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Improved reweighting protocols for variationally
enhanced sampling simulations with multiple
walkers†

Baltzar Stevensson * and Mattias Edén *

In molecular dynamics simulations utilizing enhanced-sampling techniques, reweighting is a central

component for recovering the targeted ensemble averages of the ‘‘unbiased’’ system by calculating and

applying a bias-correction function c(t). We present enhanced reweighting protocols for variationally

enhanced sampling (VES) simulations by exploiting a recent reweighting method, originally introduced in

the metadynamics framework [Giberti et al. J. Chem. Theory Comput., 2020, 16, 100–107], which was

modified and extended to multiple-walker simulations: these may be implemented either as ‘‘independent’’

walkers (associated with one unique correction function per walker) or ‘‘cooperative’’ ones that all share

one correction function, which is the hitherto only explored option. When each case is combined with the two

possibilities of determining c(t) by time integration up to either t or over the entire simulation period T ,

altogether four reweighting options result. Their relative merits were assessed by well-tempered VES

simulations of two model problems: locating the free-energy difference between two metastable molecular

conformations of the N-acetyl-L-alanine methylamide dipeptide, and the recovery of an a priori known

distribution when one water molecule in the liquid phase is perturbed by a periodic free-energy function. The

most rapid convergence occurred for large cooperative walkers, regardless of the upper integration limit, but

integrating up to t proved advantageous for small walker ensembles. That novel reweighting method compared

favorably to the standard VES reweighting, as well as to current state-of-the-art reweighting options introduced

for metadynamics simulations that estimate c(t) by integration over the collective variables. For further gains in

computational speed and accuracy, we also introduce analytical solutions for c(t), as well as offering further

insight into its features by approximative analytical expressions in the ‘‘high-temperature’’ regime.

1. Introduction

Enhanced sampling (ES) techniques for molecular dynamics (MD)
simulations, such as umbrella sampling,1,2 replica exchange,3,4

and steered MD5,6 along with the more recent options of
metadynamics,7–16 variationally enhanced sampling (VES),17–23

and machine learning,24–26 offer powerful means to accelerate
the convergence of MD simulations via an enhanced free-energy
surface-sampling by avoiding that states are revisited. Hence, they
may address challenging systems featuring multiple local energy
minima separated by high barriers that would require a prohibi-
tive time-scale by classical MD simulations. This is accomplished
by adding a time-dependent bias potential, V(s, t), which depends
on a set of collective variables (CVs) of the system, denoted by s.7–13

Numerous refinements of ES protocols have been presented,
encompassing the precise choices of CVs14,16,23,24,26–28 and bias-
potential parametrization,10,15,22,29,30 along with miscellaneous
very recent options,27,31,32 as well as improved reweighting
procedures12,33–38 to recover the targeted unbiased free energy,
F(s), from the sum F(s) + V(s, t) that governs the biased MD
trajectory.

In particular metadynamics has been widely applied for
modeling (bio)chemical processes, such as the nucleation and
growth of carbon nano-tubes,39–41 proton transfers,42–44 con-
formations of biomolecules in solution,28,45–47 as well as their
binding at inorganic surfaces.48–50 Also the herein utilized VES
procedure17–23 has been employed for modeling of molecular
conformations in solutions,18,51 crystal nucleation,21,30 whereas
the ability of VES to handle large sets of CVs have enabled
simulations of protein folding.22,52

Two powerful options for accelerating the convergence of the
ensemble-averaged free energy and other observables from ES/MD
simulations involve either (I) calculation of the time-dependent
bias-correction function, c(t), by analyzing non-equilibrated
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systems using time integration, as in the very recent ‘‘iterative
trajectory reweighting’’ (ITRE) algorithm introduced for metady-
namics simulations by Giberti et al.,38 or (II) an enhanced
simultaneous sampling of the CV space by performing multiple
(NW) computations in parallel, each referred to as a ‘‘walker’’ and
subjected to the same bias potential.10,14,16,19,27,46,53 Using several
such walkers may greatly accelerate the convergence of ES/MD
simulations.10,14,16,19,27,53 For multiple-walker ES simulations, we
introduce the concepts of ‘‘independent’’ and ‘‘cooperative’’ walk-
ers, which are associated with NW distinct bias-correction func-
tions {cw(t)}, and one shared c(t) function [denoted by cS(t)],
respectively; see Section 3. Section 2 outlines the salient features
of VES and reweighting, moreover reviewing the hitherto (prob-
ably) most efficient and accurate options for determining c(t).36–38

By coupling options (I) and (II)—and thereby generalizing a
modified ITRE protocol to multiple-walker simulations and
integrating it with the VES framework17–19,23—we demonstrate
that an overall accelerated convergence results relative to the
reweighting procedure of the original VES protocol.17–20 The
latter is moreover shown to be equivalent to the balanced
exponential (BE) reweighting of Schäfer and Settanni37 when
implemented within the VES scope. Our proposed reweighting
method was selected from assessments of four new protocols
for estimating c(t) by combining the options of (A) independent
or cooperative walker ensembles with (B) estimations of c(t) by
time-integration up to either t or across the entire MD simulation
time period Tð Þ. The convergence properties of the altogether four
distinct reweighting procedures were evaluated for two model
problems (Section 5): (i) locating the free-energy difference
between two metastable molecular conformations of the
N-acetyl-L-alanine methylamide dipeptide, which is a widely exploited
system for benchmarking ES developments.12,14,17,26,27,36,37,54 (ii) The
convergence to a known distribution when one water molecule
in the liquid phase is subjected to a known (artificial) free-
energy perturbation.

We discuss the relative merits of the novel reweighting
options for ‘‘small’’ and ‘‘large’’ ensembles of both cooperative
and independent walkers for well-tempered VES implementa-
tions with both ‘‘good’’ and ‘‘poor’’ collective-variable selections,
the choice of which strongly affects the convergence of the
computed ensemble-averaged observables. Nonetheless because
an optimal choice of collective variable often remains a priori
unknown, simulation protocols that simultaneously offer quick
convergence and high accuracy even for unfavorable collective
variables are desirable. The overall most rapid convergence
resulted for simulations with cooperative walkers combined with
c(t) calculated by time integration up to t (rather than to T ). That
herein advocated ‘‘Mt

S’’ procedure compared favorably both to the
standard reweighting procedure in VES17–19 and the state-of-the-
art reweighting metadynamics protocol by Tiwary and
Parrinello36 (when implemented within VES). For further compu-
tational speed and accuracy enhancements, we also provide
analytical solutions for the c(t) function of the Mt

S protocol
(Section 3.2). These time savings and accuracy-boosts are
expected to be of great utility for further ES/MD-simulation
studies.

