priori in the simulation.
The resulting temperature gradient was estimated from the
ratio DT/Dx obtained from the linear portion of the temperature
profile that formed between the hot and cold regions in the
x-direction; see Fig. 2b.

Fig. 3 Einstein–Helfand correlation as a function of time and its linear
regression at a density of %n = 3, which is used for the calculation of the
viscosity; R(t) � R(0) represents

Ð t
0
dt 0Pzx t 0ð Þ.
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3.3 Shear viscosity via non-equilibrium simulations

Similarly to the simulations performed for the thermal con-
ductivity, we also conducted independent non-equilibrium
simulations for the shear viscosity. The box length in the
x-direction Lx was two times larger than in the other two
directions, i.e., Ly = Lz = Lx/2, and periodic boundary conditions
were applied in all directions. The non-equilibrium shear
viscosity was imposed using PeX method.39,40 To induce a
velocity gradient we defined two narrow slabs in specific
locations along the x-axis. We thus exchange the largest
momentum in positive z-direction of the slab located at x =
Lx/4, with the largest momentum in negative z-direction of the
slab located at x = 3Lx/4. The width of both slabs was Dx = Lx/10.
The timestep for the simulations is the same as in the corres-
ponding equilibrium simulations described above. The values
of the shear viscosity Z are obtained from the relation:

Pxz ¼ Z
dvz

dx
(62)

were
dvz

dx
is the induced velocity gradient between slabs, which

we measured by a linear regression of the velocity profile in the
central region. Pxz is the shear stress imposed due to the
exchange in momentum between slabs that can be obtained as,

Pxz ¼
Dpz

2LzLyDt
(63)

where Dpz is the accumulated momentum exchanged in a
given, sufficiently long, time interval Dt, after the system
reaches steady state. The stress is thus controlled by the
frequency with which the momenta exchanges are introduced,
nexc. LzLy is the cross-sectional area of the x-side of the box. The
number 2 in the denominator is due to the duplication of the
velocity gradient in the simulation setup.

4 Results and discussion
4.1 Benchmark results for the shear viscosity

Firstly, we verify that the classic EH formula given in eqn (55)
with the stress tensor given in eqn (53) can be applied to obtain
the viscosity. In Fig. 3, we represent the correlation function

1

2kBTV

ðt
0

dt 0Pzx t 0ð Þ
�  ðt

0

dt 0Pzx t 0ð Þ
� 
 �

(64)

A linear regression for the linear portion of the correlation,
after an initial non-diffusive regime, permits a value of the
viscosity to be identified from its slope. We first compare our
results using the EH relation of eqn (55) to the non-equilibrium
data given by Jung and Schmidt,28 who considered a limited
range of rather low densities %n = 3, 4, 5, 6, and 7. In Fig. 4,
we provide a comparison between our results and the non-
equilibrium values of the viscosity from Fig. 5 of ref. 28,
showing excellent agreement between both of them.

Furthermore, to demonstrate that the EH formulas are
applicable to very dissipative systems, we also evaluated the
viscosity for larger densities, namely, %n = 4, 8, 16, and 32, which

are presented in Fig. 5 together with our non-equilibrium
simulations and the theoretical predictions,41

Z ¼ ZK þ ZD ¼
45mkBT

4pgrc3
þ 2pgrc5n2

1575
(65)

We see that the simulation results from the derived EH relation
(eqn (55)) are again in excellent agreement with the non-
equilibrium results. Furthermore, the results are consistent
and in rather good agreement with the theory in the large
density limit. The discrepancies between theory and simula-
tions have been addressed in ref. 42 and 43.

Fig. 4 Comparison between values of the viscosity obtained from our
proposed EH formula and non-equilibrium simulation results of Fig. 5 in
ref. 28. Blue circles correspond to isothermal DPD simulations with g = 5,
T = 1, and the same time step as in the original reference, dt = 0.01. The
errors are of the size of the symbols. Green triangles represent the values
obtained from GenDPDE simulations with large heat capacity CV = 1000
and an interparticle thermal conductivity k = 50.

