Showcasing research led by Drs Félix and Laurencin at the Institut Charles Gerhardt, CNRS, Montpellier, France.

Induction-heated ball-milling: a promising asset for mechanochemical reactions

Through a collaborative investigation performed at the CNRS in Montpellier, involving both experiments and numerical simulations, we were able to show how induction-assisted heating can be used to tune the outcome of ball-milling reactions. Depending on the choice of the materials composing the jar and beads, it is possible to heat either the walls of the jars, or the beads themselves. Examples of applications are provided, for the elucidation of reaction mechanisms, the synthesis of new molecules, and the control the physical aspect of milling media.

Induction-heated ball-milling: a promising asset for mechanochemical reactions†

Gautier Félix, Nicolas Fabregue, César Leroy, Thomas-Xavier Métro, Chia-Hsin Chen and Danielle Laurencin

While ball-milling is becoming one of the common tools used by synthetic chemists, an increasing number of studies highlight that it is possible to further expand the nature and number of products which can be synthesized, by heating the reaction media during mechanochemical reactions. Hence, developing set-ups enabling heating and milling to be combined is an important target, which has been looked into in both academic and industrial laboratories. Here, we report a new approach for heating up reaction media during ball-milling reactions, using induction heating (referred to as i-BM). Our set-up is attractive not only because it enables a very fast heating of the milling medium (reaching \(\approx 80 \) °C in just 15 s), and that it is directly adaptable to commercially-available milling equipment, but also because it enables heating either the walls of the milling jars or the beads themselves, depending on the choice of the materials which compose them. Importantly, the possibility to heat a milling medium “from the inside” (when using for example a PMMA jar and stainless steel beads) is a unique feature compared to previously proposed systems. Through numerical simulations, we then show that it is possible to finely tune the properties of this heating system (e.g. heating rate and maximum temperature reached), by playing with the characteristics of the milling system and/or the induction heating conditions used. Lastly, examples of applications of i-BM are given, showing how it can be used to help elucidate reaction mechanisms in ball-milling, to synthesize new molecules, and to control the physical nature of milling media.

Introduction

In recent years, there has been an increasing interest and enthusiasm for mechanochemistry, i.e. a field of chemistry that studies chemical reactions and transformations under the action of mechanical forces. Notably, synthetic techniques like ball-milling, in which reagents are mixed and transformed mostly in the solid state under the action of beads, have drawn the attention not only of materials chemists, but also and more recently of molecular chemists. Indeed, several aspects of mechanochemistry render these reactions very attractive, including (i) the total absence or very small amounts of solvents used (making it a green synthetic approach), (ii) the generally increased reaction rates and yields, and (iii) the possibility to prepare new molecules and materials, which could not have been accessed nor isolated under standard synthetic conditions in solution. Among relevant examples of major achievements in ball-milling syntheses, one can cite the tailored preparation of mixed-metal MOFs (metal–organic frameworks), the elaboration of supramolecular Pt-square complexes for targeting guanine quadruplex motifs, the preparation of gold nanoparticles, and the synthesis of complex organic molecules, including π-conjugated fluorophores and peptides.

While most ball-milling reactions are performed in absence of external heating, the movements of the beads are accompanied by impacts and frictional forces, which cause an increase in temperature within the reactor. The extent of heat generated depends on both the milling conditions and the reagents involved. For example, a temperature rise of \(\approx 7–10 \) °C has been measured during the simple ball-milling of pure quartz or terephthalic acid for 15 minutes. Such an increase in temperature, in conjunction with the highly efficient mixing of the reagents, has been shown to be beneficial to help overcome the activation energy for some chemical reactions, and/or help accelerate their kinetics. Moreover, it was shown that by pre-heating the milling jars prior to the milling, it is also possible to change the kinetics and selectivity of...
mechanochemical reactions. From a more general perspective, in order to broaden the scope of reactions accessible by mechanochemistry and to tune the product selectivity, various approaches have been proposed by different research groups to enable heating the reaction medium throughout the mechanochemical syntheses (see Table 1 and S5, ESI). Among these, one can mention (i) the use of a temperature-controllable heat-gun pointing towards a stainless steel milling jar, with the internal temperature of the milling system reaching up to $\approx 120 \, ^\circ C$, (ii) the design of special milling jars with a double envelope, in which boiling water is circulating at $96 \, ^\circ C$, and (iii) the wrapping of the milling jar by an aluminum sleeve, which is then heated using a proportional-integral-derivative (PID) thermal controller and can enable the external jar of the reactor to reach $\approx 250 \, ^\circ C$ for 1 hour. From a synthetic perspective, such devices have shown to be very valuable not only to accelerate reaction kinetics or help overcome thermal activation barriers, but also to help further