2. Theoretical background
2.1 Ensemble-averaged observables from biased trajectories

The ensemble average hO(R)i of an observable O(R) that
depends on spatial coordinates R is defined7–10,14,16,19,55

OðRÞh i ¼
Ð
dROðRÞ expf�bUðRÞgÐ

dR expf�bUðRÞg : (1)

It may be calculated according to

OðRÞh i ¼

ZV

Z

Ð
dROðRÞ expf�b½UðRÞ þ VðsðRÞ; tÞ�g expfbVðsðRÞ; tÞg

ZV
;

(2)

where U(R) is the internal energy of the system, and b = (kBT)�1,
where kB and T are Boltzmann’s constant and the absolute
temperature, respectively. The partition functions of the biased
(ZV) and unbiased (Z) ensembles are given by

ZV ¼
ð
dR expf�b½UðRÞ þ VðsðRÞ; tÞ�g; (3)

and

Z ¼
ð
dR expf�bUðRÞg; (4)

respectively.
The unbiased probability distribution, P(s), is defined by

PðsÞ ¼
Ð
dRdðs� s0ðRÞÞ expf�bUðRÞgÐ

dR expf�bUðRÞg ; (5)

where d(x) is the Dirac delta function. After integration over R,
the probability distribution may be expressed as

P(s) = Z�1 exp{�bF(s)}, (6)

where ‘‘s’’ implies either that the collective variable(s) is/are
independent on spatial coordinates or depend(s) only on a
specifically selected subset thereof. The introduction of the two
exp{�bV(s(R), t)} factors in eqn (2) along with the multiplication
of both its nominator and denominator by ZV implies that the
biased simulation sample configurations from the V(s, t)-biased
probability distribution,7–10,14,16,19

PV(s, t) = ZV
�1 exp{�b[F(s) + V(s, t)]}. (7)

By equating the ratio ZV/Z of eqn (2) with the exponentiated
bias-correction function, i.e., ZV/Z = exp{�bc(t)}, eqn (2) may be
written

OðRÞh i ¼
Ð
dROðRÞ expf�b½UðRÞ þ VðsðRÞ; tÞ�g expfb½VðsðRÞ; tÞ � cðtÞ�gÐ

dR expf�b½UðRÞ þ VðsðRÞ; tÞ�g :

(8)
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By assuming ergodicity—i.e., a time/ensemble-averaging equiva-
lence, hO(R)i may be estimated from the time-average over the
biased MD-generated trajectory, according to7–10,14,16,19,27,36–38

OðRÞh i ¼
Ð
dtOðRðtÞÞ expfb½VðsðtÞ; tÞ � cðtÞ�gÐ

dt expfb½VðsðtÞ; tÞ � cðtÞ�g : (9)

Eqn (9) is the prevailing route to calculate ensemble averages
from ES simulations, where the calculation of c(t) becomes the
central task for recovering F(s) and hO(R)i from the biased
trajectories.7–10,14,16,19

Moreover, for a well-tempered ensemble over a sufficiently
long time, the bias potential V(s, t) is related to F(s) via the bias
factor g by11–15,19,20

V(s, t) = �(1 � g�1)F(s), (10)

whereas PV(s, t) [eqn (7)] is related to P(s), according to

PVðs; tÞ ¼
½PðsÞ�1=gÐ
ds½PðsÞ�1=g: (11)

2.2 Variationally enhanced sampling

The variationally enhanced sampling17–23 protocol aims at
minimizing a bias-potential-dependent functional, L(V(s, t)),
which for a time-dependent bias potential, V(s, t), and a well-
tempered target distribution, PV(s, t) (eqn (11)) is given
by17,19–21

LðVðs; tÞÞ ¼ b�1 ln

Ð
ds expf�b½FðsÞ þ Vðs; tÞ�gÐ

ds expf�bFðsÞg

� �

þ
Ð
dsVðs; tÞ½PðsÞ�1=gÐ

ds½PðsÞ�1=g :

(12)

The global minimum of the convex functional L(V(s, t)) is18,19

V(s, t) = �F(s) � (bg)�1 ln P(s) � b�1 ln ZV. (13)

For practical computations, the bias potential is expanded in a
suitable set of k basis functions, whose corresponding {ak}
expansion coefficients are the variational parameters that are
updated iteratively during the minimization of L(V(s, t)).17,19–22

For the present calculations that involve s-periodic bias poten-
tials, we employed a combined cosine and sine Fourier series,

Vðs; tÞ ¼ a0 þ
XNF

k¼1
a2k�1ðtÞ cosfksg

þ a2kðtÞ sinfksg; with 0 � so 2p;

(14)

where a0 = 0 in previous17–23 as well as our current VES
implementations.

With the recent exception of Yang and Parrinello,23 who
combined the time-lagged independent component analysis56

and VES, all previous reweighting implementations were tant-
amount to using a constant bias-correction function, i.e., effectively
c(t) = 0, which only holds strictly for ‘‘late’’ time-points of the MD
simulation; see Sections 2.3.1, 3.1 and 5.3. Herein, we demonstrate
that state-of-the-art reweighting procedures from the metadynamics
context that employ time-dependent bias-correction functions36,38

may offer both a more rapid and a reliable convergence of the
modeled observables relative to the standard VES reweighting
implementation with c(t) = 0.

2.3 Efficient strategies for calculating the time-dependent
bias correction

Here we review current state-of-the-art approaches—all from
the realm of (well-tempered) metadynamics—for estimating the
bias-potential-correction function by integrating either over
collective variables36,37 or over time.38,54

2.3.1 Integration over collective variables. Tiwary and
Parrinello36 showed that c(t), expressed by an integration over
the entire CV space,

cðtÞ ¼ �b�1 ln

Ð
ds expf�b½FðsÞ þ Vðs; tÞ�gÐ

ds expf�bFðsÞg

� �
; (15)

may be estimated by using the well-tempered relation for the
free energy

FðsÞ ¼ �Vðs; tÞ
1� g�1

þ b�1 ln

ð
ds expfbVðs; tÞ=ð1� g�1Þg

� �
: (16)

Becuase eqn (16) is only exact once the entire CV space is
sampled, which formally demands that t - N, reweighting via
eqn (15) and (16) remains accurate after a ‘‘transient’’ time
period on a (sub)ns scale,19,36 where the a priori unknown lower
limit is herein denoted by tmin. The calculations may otherwise
introduce non-negligible errors and no universal and truly
accurate procedure accounting for the unpopulated CV values
is hitherto presented. Notably, as illustrated in Section 5.2, the
same caveat applies to the standard VES reweighting (Sections
2.2 and 3.1).

The combination of eqn (15) and (16) is the key feature of
the procedure by Tiwary any Parrinello36 for estimating c(t) via
an integration over the CVs; it is henceforth denoted by MTP

S ,
and is associated with a bias-potential-correction function cTP

S (t)
obtained from eqn (15), where the subscript S stresses the use
of cooperative walkers for multi-walker simulations. We have
successfully utilized the Tiwary–Parrinello reweighting protocol
within the VES formalism for studying biomolecular binding at
calcium phosphate surfaces.57,58

Schäfer and Settanni37 suggested by their ‘‘balanced expo-
nential’’ protocol that a better estimate of c(t) [eqn (15)] may be
obtained, associated with the readily calculated bias-correction
function given by the average value of V(s,t) over the CVs:37

cðtÞ ¼
Ð
dsVðs; tÞÐ

ds
: (17)

Metadynamics simulations utilizing reweighting by the BE
procedure compared favorably37 with that of Tiwary and
Parrinello,36 as well as with an earlier option introduced by
Bonomi et al.12 (the latter is not considered further herein).
Incidentally, for VES implementations with V(s,t) expressed
according to eqn (14), then eqn (17) evaluates to

c(t) = a0 = 0. (18)
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Hence, the bias-correction function from the metadynamics-
stemming BE reweighting coincides with that of VES. Conse-
quently, we will in the following refer to this reweighting
method as MVES

S but we will cite both ref. 17 and 37 to
emphasize that once the BE reweighting is applied within the
VES context, it reduces to the ‘‘standard’’ VES reweighting with
a time-independent bias-correction function.

2.3.2 Integration over time. Giberti et al.38 recently intro-
duced the ITRE reweighting procedure for calculating c(t) and
F(s) from metadynamics simulations, which they argued gives
significant benefits to s-integration-based reweighting counter-
parts, such as those of ref. 12, 19 and 36. The ITRE protocol
estimates F(s) from the unbiased distribution by integrating
eqn (9) up to time-point t (Fig. 1a),

Pðs; tÞ ¼ expf�bFðsÞg

¼
Ð t
0
dtdðs� s0ðtÞÞ expfb½Vðs0ðtÞ; tÞ � cðtÞ�gÐ t

0dt expfb½Vðs0ðtÞ; tÞ � cðtÞ�g
;

(19)

whereupon combination of eqn (15) and (19) yields the
expression38

expf�bcðtÞg ¼
Ð t
0
dt expfb½VðsðtÞ; tÞ � cðtÞ � VðsðtÞ; tÞ�gÐ t

0dt expfb½VðsðtÞ; tÞ � cðtÞ�g
:

(20)

We refer to ref. 38 for details on practical ITRE implementa-
tions within the metadynamics scope, whereas Section 3.1
presents a modified procedure implemented herein within
VES, along with extensions to multiple-walker simulations.