Fig. 5 Viscosity as a function of the system density. Red triangles repre-
sent the results obtained from equilibrium DPD simulations using our
proposed EH relation, eqn (55). Blue circles represent the results obtained
from non-equilibrium DPD simulations and the dotted black line repre-
sents predicted theoretical values. The simulations have been performed
with g = 5.0 under isothermal conditions at T = 1.0. The integration was
performed with a timestep of dt = 0.01, 0.005, 0.002 and 0.001 for %n = 4,
8, 16 and 32, respectively. The largest errors occur in the non-equilibrium
simulations at density %n = 32, (0.2 with the 68% confidence), which is of the
size of the symbol.
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In Table 1 we present the results obtained from the appro-
aches of the aforementioned authors, for comparison. Our
approach is in excellent agreement with the non-equilibrium
evaluation of the shear viscosity, which should be taken as the
objective reference for the estimate of this transport coefficient,
as it emulates the physical process. The estimates using the
various formulas are very close to each other and within the
error in the estimate of the non-equilibrium simulation. Only
the data of column EH (a) slightly underestimate the value of
the shear viscosity coefficient.

4.2 Results for the thermal conductivity

To assess the ability of eqn (50) with the heat flow density given
in eqn (47) to evaluate the thermal conductivity, we simulated
four densities %n = 4, 8, 16, and 32 under equilibrium and non-
equilibrium conditions. The thermal conductivity in non-
equilibrium conditions was obtained as described in Section
3.1. In all cases, we also include the theoretical prediction
derived from the superposition of the limit of interparticle
heat transport dominance37 and the limit of kinetic transport
dominance,44 i.e.,

l ¼ lK þ lD ¼
45CVkBT

2pgrc3
þ 2pkrc5�n2

315T2
(66)

We explored three cases. First, we considered a system without
conservative forces and a relatively large particle thermal con-
ductivity k, case A. This corresponds to the situation where
the transport is dominated by the dissipative heat exchange
between particles over kinetic transport; the latter controlled by
either ballistic or even diffusive motion, which can be faster
than the direct heat transport between particles, and which is a
genuine effect of energy-conserving DPD methods. In the
second case, case B, we further analysed the same system,
but with lower values of k. In both cases, the GenDPDE method
studied the ideal DPDE fluid. Finally in the third case, case
C, we explored the effect of the interparticle many-body

conservative forces at moderate values of k, corresponding to
the model given in eqn (58).

For case A in Fig. 6, we plot the thermal conductivity l as a
function of the density %n for equilibrium and non-equilibrium
simulations, which are compared with the theoretical predic-
tion, for completeness. The simulations were carried out at
T = 1 and with k = 50, g = 4.5, and CV = 60. The EH values and
the non-equilibrium simulation results are in excellent agree-
ment over the entire range of %n studied, supporting the correct-
ness of the combination of eqn (50) and (47).

From the theoretical expression eqn (66), a naı̈ve approach
suggests that the system is dominated by the interparticle heat

transport if the condition �n
 �nc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
360CVkBT= gkrc8ð Þ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

21 500=ðgkÞ
p

, where the second equality is obtained after the
values of the dimensionless constant parameters have been
introduced. Therefore for case A, the crossover density is
approximately %nc C 10, which implies that most of the data
are in the region dominated by the direct interparticle heat
transport. In comparison with the theoretical prediction, the
simulation values of l are also in rather good agreement. There
is a small deviation as we increase the density, which was
previously noted in ref. 37.

Case B is explored by reducing the value of k, but still in
the absence of any conservative force. The simulations were per-
formed at T = 1 and with k = 5, g = 4.5, and CV = 60. Under these
conditions, case B describes a dominance of the kinetic regime
as the crossover density is %nc B 30. In Fig. 6, we plot the thermal
conductivity l as a function of the density %n. Again, we observe
that the equilibrium and non-equilibrium simulation results are in
very good agreement over the entire range of %n studied. However,
the theoretical prediction eqn (66) yields values significantly lower
than the simulation values over the entire density range. The
quantitative theoretical analysis of the thermal conductivity with
respect to the different parameters will be presented elsewhere.