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Representation of the different heating methods proposed for heating standard ball-milling systems (for a more complete literature survey, see Table S5, in ESI). Heating methods were separated depending on the presence of a direct contact between the heating source and the jar (“contact heating”), or on its absence (“contactless heating”).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTACT HEATING</td>
<td>CONTACTLESS HEATING</td>
</tr>
<tr>
<td>Description of the system</td>
<td>Heat-gun pointing to the jar.</td>
</tr>
<tr>
<td>Heating system wrapped around the jar.</td>
<td>Furnace (incl. with specific design, adapted to the jar)</td>
</tr>
<tr>
<td>Heating bands, tape, sleeves, belts, or pads (with electric connections)</td>
<td>Induction heating (heating of the jar or beads).</td>
</tr>
<tr>
<td>Scheme of the heating system</td>
<td>External or internal heating (depending on the jar and beads’ composition)</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>15,17,19-22,25,27,29,30</td>
<td></td>
</tr>
<tr>
<td>23,24,35-38</td>
<td></td>
</tr>
<tr>
<td>Max. temp. tested</td>
<td>250°C</td>
</tr>
<tr>
<td>160°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Advantages</td>
<td>Moderate to good temp. control</td>
</tr>
<tr>
<td>\checkmark Good temp. control</td>
<td>\checkmark Relatively simple set-up in the case of the heat-gun</td>
</tr>
<tr>
<td>\checkmark Possibility to do heating cycles with different high-temp. plateaus (esp. for heating sleeves)</td>
<td></td>
</tr>
<tr>
<td>\checkmark One apparatus commercially available (Retsch MM500)</td>
<td></td>
</tr>
<tr>
<td>\checkmark Adaptable to operando analysis through specific jar designs</td>
<td></td>
</tr>
<tr>
<td>Drawbacks</td>
<td>x Heating of external walls of the jar only</td>
</tr>
<tr>
<td>\times Heating of external walls only (through air)</td>
<td></td>
</tr>
<tr>
<td>\times Potentially inhomogeneous heating (heat-gun)</td>
<td></td>
</tr>
<tr>
<td>\times Not adapted for Raman/XRD operando analyses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View Article Online
Raman spectroscopy, and the recent investigations by Michal
to monitor ball-milling reactions under heat-treatment using
designed a specific reactor with an included sapphire window
exceptions include the work by Uzarevic and co-workers, who
nature of the reactors used (with opaque ss walls). Noticeable
such as Raman spectroscopy or X-ray diffraction, due to the
the work produced by the magnetic forces inside the material
netic properties, then a new source of heat generation power
alternating magnetic field. If this material presents also mag-
ated in a conductor material when it is submitted to an
conducting materials), and also by the hysteresis loss power
phenomenon (for magnetic materials).

In this general context, because of the attractive prospect of
being able to combine heating and milling (Table S5, ESI†), it
appeared to us as an important goal to be able to propose
alternative heating approaches, which would (i) be directly
adapted to standard commercially available ball-milling
machines, without requiring a re-design of the milling jars
(speciall because synthesis outcomes can be modified when
varying the geometry or composition of the milling jar and
beads), (ii) offer the possibility to perform the heating when
using reactors transparent to X-ray or Raman-laser beams (e.g.
made of PMMA or polycarbonate) in order to be able to carry
out in situ and/or operando analyses of the media during the
heating, and thereby follow the course of the reactions. Such
requirements made us take interest in induction heating,
which uses the Joule effect produced by Eddy currents gener-
thed in a conductor material when it is submitted to an
alternating magnetic field. If this material presents also mag-
etic properties, then a new source of heat generation power
occurs, called the hysteresis loss power phenomenon. Indeed,
the work produced by the magnetic forces inside the material
coming from the presence of an external alternating magnetic
field is converted into heat. Thus, because in the vast majority
of meehanochemical reactions, either the jar or the beads are
made of stainless steel, it is in principle possible to easily heat
these through application of an alternating magnetic field.
Although induction heating is very commonly used, not only
for research developments but also in a variety of industrial,
domestic and medical applications, it has, to the best of our
knowledge, only been recently proposed as a method to heat a
continuous-flow bead mill, but not yet for heating standard
commercial ball-milling equipment.

The purpose of this manuscript is to perform a proof-of-
concept study, to show how induction provides an attractive
alternative for heating reaction media during ball-milling,
when working under standard batch conditions, a method
which will hereafter be named “i-BM” (standing for
“induction-heating ball-milling”). First, we will show how it
can be directly adapted to available milling machines and
reactors, and can be used to selectively heat either the walls of
the reactor or the beads. Then, using the combination of
several induction-heating experiments and a modeling of the
physics of the system (including through numerical simula-
tions), explanations to the changes in temperature of the jar
and beads are provided. Lastly, examples of applications of this
technique to ball-milling reactions will be presented, highlight-
ing how it can be used to alter the physico-chemical properties
of a milling medium (e.g. rheology, texture...), and/or how it
can enable to prepare compounds which are inaccessible under
standard ball-milling reactions (i.e. in absence of heating).