3. Enhanced reweighting procedures
3.1 New reweighting protocols

The metadynamics-associated ITRE strategy by Giberti et al.38

for estimating c(t) by integrating eqn (20) over the history of
V(s, t) is readily generalized to multiple-walker simulations
within the VES framework, which may involve NW independent
or cooperative walkers. Note that for a given simulation,
all—independent and/or collective—walkers share the same
bias potential and only differ in their bias-correction functions
(vide infra). Hence, ‘‘independent walkers’’ should not be con-
fused with ‘‘independent simulations’’. Moreover, the time-
integration of eqn (20) may for each case be evaluated by either
using t (as in ref. 38) or T as upper integration limit (Fig. 1a,b),
which lead to time-dependent [P(s, t)] and time-independent
Pðs; T Þ½ � distribution functions, respectively. Consequently,

combination of both pairs of ‘‘walker’’ and ‘‘time-integration’’
options furnishes four new reweighting methods: each one is
denoted by MG

W , where the time-integration limit is given by the
superscript G = t or G ¼ T , while the subscriptW identifies the
scenarios of either cooperative W ¼ Sð Þ or independent W ¼ wð Þ
walkers, where ‘‘w’’ is an index w = {1, 2, . . ., NW}.

Each independent walker w associates with its ‘‘own/unique’’
function, cGw(t), calculated by a generalized form of eqn (20),
according to

expf�bcGwðtÞg ¼
Ð G
0 dt expfb½VðswðtÞ; tÞ � cGwðtÞ � VðswðtÞ; tÞ�gÐ G

0
dt expfb½VðswðtÞ; tÞ � cGwðtÞ�g

;

(21)

where sw(t) is the CV value of walker w at time-point t. All
cooperative walkers, on the other hand, share the same bias-
correction function, cGS(t), which is obtained from

expf�bcGSðtÞg¼

Ð G
0
dt
PNW

w¼1
exp b VðswðtÞ;tÞ�cGSðtÞ�VðswðtÞ;tÞ

� �� �
Ð G
0
dt
PNW

w¼1
exp b VðswðtÞ;tÞ�cGSðtÞ

� �� � :

(22)

Eqn (21) and (22) were in practice implemented by sampling
each sw(t) function at n discrete time-points

ft0 � 0; t1; t2; . . . ; tj ; . . . ; tn�1 ¼ T g; with tj ¼ jDt (23)

with Dt ¼ T =ðn� 1Þ, yielding a self-consistent system of equa-
tions with the solution {c(t0), c(t1), . . ., c(tn�1)}, as depicted
schematically in Fig. 1a,b.

Because the ITRE protocol38—along with its generalized
multiple-walker expressions given herein [eqn (21) and
(22)]—compute c(t) by time integration up to either t (ref. 38)
or to T , they do not explicitly assume ergodicity and are thereby
less prone to acquire systematic errors that may decelerate the

Fig. 1 (a) The time-integration limits of eqn (21) with (a) G = t and (b) G ¼
T depicted for the specific case of estimating c(t4) for n = 8 time-points {tj}
[eqn (23)]. (c) Graphical illustration of the estimation of ct

w(t4) for one
walker by using the analytical solution of eqn (27), which involves the
parameters A [eqn (25a)], C [eqn (25c)], and D [eqn (25d)]. The bias-
potential terms for parameter C, V(sw(tk), tk) and for parameter D,
V(sw(t4), t4), are depicted by green and black dots, respectively, whereas
parameter A involves both V(sw(tk), t4) (red dots) and V(sw(tk), tk). Note that
the index 0 r k r 3 implies that t is integrated up to t4, as in (a).

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
5/

20
24

 1
:4

9:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cp04009c


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 22063–22078 |  22067

metadynamics/VES convergence. Notably, that contrasts with
the MTP

S and MVES
S approaches of ref. 17, 36, and 37 that utilize

s-integration and rely on the validity of eqn (16); see
Section 2.3.1. Albeit their reweighting accuracy may improve
by restricting the evaluation of eqn (15) to the data with
t Z tmin, the precise value of tmin is a priori unknown and must
be deduced empirically.19,36

The reweighting evaluations herein included the entire time
domain to enable continuous ‘‘convergence curves’’ for all meth-
ods and simulation periods T (Section 5), thereby offering
practical assessments of MTP

S and MVES
S against the new time-

integration-based reweighting protocols, none of which requires
any t o tmin truncation of the data set and consequently also no
assumptions about the unknown limit tmin. This feature is a
decisive advantage of reweighting by time-integration.38

3.2 Analytical solutions for the bias-correction function c(t)

Albeit the computational efforts of the reweighting stage
remain truly marginal as compared with those of its underlying
MD simulations and eqn (22) may be solved in E3 iterations,38

here we provide analytical solutions for the bias-correction
functions ct

S(t) and ct
w(t), whose computational costs match that

of one sole numerical iteration cycle, thereby offering signifi-
cant advantages both in terms of speed and accuracy.

To solve eqn (22) analytically, we express it according to

expf�bcðtjÞg ¼
Aþ B expf�bcðtjÞg
C þD expf�bcðtjÞg

; 0 � j � n� 1; (24)

where each parameter A, B, C, and D is given by a summation
over exponentiated functions evaluated at time-points {tj}
[eqn (23)], each separated by Dt:

A ¼ Dt
Xj�1
k¼0

XNW

w¼1
expfb½VðswðtkÞ; tkÞ � VðswðtkÞ; tjÞ � cðtkÞ�g;

(25a)

B = DtNW, (25b)

C ¼ Dt
Xj�1
k¼0

XNW

w¼1
expfb½VðswðtkÞ; tkÞ � cðtkÞ�g; (25c)

D ¼ Dt
XNW

w¼1
expfbVðswðtjÞ; tjÞg: (25d)

Fig. 1c illustrates the various time-dependent bias-potential
components [V(sw(tk), tj)] of eqn (25) for one walker and tj value.
Here, the C and D parameters depend only on the values
V(sw(tk), tk) (green dots) and V(sw(tj), tj) (black dot), respectively,
whereas A involves both V(sw(tk), tj) (red dots) and V(sw(tk), tk).

By identifying xj � exp{�bc(tj)}, eqn (24) may be represented
as

Dxj
2 + (C � B)xj � A = 0, 0 r j r n � 1, (26)

which may be solved analytically:

cðtjÞ ¼ �b�1 ln yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ A=D

q� �
;

with y ¼ ðB� CÞ=ð2DÞ:
(27)

Note that A = C = 0 at t0 = 0, which in the absence of a bias
potential [V(sw(t0), t0) = 0] implies that B = D and c(t0) = 0. For
each consecutive time-point tj ( j = 0, 1, . . ., n � 1), eqn (25) are
evaluated, whereupon c(tj) is determined from eqn (27).

Notably, eqn (27) applies to calculations of c(t) for the
practically most relevant scenario of cooperative walkers,
whereas that for independent walkers follows trivially because
each of the sums A–D in eqn (25) collapses into one sole term for
each walker w. These analytical solutions of ctWðtÞ were
employed in all computations presented below.