Table 1 Comparison of the various approaches to determine the shear
viscosity. Non equilibrium values for densities from %n = 3, 4, 5, 6, 7 are
obtained from ref. 28, while for densities %n = 8, 16, 32 are our own
simulation data. (a) Values calculated from the EH formula in ref. 29, eqn.
(2.14). The errors in the EH equations are evaluated from the error in the
slope of the linear regression. (b) Values calculated using eqn (19) in ref. 27.
The error is calculated from the fitting of the hydrodynamic part of the
decay of the correlation to a function of the type y = Ae�btc, where A, b and
c are adjustable parameters. Errors in the non-equilibrium simulations are
entirely due to the linear regression used to determine the linear velocity
gradient in the box

Density Z

%n Non-equ. EH (eqn (55)) EH (a) GK (b)

3 1.28 � 0.01 1.2790 � 0.0002 1.2360 � 0.0002 1.286 � 0.002
4 1.40 � 0.01 1.4110 � 0.0003 1.3730 � 0.0003 1.418 � 0.002
5 1.56 � 0.01 1.5733 � 0.0003 1.4940 � 0.0003 1.543 � 0.002
6 1.74 � 0.01 1.7337 � 0.0002 1.6720 � 0.0002 1.731 � 0.003
7 1.96 � 0.01 1.9613 � 0.0003 1.8740 � 0.0003 1.989 � 0.003
8 2.17 � 0.01 2.1860 � 0.0002 2.0840 � 0.0002 2.169 � 0.004
16 5.45 � 0.02 5.4749 � 0.0005 5.4400 � 0.0005 5.434 � 0.008
32 20.0 � 0.2 19.479 � 0.003 19.470 � 0.003 19.68 � 0.03

Fig. 6 Thermal conductivity as a function of the density for values of the
particle thermal conductivity k = 50 and 5. The circles represent the results
obtained from non-equilibrium DPDE simulations (red circles k = 50 and
blue circles k = 5), the triangles from equilibrium DPDE simulations using
our proposed EH relation (green triangles k = 50 and grey triangles k = 5),
and the predicted theoretical value from mean-field approximation
(dotted black line).
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Finally for case C, we also included the conservative many-
body forces between the particles given by eqn (31), using
eqn (58). In Fig. 7, we plot the thermal conductivity l as a
function of the density %n from equilibrium and non-
equilibrium simulations. The GenDPDE simulations were
carried out at T = 1, with k = 5, g = 4.5 and CV = 60, and with
b = 0.2 and n0 = %n in eqn (58). From Fig. 7, we can observe that
the equilibrium and non-equilibrium simulation results are
again in very good agreement over the density range studied.
With respect to the theoretical predictions, a disagreement is
expected as the derivation of eqn (66) does not include any
conservative force between the particles.

5 Conclusions

In this work we have shown that the standard Einstein–Helfand
relations for the calculation of transport coefficients in DPD-
type algorithms are valid. The key element is that the appro-
priate expression for the conserved property flux for the meso-
scopic model needs to be specifically determined. We have
applied this perspective to derive, for the first time, the heat
flux density for a general energy-conserving dissipative particle
dynamics method (GenDPDE) from which the thermal conduc-
tivity has been evaluated. For the expression to be appropriate
for any DPD-type algorithm, all that is required is for it
to satisfy two conditions: that the transported property is
conserved by the mesoscopic dynamics, and that the transition
probabilities induced by the latter satisfy detailed balance.
These two basic conditions are inherited from the underlying
physical system, i.e., the conservation of the transported
property and the time-reversibility of the physical trajectories
at the microscopic level.

