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In this Reply, we answer the main argument raised in the Comment about the energy of the NO3 radical

and its influence in the reaction profiles of the reaction of the NO3 radical with CH2ClBr, CH2ICl, CH2BrI,

CHCl2Br, and CHClBr2 by C. J. Nielsen and Y. Tang. The optimized geometry of the NO3 radical has

been obtained using 49 DFT functionals: 26 functionals predict a minimum with D3h symmetry and 23

with C2v symmetry. The former functionals have been used to calculate the thermodynamic values of

three reactions (X + HNO3 - XH + NO3, X= OH, CH3 and CCl3) and compared with experimental data.

Those functionals with smaller errors have been used to recalculate the barriers of the reaction of NO3

with CH2ClBr, CH2ICl, CH2BrI, CHCl2Br, and CHClBr2. The results show differences of 10.5 kJ mol�1

when compared to those obtained with the M08HX functional.

The molecular symmetry of the ground state of the NO3 radical
has been difficult to determine by experiment1 and theoretical
calculation.2–4 However, the latest experimental results indicate
that it has D3h symmetry5 with an NO distance of 1.240 Å6 (the
bond distance of 1.238 Å mentioned by Nielsen and Tang does
not appear in Kawaguchi et al.7). Our calculations with the M08-
HX DFT functional provide a C2v symmetry minimum, while the
D3h geometry corresponds to a second-order saddle point with a
relative energy of 9.6 kJ mol�1.8

We have examined the performance of 49 functionals (using
in all cases the 6-311+G(2df,2p) basis set): for 269 of them the
D3h geometry is predicted to be the minimum, while for 2310

the D3h geometry exhibits two degenerate imaginary frequen-
cies. In order to check the reliability for studying proton
transfer reactions of those DFT functionals that predict NO3

to be a minimum with D3h symmetry, we examined the
enthalpy of three reactions for which experimental data is
available (eqn (1)–(3)). The first reaction was already proposed
in the Comment by Nielsen and Tang, but we think that the
second and third are probably more appropriate in the present

case since they involve CH groups as the hydrogen donor, as in
the reactions studied in our paper.8 The heats of formation of
all the molecules were obtained from the NIST database,11

apart from the NO3 (DH0
f = 73.72 � 1.38 kJ mol�1)12 and OH

(DH0
f = 37.3 � 0.7 kJ mol�1)13 radicals.

OH + HNO3 - H2O + NO3, DrH298 = �71.10 � 1.59 kJ mol�1

(1)

CH3 + HNO3 - CH4 + NO3, DrH298 = �13.57 � 1.78 kJ mol�1

(2)

CCl3 + HNO3 - CHCl3 + NO3, DrH298 = 34.00 � 3.82 kJ mol�1.
(3)

The average calculated errors of the energies obtained in these
three reactions, for the 26 functionals under consideration,
range between +19 and �69 kJ mol�1. Only five functionals
show an average unsigned error below 8 kJ mol�1 (approx.
2 kcal mol�1): B3PW91 (3.8 kJ mol�1), X3LYP (4.6 kJ mol�1),
B3LYP (5.1 kJ mol�1), and B971 and B972 (8.0 kJ mol�1).

We therefore used these five functionals to recalculate the
proton transfer barrier and the corresponding relative energy of
the exit channel, for the five reactions in our study. The average
values are listed in Table 1, together with the energies com-
puted using the M08HX functional. The TS of the proton
transfer computed at M08HX is between 8.8 and 11.9 kJ mol�1

(average 10.5 kJ mol�1) lower than the average of the five
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selected DFT methods. The effect is larger in the evaluation of
the proton transfer exit channel, where the differences in the
overall reaction energy predicted by M08HX are 37.8, 35.2, 35.1,
and 51.5 kJ mol�1 for the four reactions (with three of these
giving errors that closely match the 37 kJ mol�1 difference
anticipated in the Comment).

These results partially agree with the comments of Nielsen
and Tang, although the difference in the barrier heights
between M08HX and the five chosen DFT methods is signifi-
cantly smaller than the B37 kJ mol�1 that they anticipated.
Importantly, the main conclusion of our paper is unchanged:
the oxidations of CH2ClBr, CH2ICl, CH2BrI, CHCl2Br, and
CHClBr2 by NO3 are not competitive with other removal
processes.
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Table 1 Proton transfer barrier and relative energy (kJ mol�1) of the exit channel at M08HX level and average of the selected five DFT functionals,
in parenthesis

CH2ClBr:NO3 CH2ClI:NO3 CH2BrI:NO3 CHCl2Br:NO3 CHClBr2:NO3

TS-H transfer 16.7 (28.1 � 2.3) 14.7 (23.5 � 2.6) 13.3 (22.4 � 2.7) 13.7 (25.6 � 2.6) 11.7 (23.2 � 2.7)
Exit channel �58.2 (�20.4 � 1.6) �57.1 (�21.9 � 1.4) �53.6 (�19.8 � 1.2) �74.0 (�38.9 � 1.6) �73.4 (�21.9 � 1.4)
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