4. Computational methods
4.1 General simulation conditions

All atomistic MD simulations involved NVT ensembles at
T = 37 1C, utilizing the GROMACS v2018.1 platform.59 The
equations of motion were integrated in steps of 0.9 fs by using
the velocity Verlet integrator.55 The Coulomb interactions were
calculated with a smoothed particle–mesh Ewald summation60

of order four and a tolerance of 10�5, using a Fourier spacing of
0.12 and a switch distance of 1.2 nm, while the van der Waals
interactions were truncated at 1.2 nm. The temperature was
controlled by the velocity rescale thermostat61 with a 1.0 ps
time constant.

The well-tempered VES simulations17–19 employed the
PLUMED2.4 software.62 To enhance the configurational sam-
pling, a well-tempered target distribution with bias factor g = 5
was employed along with the CV. The time-dependent bias
potential, V(s, t), was expanded out to order NF = 6 in the CV
(eqn (14)). The well-tempered target distribution PV(s, t) =
exp{bV(s, t)/(g � 1)} and the {ak(t)} coefficients were calculated
iteratively during the simulation by using the averaged-
stochastic-gradient descent algorithm63 with a step size of
m = 1.0 to minimize the variational functional eqn (12) by the
procedures described in ref. 17 and 63. The time integration
spans the interval Dt between each bias-potential update.17 To
minimize numerical errors, the Fourier coefficients {ak(t)} were
updated every Dt = 0.9 ps and then stored at each time-point,
while PV(s, t) was updated every 0.45 ns.

The accuracy of the bias-potential evaluation was improved
by sampling different CV domains by employing NW walkers,
each operating within an independently generated system and
starting from different configurations to ensure that they
sample different MD trajectories.

4.2 Alanine dipeptide simulations

One N-acetyl-L-alanine methylamide molecule—henceforth
referred to as ‘‘alanine dipeptide’’ (Fig. 2)—was simulated in
vacuum by using the CHARMM36/CMAP all-atom force field
(July 2017).64 The volume of the cubic cell was kept constant at
V = 36.7 nm3 to avoid undesirable boundary-condition effects.
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The simulations were performed with two distinct CVs repre-
sented by either torsion angle s = f or s = c (Fig. 2), as well as
with ensembles of NW = {4, 8, 16, 64} cooperative and indepen-
dent walkers. As described further in Section 5.1, every simu-
lated {s, NW} combination was reweighted by each novel

Mt
S;M

T
S ;M

t
w;M

T
w

� �
protocol along with MTP

S (ref. 36) and
MVES

S (ref. 17 and 37), by evaluating DF between two metastable
molecular conformations for increasing T (see Section 5.1).

The convergence of each reweighting method was assessed
from Nsim = {16, 16, 8, 6} independent but nominally identical
simulations for the respective walker ensembles with NW = {4,
8, 16, 64} by calculating the root-mean-square (rms) deviation
of DF � DFðT Þ to the fully converged reference value DFref =
6.80 kJ mol�1, i.e., we evaluated the entity rmsðDFðT Þ � DFrefÞ.
DFref was determined from three independent VES/MD simula-
tions that utilized both CVs, s = {f, c}, for a long simulation period
of T ¼100 ns (using one walker). Moreoever, because the bias-
potential V(s, t) converged well within 20 ns, employing the
standard VES reweighting protocol17–19 for t 4 20 ns yielded the
same value of DFref = 6.80 kJ mol�1 for all three simulations. Note
that all reweighting methods converge to the same result (see
Section 5.1). The initial configuration of each walker of the
subsequent Nsim simulations constituted a randomly selected
frame for t 4 20 ns of the fully converged 100 ns MD simulations.

The variance among the rmsðDFðT Þ � DFrefÞ results of the
Nsim simulations was determined by the Jackknife method65

according to

s2 rmsðDF �DFrefÞ½ � ¼ ðNsim� 1Þ�1
XNsim

k¼1
yk � rmsðDF �DFrefÞf g2;

(28)

yk
2 ¼ ðNsim � 1Þ�1

XNsim

jak

DFj � DFref

	 
2
: (29)

4.3 Analytical potential-model simulations

We simulated an NVT ensemble of 1000 water molecules with
the force field of ref. 66 in a cubic box of equal axis lengths
lx = ly = lz = 3.1 nm. An internal reference point was obtained by
restricting the position of one molecule at origo by an harmonic
potential with a large force constant (k = 250 kJ mol�1). The
center-of-mass of one other water molecule, referred to as ‘‘A’’,
was restricted at y = 1.3 nm. The intermolecular separation was
around ly/2, which ensured that the two molecules are further
apart than the cutoff distance of 1.2 nm for all Coulomb and
van der Waals interactions. The position of molecule A along
the x direction was subjected to the periodic free-energy
function

F(x)/(kJ mol�1) = 5 cos{6x2p/lx}, (30)

which possesses six local energy minima, all separated by a
barrier of 10 kJ mol�1.

The system was simulated with the collective variable
s = 2px/lx (which is the optimal choice), NW = 6, and g = 5, which
ensures the asymptotic relationship V(x) = �(1 � g�1)F(x) =
�(4/5)F(x):

V(x)/(kJ mol�1) = �4 cos{6x2p/lx}. (31)

The bias potential was applied to molecule A along the x
direction, whereas no other direction or molecule was biased.
Hence, all walkers shared the same energy minimum at
x E 0.8 nm (see Section 5.2), yet at slightly different positions
to ensure that each follows a unique trajectory. The results
presented below are averages over 32 independent but nomin-
ally identical simulations.

5. Results and discussion
5.1 Alanine dipeptide conformations

Owing to its extensive use in developments of metadynamics and
other ES methods,12,14,17,19,26,27,36,37,54 the alanine dipeptide
molecule in vacuum was selected for benchmarking the new

Mt
S;M

T
S ;M

t
w;M

T
w

� �
reweighting options, which are contrasted

with the already established state-of-the-art MTP
S (ref. 36) and

MVES
S (ref. 17 and 37) schemes. The convergence offered by each

protocol was evaluated for (i) increasing simulation time Tð Þ,
when (ii) using either of the torsion angle f or c as CV, and
(iii) variable-sized walker ensembles with NW = {4, 8, 16, 64}.

Fig. 2 Illustration of the two ‘‘C7eq’’ and ‘‘C7ax’’ molecular conformations
of N-acetyl-L-alanine methylamide (‘‘alanine dipeptide’’) with the two
torsion angles f and c indicated, along with the free-energy surface.
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Here, we assessed the convergence of the free-energy difference
between two metastable molecular conformations that form a
seven-atom membered cyclic structure, labeled ‘‘C7’’, and stabi-
lized by an internal hydrogen bond. These two conformations are
shown in Fig. 2, along with the F(s) contours plotted against f and
c. The three methyl groups of the molecule may assume either
equatorial (C7eq) or axial (C7ax) orientations relative to the ring,
respectively. We assessed the convergence performance of each

Mt
S;M

T
S ;M

t
w;M

T
w ;M

TP
S ;MVES

S

� �
reweighting procedure via the

free-energy difference

DFðT Þ ¼ �b�1 ln
PðC7axÞ
PðC7eqÞ

� �
(32)

between two torsion-angle domains D ¼ f; c:fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf� f0

DÞ2 þ ðc� c0
DÞ2

q
o 10�g centered at OðD0Þ � ff0

D;c
0
Dg,

with O(C7eq0) = {�811, 711} and O(C7ax0) = {741, �671},
respectively. The probability PðDÞ of domain D is

PðDÞ ¼

Ð T
0
dt
PNW

w¼1
wDðOwðtÞÞ exp b½VðswðtÞ; tÞ � cðtÞ�f g

Ð T
0 dt

PNW

w¼1
exp b½VðswðtÞ; tÞ � cðtÞ�f g

; (33)

where the function wDðOwðtÞÞ is unity throughout D and zero
otherwise.