As verification of the correctness of the previous statements,
we have evaluated the shear viscosity as well as the thermal
conductivity from non-equilibrium simulations and compared

them against the corresponding EH values, with excellent
agreement found in all the cases considered. For both proper-
ties, we previously evaluated the corresponding expressions for
the stress tensor and the heat flux density adequate for these
dissipative systems, which include non-trivial contributions
due to the dissipative and random terms. Therefore, the
theoretical demonstration together with the simulation results
support our claim that the standard equilibrium approach
using EH correlations can be applied to dissipative models
such as DPD-type algorithms.

With regards to the simulations, we have addressed a rather
wide range of densities. The increase of the density results in an
increase of the number of neighbours and the dissipative
effects, which complicate the simulation analyses. The number
of neighbours ranges from 17 at %n = 4 to 134 at %n = 32. Even in
highly dissipative conditions like the latter, the EH formulas
provide reliable accurate data. For the heat transport, we have
studied two different regimes depending on whether the trans-
port is dominated by advective or dissipative effects. We have
analysed a third case with density-dependent potential interac-
tions, which strongly influence the behaviour of the system. In
all these cases the agreement is excellent, which we consider
sound verification of our methodology. For completeness, we
have also addressed the case of the shear viscosity. We have
derived the expression for the stress tensor suitable for
GenDPDE, and hence for all DPD-type methods that can be
derived from it, which include the standard isothermal DPD
method that was used as a benchmark in this work. The
agreement between our data and the non-equilibrium simula-
tions of Jung and Schmid,28 together with our non-equilibrium
data for the extended density range, is also excellent. Note that
in this last reference, non-equilibrium simulations were used to
compare with different Green–Kubo expressions specifically
obtained for DPD-type methods.27 The different equilibrium
evaluations are given in Table 1 for comparison. Despite the
different, possibly conflicting, theoretical perspectives from
which these were obtained, the numerical differences are or
the order of the error in the non-equilibrium simulation data.
Only the data obtained from the EH formula derived from it in
ref. 29 systematically deviates from the benchmark, we believe
because some of the correlations present in the GK formula of
ref. 27 were lost in its transformation to the EH counterpart
proposed in the former. The analysis of the GK expressions of
ref. 27 in comparison with the present EH relations is relevant,
we prefer to leave this discussion for a more detailed study.

The importance of EH expressions for the measurement of
transport coefficients lies in the fact that a single simulation
can provide the entire set of the transport coefficients with no
modification of the simulation setup to include any particular
boundary conditions, which are required in non-equilibrium
simulations. Thus, for energy-conserving methods like GenDPDE,
the thermal conductivity and the shear viscosity can be simulta-
neously calculated with significant economy of computational
time and effort.

We believe that the approach proposed in this article will be
essential for future applications of any mesoscopic model that

Fig. 7 Thermal conductivity as a function of the density for a value of the
particle thermal conductivity k = 5, and with conservative forces that
follow from eqn (58). The circles represent the results obtained from non-
equilibrium simulations (blue circles), the triangles from equilibrium simu-
lations using our proposed EH relation (grey triangles) and the predicted
theoretical values from mean-field approximation (dotted black line).
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falls under the scope of the two conditions required by the EH
formulas to be valid. Finally, together with energy and momen-
tum, further conserved properties and their corresponding
transport coefficients can be handled in mesoscopic models
by the same framework presented in this work.
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Appendices
A. Derivation of the properties of JAR

k

The derivation of the properties of JAR
k follows the methodology

introduced in ref. 11 and 12. Due to the fact that eqn (5)
induces a Markovian process linearly proportional to Ak, the
random flux is Gaussian. Although it is a necessary condition
for eqn (8) to be satisfied, we refer the reader to the classical
works for a detailed demonstration.31,33,34 However, this
assumption is not necessary if only the first and second
moments of the random variable Ak need to be calculated,
which indeed is our only requirement.