5.1.1 Role of walkers and choice of collective variable for
convergence. For each collective variable s = f and s = c, Fig. 3
plots the convergence function, rms(DF � DFref), for increasing
MD simulation intervals T and walker ensembles with 4 to 64
members. All reweighting schemes converge markedly more
rapidly for the simulations with s = f than those for s = c.
Hence, s = f is a ‘‘good’’ choice of CV because it manifests
pronounced transition-state barriers between the energy
minima (Fig. 2), which are readily compensated for by the bias
potential V(f, t), whereas the selection s = c leads to a
‘‘hystereses’’ behavior that results in slow convergence.14,19

These features are more transparent in the corresponding
plots of Fig. 4 which are zoomed around the ‘‘near-convergence’’
domain (dotted rectangles in Fig. 3). Indeed, Fig. 4b and Table 1
reveals that for simulations with s = c and NW = 4, only the data
reweighted by Mt

S, MTP
S and MVES

S reach below the convergence
threshold (horizontal red dotted lines in Fig. 3 and 4) within our
longest evaluated value of T ¼ 20 ns, requiring the corresponding
simulation periods of 13.7 ns, 14.0 ns, and 19.4 ns, respectively.
However, while these rms results over Nsim = 16 independent
simulations meet the convergence criterion, only the Mt

S and MTP
S

reweighting schemes offer convergence for all simulations (upon
omission of obvious outliers; see Table 1), both requiring
T � 19 ns. Fig. S1 and S2 (ESI†) show the convergence curves
with�s spreads among the Nsim simulations of each reweighting
scheme.

The overall most rapid rms(DF � DFref) convergence resulted
when employing (moderately) large walker ensembles (Fig. 3c–h
and 4c–h). This property is most evident for the simulations
with the ‘‘unfavorable’’ CV c, where all walker ensembles with
NW Z 8 secured proper convergence within 20 ns for all

reweighting schemes but Mt
w. Moreover, regardless of the

precise choice of CV, Fig. 3 and 4 reveal that cooperative walkers

(i.e., Mt
S and MT

S ) are markedly more favorable than indepen-

dent ones (i.e., Mt
w and MT

w ). Their advantage emphasizes
progressively for increasing NW, which reflects the enhanced
statistics provided by sets of cooperative walkers for improved
c(t) estimates.

We remind that Fig. 3 and 4 employ a logarithmic time scale
and that the differences in convergence merits are substantial

between the favorable {Mt
S, MT

S } and worse {Mt
w, MT

w } pairs of
reweighting protocols. For the herein most favorable {s = f,
NW = 64} simulation scenario, the reweighting method with

collective walkers (MT
S ) required T ¼ 200 ps to attain ‘‘suffi-

cient’’ convergence of rms(DF � DFref), whereas its counterpart

with independent walkers MT
w

	 

demanded 670 ps (Table 1). For

the NW = 64 walker ensemble with the less favorable CV s = c,

the MT
S scheme required 290 ps for convergence, whereas MT

w

necessitated 7.34 ns (Fig. 4h). The differences in convergence
properties among the Mt

S and Mt
w schemes are even larger

(Table 1): Mt
S offers very similar convergence as MT

S for NW =
64 regardless of the choice of s. In contrast, the Mt

w counterpart
does not converge within 20 ns for the ‘‘difficult’’ s = c case,
irrespective of the walker-ensemble size, while it takes
6–29 times longer to converge (relative to Mt

S) for all s = f
scenarios with NW Z 8. Besides the expected finding that larger
walker ensembles accelerate the convergence relative to smaller
ones, we conclude that cooperative walkers are preferred to
independent ones.

5.1.2 Role of time-integration limit for convergence.
Because the MTP

S and MVES
S reweighting schemes utilize CV

integration, we here only contrast the novel {Mt
S, MT

S , Mt
w,

MT
w } protocols generalized from the ITRE procedure. For the

smallest walker ensembles with NW = 4 of Fig. 3a,b and 4a,b,
significant differences are observed for the rms(DF � DFref)
results between the protocols employing G = t relative to G ¼ T
for both cooperative and independent walker ensembles, where
the integration limit t is favorable throughout. Here, the Mt

S

reweighting scheme outperforms any other time-integration-
based reweighting option.

For larger ensembles with at least 8 independent walkers, the

results of Fig. 3c–h and 4c–h reveal that the MT
w protocol with

integration limit T offers a substantially faster reweighting

convergence than its Mt
w sister scheme. Nontetheless, MT

w ,
and (in particular) Mt

w, remain overall inferior to their

cooperative-walker based MT
S and Mt

S counterparts (Section
5.1.1). The latter procedures exhibit nearly equal reweighting
performances both far from (Fig. 3) and near/at (Fig. 4) con-
vergence, regardless of the precise simulation period and the
number of walkers. We attribute the property of a largely

immaterial choice of integration limit G = t (Mt
S) or G ¼

T MT
S

	 

for the ensembles of cooperative walkers to their

accompanying enhanced sampling of the CV domain, thereby
also naturally reducing the differences between averages over
time or over CVs.
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When all results of Fig. 3 and 4 are taken together for the

{Mt
S, MT

S , Mt
w, MT

w } reweighting procedures evaluated for dif-
ferent CVs, walker-ensemble types and sizes, the overall best
and near-equal performances are observed for the cooperative-

walkers based Mt
S and MT

S protocols. Yet we recommend using
the Mt

S scheme due to its markedly faster convergence also for
very small walker ensembles (Fig. 3a,b and 4a,b), along with
much more rapid reweighting calculations (Table S1, ESI†).

5.1.3 Relative reweighting merits. Here, we focus on con-

trasting the two best time-integration protocols, Mt
S and MT

S ,
with the s-integration based MTP

S and MVES
S schemes. Relative to

the MTP
S protocol introduced by Tiwary and Parrinello36, Schäfer

and Settanni37 highlighted primarily two advantages with their
balanced-exponential reweighting method: (i) a faster conver-
gence for ‘‘short’’ simulation periods, and (ii) lower reweighted-
observable uncertainties/variabilities. At least within the scope

Fig. 3 Plots of rmsðDFðT Þ � DFref Þ [eqn (32)] against the simulation interval T (log scale) for the herein proposed {Mt
S, Mt

w, MT
S , MT

w } reweighting
protocols, along with those by Tiwary and Parrinello36 (MTP

S ) and that of Schäfer and Settanni,37 which is identical to the original VES reweighting17,18

(MVES
S ). The VES/MD simulations employed ensembles of (a, b) 4, (c, d) 8, (e, f) 16, and (g, h) 64 walkers along with collective variables of s = f (left panel)

and s = c (right panel). Each dotted rectangle and horizontal red dotted line in (a)–(d) marks the respective regions of ‘‘near’’ and ‘‘sufficient’’ convergence
to the correct reference energy value DFref = 6.80 kJ mol�1. The relative performances of the various reweighting protocols in the near-convergence
regimes are more transparent in the zoomed plots shown in Fig. 4. Note that the vertical plot ranges varies among the rows of graphs and that the
converge accelerate consistently for increasing walker ensembles. Each rms(DF � DFref) curve resulted from (a)–(d) 16, (e, f) 8, and (g, h) 6 independent
simulations; Fig. S1 and S2 (ESI†) plot the data uncertainties.
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of VES—for which the BE and VES reweighting procedures
become identical (MVES

S )—the second claim is generally neither
born out by our assessments for the alanine dipeptide (vide
infra) nor for the case examined in Section 5.2. The perhaps
more important claim (i) of better reweighting convergence
properties for short MD simulation periods, however, appears
to depend significantly on the particular choice of CV(s) and
walker-ensemble size: for relatively large number of walkers
NW = {16, 64}, the MVES

S protocol indeed offers more rapid
convergence regardless of s = {f, c} (Fig. 3). Yet, these improve-
ments are typically only pronounced in regimes too far from a
reasonable convergence demand. Throughout both regimes of
‘‘near’’ and ‘‘sufficient’’ convergence, the VES/BE reweighting
consistently only outperformed all other methods for the cases
of s = f with NW = {4, 16}; see Fig. 3a,e and 4a,e.

A lack of reliability appears to be the main deficiency of the
original VES reweighting (Fig. 3–5, Fig. S1, and S2, ESI†): for the
largest-walker simulations close to convergence (Fig. 4g,h), the
highly oscillatory rms(DF � DFref) curve of MVES

S renders it

inferior relative to its primary Mt
S, MT

S , and MTP
S competitors.

The required simulation periods to attain convergence T convð Þ
among the protocols for {s = f, NW = 64 } increase according to

Mt
S �MT

S oMT
w oMTP

S oMVES
S 	Mt

w (Table 1), while the

case of s = c only differs in that T conv MT
w

	 

� T convðMTP

S Þ.
The 8-walker ensemble evaluations for s = f shown in Fig. 4c
reveal a similar trend, except that now the MTP

S protocol per-
forms overall best, both to reach convergence and within the
‘‘near convergence’’ regime (o1 ns). Hence, as for the VES/BE
reweighting, the Tiwary and Parrinello scheme manifests an
uneven performance among the simulations in Fig. 3 and 4, in

Fig. 4 Zoomed convergence plots of the near-convergence region shown by dotted rectangles in Fig. 3.
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contrast to the two best time-integration-based protocols (i.e.,

Mt
S and MT

S ), whose convergence improve monotonically for
increasing walker ensembles (Table 1). The uneven perfor-
mance of both s-integration-based reweighting proto-
cols—which is most pronounced for VES/BE—presumably
originates from the herein strict evaluations that involved
reweighting based on the entire simulated time domain; this
is examined further in Section 5.2.

Concerning the simulation periods for reaching convergence
of rms(DF � DFref) for the altogether eight {s, NW} combinations
(Table 1), the TP and VES/BE protocols offer the most rapid

convergence in two cases each, whereas the Mt
S/MT

S counterparts

accomplishes that in three cases, where we remind that the MT
S

and Mt
S schemes reveal essentially equal T conv values throughout,

except for the smallest walker ensembles of each s = {f, c} angle

(Section 5.1.1). Moreoever, whenever the Mt
S/MT

S methods do not
offer the most rapid convergence, their performances remain
close to the best method. Notably, for the much less forgiving
criterion that all Nsim simulations of each method must converge,
however, the Mt

S procedure perform best throughout the eight
evaluated {s, NW} scenarios (Table 1); yet, the difference to the
second-best reweighting scheme is often marginal.

The high precision and reliability of the Mt
S protocol is

gratifying when considering the linear scaling of the total
simulation time against Nsim, thereby in practice requiring a
reasonable small number of independent simulations to
accomplish an accurate average/rms value of hO(R)i. Hence, it
is desirable that the reweighting method yields the lowest
possible spread (variance) around the a priori unknown aver-
age/rms result, such that one sole simulation and its subse-
quent observable-reweighting may be expected to approximate
well the fully converged value obtained from a (very) large
number of Nsim independent simulations.

Fig. 5 plots the variance—s2[rms(DF � DFref)] calculated
from eqn (28)—observed from each reweighting protocol of
Fig. 3 for increasing T among the Ns simulations, employing
Nsim = {16, 16, 8, 6} for the respective walker ensembles with

NW = {4, 8, 16, 64}. The Mt
S, MT

S and MTP
S reweighting schemes

offer the overall lowest variances, all of which are similar. As for

the higher convergence rate of the Mt
S method relative to MT

S

for both s= {f, c} with NW = 4 (Fig. 3a,b and 4a,b), it also
features lower data spreads. The VES/BE protocol manifests
irregular variances, which typically remain larger than those of
the three best reweighting schemes for the evaluated {s, NW}
cases (Fig. 5). Also along the observations for the rms(DF � DFref)
convergence in Section 5.1.1, the variances of the two Mt

w and

MT
w methods with independent walkers are inferior relative to

their collective-walker counterparts. In particular, surprisingly
high variances are observed at long simulation periods for

the MT
w scheme (Fig. 5), for which we have no satisfactory

explanation.

5.2 Entropy assessments of an analytical free-energy model

The evaluations of the four Mt
S, MT

S , Mt
w, and MT

w protocols for
the alanine dipeptide suggested that simulations with reasonably
large ensembles (NW 4 4) of cooperative walkers are preferable
for obtaining the most accurate results, with the Mt

S reweighting
scheme offering the overall most favorable results (Fig. 3–5 and
Table 1). Our second benchmarking scenario of liquid water with
an artificial free-energy perturbation [eqn (30)] applied to one
molecule employs an optimal CV, s = 2px/lx (Section 4.3), along
with a modest walker ensemble of NW = 6. Consequently, we

focussed on comparing the cooperative-walker based Mt
S and MT

S

protocols (which are expected to consistently gain merits relative

to their Mt
w, and MT

w counterparts for increasing NW) with the

Table 1 Simulation time T conv (in ns) to reach convergencea

Alanine dipeptide

s � NW
b Nsim Mt

S MT
S Mt

w MT
w MTP

S MVES
S

f � 4 16 5.78(10.71) 20.0(�) 6.93(14.52) �(�) 5.89(11.81) 3.78(11.51)
f � 8 16 1.45(4.13) 1.45(9.36) 9.87(13.22) 1.45(7.65) 1.10(7.98) 1.57(9.72)
f � 16 8 1.47(1.671) 1.46(2.271) 9.59(12.01) 1.89(2.171) 1.97(2.311) 1.01(1.751)
f � 64 6 0.22(0.43) 0.20(0.530) 6.30(7.95) 0.66(1.08) 0.71(1.08) 0.81(1.03)

c � 4 16 13.7(18.63) �(�) �(�) �(�) 14.0(19.23) 19.4(�)
c � 8 16 17.0(17.62) 17.1(18.62) �(�) 15.2(18.62) 17.0(18.62) 17.4(18.62)
c � 16 8 9.8(10.01) 9.8(10.41) �(�) 10.9(11.72) 9.64(10.42) 9.96(10.72)
c � 64 6 0.32(2.66) 0.29(2.82) �(�) 7.34(9.531) 0.45(9.21) 0.90(9.81)

Analytical potential

Ns
c Nsim Mt

S MT
S MTP

S MVES
S

6 32 0.150(0.237) 0.170(0.269) 0.240(0.560) 0.700(1.29)
48 32 0.210(0.285) 0.220(0.503) 0.270(0.578) 0.770(1.38)

a The VES/MD simulation time required for reaching convergence T convð Þ of either rms(DF � DFref) (alanine dipeptide; Fig. 3 and 4) or DKL
(analytical potential model; Fig. 6b,c) when employing the given reweighting protocol. The values within parentheses represent the corresponding
T conv values required for all of the Nsim independent simulations to converge; each superscript marks the number of outlier data-curves that were
omitted to give the as-stated result. b Collective variable and size of walker ensemble. c Number of bins employed to evaluate eqn (35) with Ns = 6
(Fig. 6b) or Ns = 48 (Fig. 6c).
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CV-integration associated MTP
S (ref. 36) and MVES

S (ref. 17 and 37)
reweighting procedures.