First, we consider eqn (8) and multiply both sides by A
0
k,

followed by an integration over Ak and A
0
k. The left-hand side

corresponds to the direct trajectory and becomesð
dAkdA

0
kPeq Akð ÞA 0kw Ak!A

0
k

� �

¼
ð
dAkdA

0
kPeq Akð ÞA 0k d A

0
k�Ak� �ak2Ak� ik �JA;Rk

� �
dt

h iD E
R

¼
ð
dAkPeq Akð Þ Ak�ak2Akdt� ik � J

A;R
k

D E
R
dt

� �
(A1)

For the reverse trajectory we haveð
dAkdA

0
kPeq Âk

� �
A
0
kw Âk! Â

0

k

� �

¼
ð
dAkdA

0
kPeq Âk

� �
A
0
k d Â

0

k� Âk� �ak2Âk� ik � ĴA;Rk

� �
dt

h iD E
R

¼ s
ð
dÂ

0

kdÂkPeq Âk

� �
Âk d Â

0

k� Âk� �ak2Âk� ik � ĴA;Rk

� �
dt

h iD E
R

¼ s
ð
dÂkPeq Âk

� �
Âk¼ s Akh ieq

(A2)

The average is independent of whether the field belongs to the
reverse or direct trajectory because the equilibrium average is
only concerned with the state of the field, but not with the
dynamics. Note that if Ak is even, the zeroth-order term in dt
vanishes. Thus in this case, because the flux should vanish in
equilibrium, �ak2hAkieq = 0. Hence, it follows that hAkieq = 0 for
k a 0. For an odd Ak, instead hAkieq = 0 due to the symmetry of
the argument of the probability distribution.31 Note that out-
side of the linear regime, a may depend on Ak and hence the
previous statement would not be valid. Therefore in general,ð

dAkPeq Akð Þ �ik � J
A;R
k

D E
R
dt

� �

¼
ð
dAkPeq Akð Þ Ak�sAk�ak2Akdt

� �
¼ 0

(A3)

from which we obtain eqn (10).
Next, we again consider eqn (8), but we multiply both sides

by A
0
kA
�0
k , followed by the same integration over Ak and A

0
k. For

the direct trajectory we obtainð
dAkdA

0
kPeq Akð ÞA 0kA�

0
k w Ak ! A

0
k

� �

¼
ð
dAkPeq Akð Þ Ak � ak2Akdt� ik � J

A;R
k

D E
R
dt

� �

� Ak � ak2Akdt� ik � J
A;R
k

D E
R
dt

� ��
(A4)

while, using the same transformations as for the first moment,
the average over the reverse trajectory givesð

dAkdA
0
kPeq Âk

� �
A
0
kA
�0
k w Âk ! Â

0

k

� �

¼
ð
dÂkPeq Âk

� �
ÂkÂ

�
k ¼ AkA

�
k

� �
eq

(A5)

Due to this result, the zeroth-order terms identically cancel.
Moreover by construction, the random fluxes are not correlated
with the state variables at the same time and hJAR

k i = 0, thus we
are left with the equalityð

dAkPeq Akð Þ �2ak2AkA
�
k þ kk: J

A;R
k J

�A;R
k

D E
R

� �
¼ 0 (A6)

Hence, realising that hJA;Rk J
A;R�
k iR is taken at the same instant

of time, we can write the FDT in its final form as given in
eqn (11).

B. Derivation of the expression for the heat flux density in
GenDPDE

The starting point for the derivation of the expression for the
heat flux density in GenDPDE is the energy density field, which
in Fourier space becomes

ekðtÞ ¼
X
i

pi
2

2mi
þ ui

� 
e�ik�ri (B1)
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The dynamics of the energy density field follows after time
differentiation, i.e.,

_ek ¼
X
i

pi

mi
� _pi þ _ui � ik � _riei

� 
e�ik�ri (B2)

where we defined the particle total energy content ei = pi
2/

(2mi) + ui.
Due to the fact that there are many contributions, we

separate the analysis into three contributions, corresponding
to the three terms on the right-hand side of eqn (B2), which are
addressed as sections in this Appendix.

B.1 Second term in eqn (B2). The second term in eqn (B2)
can be separated into four additional contributions, in view of
eqn (39), which may be written as

_ui ¼
u
0
i � ui

dt
¼ �1

2

X
jai

pi

mi
�

pj

mj

� 
� fCij þ fDij þ fRij

� �

� 1

2mi

X
jai

X
lai

dpRij �
dpRil
dt
þ _qi

(B3)

On the right-hand side of eqn (39), we have the mechanical
energy transport, which first includes the work done by all the
forces acting on the particles, followed by a second-order
random momenta contribution. The last term contains the
contributions due to the direct heat flow between particles,
including the random heat flow. We start with the analysis of
this last contribution to the second term in eqn (B2) because
its simpler form illustrates the technical procedure required to
derive its contribution to the heat flux density, which later be
applied to more complex terms.

B.1.1 Dissipative heat transport contributions. Let us consider
the term

X
i

_qie
�ik�ri ¼

X
i;jai

_qije
�ik�ri ¼

X
i;jai

_qDij þ
duRij
dt

 !
e�ik�ri (B4)

in the hydrodynamic limit, i.e., krij - 0. Then, we separate the
double summation into two similar contributionsX

i;jai

_qije
�ik�ri ¼

X
i;jo i

_qije
�ik�ri þ

X
i;j4 i

_qije
�ik�ri (B5)

The order of the summation can be changed in the second
term to getX

i;jai

_qije
�ik�ri ¼

X
i;jo i

_qije
�ik�ri þ

X
j;io j

_qije
�ik�ri (B6)

Next, we rename the dummy indices of the second term by
exchanging their names.X

i;jai

_qije
�ik�ri ¼

X
i;jo i

_qije
�ik�ri þ _qjie

�ik�rj
� �

¼
X
i;jo i

_qij e�ik�ri � e�ik�rj
� �

¼
X
i;jo i

_qije
�ik�ri 1� eik�rij

� �
(B7)

where we used :
qji = � :qij. The range of the particle–particle

interaction rc is typically much smaller than the box size L.
Thus, provided that rc { L, we can proceed to take the
hydrodynamic limit also for a finite system since, as kmin =
2p/L, kminrc { 1. Then,X

i;jai

_qije
�ik�ri ¼

X
i;jo i

_qije
�ik�ri �ik � rij

� �
(B8)

Therefore, we can write the final contribution to the heat flux
density as

X
i

_qie
�ik�ri ¼ �ik �

X
i

X
jo i

rij _qDij þ
duRij
dt

 !
e�ik�ri (B9)

B.1.2 Mechanical energy transport. Next, we substitute the
first term of eqn (B3) into eqn (B2), where then the term to be
investigated is

�1
2

X
i

X
jai

pi

mi
�

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !
e�ik�ri (B10)

As before, separating the summation over j into two sums,
exchanging the indices, and using the symmetries of the
summation arguments, this term can be written as

�1
2

X
i;jo i

e�ik�ri þ e�ik�rj
� � pi

mi
�

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !
(B11)

Note that here the permutation of the particle indices has
different parity as compared with the previous case. As a
consequence, the expansion in terms of k�rij - 0 produces a
zeroth order term plus a contribution proportional to k, which
adds to the energy flux. The zeroth order term is

�
X
i;jo i

pi

mi
�

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !
e�ik�ri (B12)

In turn, the contribution to the flux becomes

�ik � 1
2

X
i;jo i

rij
pi

mi
�

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !
e�ik�ri (B13)

B.1.3 Second-order random terms. The last term to be ana-
lysed is the second term of eqn (B3), which again is cast into
eqn (B2). Effectively, the quadratic random term contribution
in eqn (39) leads to

�
X
i

1

2mi

X
jai

X
lai

dpRij
dt
� dpRil e�ik�ri ¼ �

1

2

X
i;jai

1

mi

dpRij
dt
� dpRi e�ik�ri

(B14)

where we summed over the index l in the derivation of the
right-hand side of this equation. Repeating the same algebraic
transformations of the sums, and using the symmetries under
permutation of the indices because the parity of the term is
the same as in eqn (B18), we obtain analogous contributions.
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The zeroth order term is