The present problem-design with an a priori known F(x)
function acting on one water molecule along x, implies that a
converged VES/MD simulation should reproduce the periodic
free-energy and bias-potential functions of eqn (30) and (31),
respectively. Fig. 6a plots F(x) with its six local energy minima
Dkf g indicated, along with the corrected bias-potential func-

tions estimated from the Mt
S protocol for the simulation

periods of T ¼ 10 ps and 1.0 ns. Because all walkers were
initially confined to the D2 domain centered at x = 0.8 nm
[i.e., PðD2Þ ¼ 1], this population remains, as expected, strongly
favored for the very short T ¼ 10 ps simulation interval. In the
limits of very short and long simulation periods T , all exam-

ined reweighting protocols {Mt
S, MT

S , MTP
S , MVES

S } yield identical
results to that shown for Mt

S with T ¼ 1:0 ns in Fig. 6a.

The convergence of each reweighting protocol was monitored via
the estimated relative entropy, which was assessed by calculating
the Kullback–Leibler divergence (DKL)26,67 between the reweighted
distribution and PrefðsÞ ¼ expf�bFðsÞg=

Ð
ds expf�bFðsÞg:

DKL ¼
ð
ds PðsÞ lnfPðsÞ=PrefðsÞg: (34)

Eqn (34) was in practice evaluated by a discretization into Ns bins
according to

DKL ¼
XNs

k¼1
PðDkÞ ln PðDkÞ=PrefðDkÞf g: (35)

A properly converged VES/MD simulation should reproduce the
known reference distribution, which for the most straightforward
choice of Ns = 6 becomes PrefðDkÞ ¼ 1=6, meaning that all walkers
distribute evenly among the six F(x) minima (Fig. 6a).

Fig. 5 The variance, s2[rms(DF � DFref)]; eqn (28), plotted against the simulation period of each evaluated reweighting protocol of Fig. 3. Note the
different vertical scales in the (a and b) plots relative to those of (c, e, g), and (d, h, f).
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Fig. 6b plots the average DKL response obtained from 32
independent simulations for increasing T . We define DKL r 0.12
as ‘‘sufficient’’ convergence, which is indicated by the dotted red
line in Fig. 6b. As expected, DKL evolves from its initial value
ln{6}—i.e., with all walkers confined to D2—to equally populated
energy minima (DKL = 0), as in Fig. 6a for T ¼ 1:0 ns. The DKL

evolution among the various reweighting protocols vary signifi-
cantly for increasing T , with the value required to reach conver-

gence T convð Þ increasing according to Mt
S o MT

S o MTP
S o MVES

S ,
and translating into 150 ps, 170 ps, 240 ps, and 700 ps, respec-
tively (Table 1). This corresponds to E4.6 times faster conver-
gence of the ‘‘best’’ (Mt

S) scheme relative to the ‘‘worst’’ (MVES
S ).

The relative convergence order remains essentially strict through-
out all regions from ‘‘far’’ to ‘‘near’’, and ‘‘sufficient’’ conver-
gence, except for MVES

S (vide infra). Besides an overall slightly
decelerated convergence of all methods, all findings concerning
their relative merits also hold for the finer discretization with Ns =
48 shown in Fig. 6c. Morever, for the more stringent (‘‘worst-
case’’) convergence criterion that all 32 simulations from each
method must reach convergence, Table 1 confirms a lower T conv

period required for Mt
S than any other reweighting scheme,

thereby fully corroborating the inferences made from the alanine
dipeptide evaluations.

Hence, the results of Fig. 6b,c and Table 1 suggest that the

Mt
S protocol introduced herein outperforms its MT

S counter-
part, as well as both the Tiwary–Parrinello36 and VES/BE17,37

options. Notably, the performance of MVES
S is remarkably poor

for the present simple model system with a small walker
ensemble, except for the T � 30 ps domain far from any accep-
table convergence threshold: in this T -regime, the claim37 of a
more accurate reweighting than MTP

S is indeed born out (yet, see
Section 5.1.3). Fig. S3 (ESI†) presents the spread of {DKL} values
observed among the Nsim = 32 simulations of each reweighting
method of Fig. 6. The results are commensurate with those
discussed for the alanine dipeptide (Fig. 5, and Fig. S1 and

S2[ESI†]): the Mt
S, MT

S , and MTP
S protocols reveal overall similar

spreads, whereas that of VES/BE is typically wider.
Given that all our evaluations included the entire simulated

trajectories in the reweighting, which may deteriorate the con-
vergence of the methods based on CV integration (Sections 2.3.1
and 3.1), we also examined their ‘‘optimal’’ performance by
locating tmin for each of MTP

S and MVES
S , whereupon the DKL

curves were re-evaluated, only retaining the simulated data
beyond tmin for each Ns = {6, 48} scenario. Fig. S4 (ESI†) presents
the results. Whereas essentially no improvement resulted for the
MTP

S method, a substantially enhanced performance is observed for
MVES

S , with the MTP
S and MVES

S methods now revealing the same
convergence at T conv ¼ 230 ps for Ns = 6, and T conv ¼ 270 ps for
Ns = 48. Although a significant time-span t o 100 ps of the
simulated data was discarded, however, the MTP

S and MVES
S reweight-

ing schemes remain inferior to Mt
S (Fig. S4 (ESI†) and Table 1).

As expected, the data truncation gave no convergence improve-

ments for any of the t-integration methods Mt
S and MT

S (not
shown). These results underscore the benefits of reweighting by
time integration: no further efforts of locating the optimal tmin

Fig. 6 (a) Corrected bias potential, Vcorr(x, t) = V(x, t) � c(t), obtained from
the Mt

S protocol for short (green trace) and long (red trace) simulation
intervals T ¼10 ps and T ¼1:0 ns, respectively. The dotted curve represents
the applied free-energy function F(x) (eqn (30)), whose six minima Dkf g are
indicated beneath. (b) Convergence of the Kullback–Leibler divergence

[DKL; eqn (35)] with Ns = 6 for increasing T (log scale) for the Mt
S and MT

S

schemes proposed herein, as well as those of MTP
S (ref. 36) and

MVES
S (ref. 37). All simulations employed NW = 6 and the collective variable

s = 2px/lx. (c) As in (b), but using a finer grid of Ns = 48 bins of the CV. Each
curve is an average over 32 independent MD/VES simulations, whose
variations (data spread) are shown in Fig. S3 (ESI†). The horizontal red
dotted lines in (b and c) mark the threshold of ‘‘sufficient’’ convergence,
while the region around ‘‘near’’ convergence (dotted rectangle) is zoomed
in the inset graphs (using a linear T scale). (d) Bias-correction function c(t)
associated with each reweighting protocol evaluated in (b) and shown for
one representative simulation (see Section 5.4).
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value are required, thereby also eliminating any potential sys-
tematic errors introduced by the data truncation38 (Section 3.1).
Yet, once undertaken for the CV-integration-based schemes, no
dramatic differences are expected in the reweighting accuracy
between s/t-integration-based methods.

5.3 Summary and further considerations

No single reweighting procedure is ever likely to outperform all
others for MD simulations of any conceivable system and
evaluation criterion. Yet the findings of Fig. 3–6 and Fig. S1–
S4 (ESI†) altogether consolidate the Mt

S protocol as the method
of choice for both large and small walker ensembles, regardless
of (sub)optimal or ‘‘bad’’ choices of the CV: at the worst for a
given modeled system, Mt

S is expected to deliver a comparable
(or slightly inferior) reweighting accuracy compared with the
globally best reweighting scheme. Worth underscoring is that
VES/MD implementations employing time-integration-based
estimates of the bias-correction function typically offer better
accuracy and precision of the reweighted observable than the
hitherto utilized standard VES reweighting17–22 with c(t) = 0.