�1
2

X
i;jo i

dpRij
dt
� dpRi

mi
�
dpRj
mj

 !
e�ik�ri (B15)

while the contribution to the flux becomes

�ik � �1
2

X
i;jo i

rij
1

mj

dpRij
dt
� dpRj

 !
e�ik�ri (B16)

B.2 First term in eqn (B2). The first term in eqn (B2) can be
expanded using the equation of motion, eqn (27), together with
the discrete definition of the time derivative, which we write
here again for clarity:

_pi ¼
p
0
i � pi

dt
¼ fCi þ fDi
� �

þ
X
jai

dpRij
dt

(B17)

Hence,

X
i

pi

mi
� _pi

� 
e�ik�ri ¼

X
i

pi

mi
�
X
jai

fCij þ fDij þ
dpRij
dt

 !" #
e�ik�ri

(B18)

Hence using the same approach as in Section B.1.1, the
equivalent of eqn (B7) is

X
i

pi

mi
� _pi

� 
e�ik�ri

¼
X
i;jo i

pi

mi
e�ik�ri �

pj

mj
e�ik�rj

� 
� fCij þ fDij þ

dpRij
dt

 !

¼
X
i;jo i

e�ik�ri
pi

mi
�

pj

mj
eik�rij

� 
� fCij þ fDij þ

dpRij
dt

 !
(B19)

The expansion in powers of k�rij yields two terms. The first term
remains in the hydrodynamic limit, while the second term is a
contribution to the energy flux. The first term becomes

X
i;jo i

pi

mi
�

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !
e�ik�ri (B20)

while the second is

�ik �
X
i;jo i

rij
pj

mj
� fCij þ fDij þ

dpRij
dt

 !" #
e�ik�ri (B21)

B.3 Complete expression for the energy flux. Gathering all
terms together, eqn (B9), (B13), (B16) and (B21), and adding the

last term of eqn (B2), we obtain

Je ¼
1

2

X
i;jo i

rij
pi

mi
þ

pj

mj

� 
� fCij þ fDij þ

dpRij
dt

 !"

� 1

2

X
i;jo i

rij
dpRij
dt
�
dpRj
mj

þ
X
i;jo i

rij _qij þ
duRij
dt

 !
þ
X
i

_riei

#
e�ik�ri

(B22)

Using the definitions of the random forces and heat flux, and
writing :

ri = ui, we obtain

Je ¼
1

2

X
i;jo i

rij
pi

mi
þ

pj

mj

� 
� fCij þ fDij þ fRij

� �"

� 1

2

X
i;jo i

rij
1

mj
fRij � dpRj

þ
X
i;jo i

rij _qDij þ _qRij

� �
þ
X
i

uiei

#
e�ik�ri

(B23)

The result in eqn (47) follows from again taking the hydro-
dynamic limit such that e�ik�ri - 1.

C. Derivation of the expression for the stress tensor in
GenDPDE

The conserved field for the stress tensor in GenDPDE is the
momentum flux density, which in terms of mesoscopic vari-
ables, can be written as

jk ¼
X
i

pie
�ik�ri (C1)

The dynamics of the momentum flux is obtained after differ-
entiation, i.e.,

djk
dt
¼
X
i

_pi � ik � _ripið Þe�ik�ri (C2)

The expression for :pi is given in (B17). Hence,

djk
dt
¼
X
i

X
jai

fCij þ fDij þ fRij

� �
� ik � uipi

" #
e�ik�ri (C3)

Analogous to the derivations in Section B.1.1, the double
summations involving the forces can be expanded to obtain
two terms. The zeroth order term is the total force on the
system, which identically cancels because no external forces
have been considered. The first order term gives the contribu-
tion to the stress tensor due to pairwise forces, which produces
the result given in eqn (52),

djk
dt
¼ �ik �

X
i

pipi

mi
þ
X
jo i

rij fCij þ fDij þ fRij

� �" #
e�ik�ri (C4)
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