A (markedly) longer computational time for performing the
reweighting constitutes a minor practical disadvantage of the
novel time-integration MG

W
� �

reweighting protocols relative to
those utilizing CV averaging.17,36,37 This feature, inherited from
the ITRE protocol (see Giberti et al.38), is particularly pro-

nounced for the MT
w =M

T
S schemes which estimate c(t) by

integration over the entire MD-simulation time-span. Table S1
(ESI†) contrasts the scaling of the number of floating-point opera-
tions required for each reweighting procedure evaluated herein,
along with concrete CPU clock-timings for the simulations of
Fig. 3a. Notably, however, these deficiencies of ITRE-derived pro-
tocols are in practice immaterial because the MD simulation (even
for one walker) is orders-of-magnitude more time consuming than
the subsequent reweighting stage, thereby rendering the time
spent for the latter a largely irrelevant priority for selecting a
reweighting protocol.

5.4 Analytical c(t) expressions in the high-temperature limit

To gain further insight into the nature of the bias-correction
functions, we consider a limiting high-temperature scenario of
bF(s) { 1 and bV(s, t) { 1 with b = (kBT)�1. Then, approximate
analytical expressions may be obtained for the bias-correction
function associated with each herein introduced MG

W reweight-
ing method, as well as that of Tiwary and Parrinello.36

For simulations with independent walkers, a Taylor expan-
sion of the exponential functions of eqn (21) to first order yields

cGwðtÞ �
Ð G
0 dtVðswðtÞ; tÞÐ G

0 dt 1þ bVðswðtÞ; tÞ � bcGwðtÞ
� �

� G�1
ðG
0

dtVðswðtÞ; tÞ; G ¼ ft; T g; (36)

which applies to one independent walker. Hence, cGw(t)
is obtained as the time-average of the bias-potential taken up
to either G = t or G ¼ T . The same procedure applied to

cooperative walkers [eqn (22)] yields a readily calculated aver-
age over the set of NW correction functions {cGw(t)}:

cGSðtÞ ¼ NW
�1
XNW

w¼1
cGwðtÞ: (37)

We next consider the Tiwary–Parrinello reweighting
protocol,36 for which application of the high-temperature
approximation to eqn (15) gives the following result:

cTPS ðtÞ �

� b�1 ln

ð
ds 1� b FðsÞ þ Vðs; tÞ½ � þ b2½FðsÞ þ Vðs; tÞ�2=2
	 
� ��

� ln

ð
ds 1� bFðsÞ þ b2FðsÞ2=2
	 
� ��

�
ð
ds Vðs; tÞ=

ð
ds

� �
� b

ð
dsVðs; tÞ½FðsÞ þ Vðs; tÞ=2�=

ð
ds

� �
:

(38)

When using well-tempered VES17–19 with the bias potential of
eqn (14), the integral

Ð
dsVðs; tÞ=

Ð
ds in eqn (38) evaluates to a0 = 0,

whereupon the bias-correction function may be expressed

cTPS ðtÞ �
bðgþ 1Þ
4ðg� 1Þ

X2NF

k¼1
akðtÞ½ �2 (39)

in the high-temperature limit. Likewise, the BE reweighting37

and its VES equivalent17 implies that cVES
S (t) = 0 throughout

(Section 2).
Albeit approximate, eqn (36)–(39) offer reasonably tractable

analytical expressions of c(t), as estimated by integration over
either time38 or over CVs.36,37 For instance, Bonomi et al.12

derived an equality between the time-derivatives of c(t) and
hV(s, t)is, which follows trivially by applying either of eqn (36) or
(39). We next consider the converged results of Fig. 6d, all of

which provided ctSðtÞ � cTS ðtÞ � cTPS ðtÞ � 1:92 kJmol�1. (Because

the function cTS ðtÞ depends on the precise simulation period
[eqn (22)], we employed T ¼ 10:0 ns for the results plotted in
Fig. 6d). Here, eqn (14), (31), and (39) with a11(t) =� 4.00 kJ mol�1

predict that cTPS ðtÞ � a11ðtÞ½ �2bðgþ 1Þ=½4ðg� 1Þ� ¼ 2:32 kJmol�1.

Likewise, eqn (36) and (37) yield ctSðtÞ � cTS ðtÞ � 2:32 kJmol�1.
Hence, in a minimum of computational efforts, the value of c(t)
for t - N is predicted with a relative error of 14% as compared
with the accurate reference value of Fig. 6d.

6. Conclusions

We have generalized the recently proposed metadynamics ITRE
reweighting protocol38 to multiple-walker ensembles implemented
within VES, moreover introducing and examining the usage of
‘‘independent’’ and ‘‘cooperative’’ walkers. For well-tempered VES
simulations of two model cases, viz. the molecular conformations
of N-acetyl-L-alanine methylamide, and a water molecule in the
liquid phase subjected to a periodic free-energy function, we
examined the relative merits of current state-of-the-art reweighting
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methods introduced in the VES or metadynamics contexts17,36,37

against four new options: the latter resulted by combining either
independent or cooperative walkers with the bias-correction func-
tion c(t) estimated by time integration up to either t or across the
entire simulation period T ; see eqn (21) and (22).

The use of multiple-walker ES/MD simulations accelerates
the convergence of the reweighted observables. For all but very

small walker ensembles, the Mt
S and MT

S methods that utilize
cooperative walkers are superior to those with independent

walkers (Mt
w and MT

w ), with the performance-differences growing
for increasing NW. The precise upper time-integration limit of

t (Mt
S) or T MT

S

	 

is not critical for c(t) estimates for MD simula-

tions with (moderately) large cooperative walker ensembles. For
small walker ensembles (NW o 8), on the other hand, the
advantages of cooperative walkers are minor compared to inde-
pendent ones. Here, the choice of time-integration limit becomes
much more critical—strongly favoring the Mt

S/Mt
w protocols

relative to their MT
S =M

T
w counterparts—while the precise selec-

tion of ‘‘good’’ or ‘‘bad’’ collective variable(s) crucially underpins
the convergence of all reweighting protocols.

Although no single reweighting protocol is expected to
significantly outperform all others for any conceivable simula-
tion scenario, out of the herein contrasted reweighting meth-
ods, the Mt

S scheme with cooperative walkers and the bias-
correction function determined by time-integration up to t
appears to be the overall most dependable option: it offers a
superior accuracy for small walker ensembles than its primary

and otherwise equivalent competitor MT
S

	 

, along with much

more rapid reweighting calculations. Notably, both multiple-

walker Mt
S and MT

S protocols are readily implemented in other
ES methods, such as metadynamics. Moreover, we demon-
strated that reweighting of VES-derived observables by the Mt

S

procedure may be accelerated further by exploiting an analy-
tical solution of its bias-correction function, as well as that
qualitative insight into c(t) may be gained by approximative
analytical expressions in the ‘‘high-temperature’’ regime for all
six reweighting protocols that were considered. Computer code
for implementing the new reweighting procedures are available
at https://www.su.se/profiles/baltzar-1.187342 or may be
obtained from the authors on request.

The herein recommended Mt
S scheme provides a better—or

at worst comparable—reweighting accuracy as that of the cur-
rently best collective-variable-integration methods of Tiwary–Par-
rinello36 (MTP

S ) and the ‘‘balanced exponential’’ (BE) of Schäfer
and Settanni.37 We demonstrated that when the BE reweighting
is implemented within the VES framework, it becomes identical
to the original VES implementation17–20 (MVES

S ) with a constant
bias-correction function. However, VES/BE reweighting often

converged slower than the Mt
S, MT

S , and MTP
S options, while

typically giving a larger spread of reweighted observable-values
between independent simulations. Albeit that deficiency may be
alleviated by following the standard procedure of omitting the
initial part of the simulated trajectory in the reweighting to
improve accuracy, time-integration-based reweighting schemes
offer decisive advantages by not requiring any such additional

efforts/precautions along with their accompanying possible intro-
duction of systematic errors. We conclude that enhanced
reweighting of the VES/MD-derived observables are expected by
embracing time-dependent c(t) a 0 options, such as the

MTP
S reweighting36 and its time-integration Mt

S, MT
S counterparts

introduced herein.
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