Results

Presentation of the experimental set-up for i-BM
Among the different mixer mills which have been used so far, the
geometry of the P23 vertical mixer mill by Fritsch was found to be
very well suited for testing the feasibility and versatility of induc-
tion heating. Indeed, as shown in Fig. 1, it allows the milling jar to
be directly positioned at the center of a coil, without requiring any
instrumental modification or adaptation. Here, the coil design
was chosen such that it could receive currents of 320 A oscillating
at a frequency which can be tuned between 100 and 350 kHz,
while being cooled from the inside with circulating water. These
oscillating currents generate an oscillating magnetic field at the
same frequency, with typical field-lines as represented in Fig. 1b.
By positioning a material which is sensitive to oscillating mag-
etic fields at the center of the coil, heating can occur through the
heat power produced by the generation of Eddy currents (for
conducting materials), and also by the hysteresis loss power
phenomenon (for magnetic materials).

The induction-heating set-up shown in Fig. 1 appeared to us
as highly attractive for testing different milling and heating
conditions. In terms of milling, it enables the use of different
types of milling jars, including commercial ss jars (which are
the most commonly employed in ball-milling reactions), and
plastic ones made of PMMA or polycarbonate (like the custom-
made ones developed by the group of Prof. Franziska
Emmerling, which are widely used for Raman and X-ray
operando analyses of ball-milling reactions). Moreover, in terms
of heating, the system is very versatile, because the heating rate
and maximum temperature achieved can be easily varied for a
given coil geometry, by changing the intensity or frequency of
the oscillating field. Therefore, in the prospect of performing i-
BM reactions, these different aspects were investigated in more
depth, using a combined experimental/modeling approach, as
detailed below.

Different heating options, depending on the jar and beads
Two different [jar/bead] configurations were considered in view
of performing i-BM reactions: a ss jar and ss beads on one
Both jar/bead configurations led to very distinct outcomes regarding the magnetic field at the center of the coil (Fig. 2). On one hand, for the {ss jar/ss bead} system, the magnetic field lines enable to heat the jar’s walls. Yet, these magnetic field lines are also screened by the walls (shielding), preventing them from penetrating inside the jar and from directly heating the beads inside the jar (Fig. 2a). This implies that only the outer shell of the jar can heat up upon application of an oscillating magnetic field, and that the bead positioned at the center of the milling jar remains essentially unaffected. On the other hand, for the {PMMA jar/ss bead} system, the magnetic field lines penetrate to the center of the PMMA jar, enabling the heating of the ss bead inside the jar (Fig. 2b). Concomitantly, only minimal heating of the jar occurs in these conditions, as expected from the PMMA material properties.

A series of experiments were subsequently carried out to study both of these configurations, and to confront results to simulations. First, regarding the {ss jar/ss bead} system, the bead was positioned at the center of the jar on a Teflon mat (to avoid direct contact with the jar walls). The jar was closed, and induction heating was applied while keeping the system static throughout the heating. The induction heating parameters were set such as to reach a final temperature \(\approx 80 \, ^\circ \text{C} \) at the surface of the jar, and the total heating time was 2 minutes. The variation in the jar’s temperature during the heating was monitored using a thermal camera (as detailed in ESI†), showing that the 80 °C target could be reached in less than 1 minute, and stayed stable afterwards. The temperature of the bead, on the other hand, could only be measured at the end of the 2 min heating, when opening the jar. As shown in Fig. 2a, it was observed that the ss bead temperature was indeed much lower than that of the external walls of the jar (by \(\approx 40 \, ^\circ \text{C} \) in our experiments), as expected from simulations.

Concerning the {PMMA jar/ss bead} system, a similar experiment was performed, in which the ss bead was positioned at the center of the PMMA jar, which was closed and subjected to induction heating for a total time of 2 minutes, in “static” mode. As shown in Fig. 2b, at the end of the heating period, the jar’s surface was mainly unchanged while the temperature of the bead (as estimated by opening the jar after the 2 minutes of heating) was \(\approx 88 \, ^\circ \text{C} \). This is thus also in line with the predictions made by simulations. To the best of our knowledge,
It is the first time that such heating “directly from the inside” of the milling jar is proposed for mixer mills. Importantly, for both the \{ss jar/ss bead\} and \{PMMA jar/ss bead\} systems, it is interesting to note that it was possible to set the induction heating parameters in a way that the temperature of the ss bead (or jar) remains relatively constant (\(\pm 1\) °C) when it reaches the plateau at \(\approx 80\) °C (see Table S1, ESI†). Moreover, using the experimental induction heating parameters, it was possible to model accurately the heating rate of the jar (in the former case) and bead (in the latter case), as well as the plateaus. This is illustrated at the bottom of Fig. 2a and b, where the discrepancy between experimental points (in blue) and simulated data (in orange) is very small. Examples of the repetition of a given heating condition for the \{ss jar/ss bead\} system are reported in ESI† (Fig. S4).

To go one step further, additional experiments were performed, showing that it is possible to stabilize the temperature of both types of configurations at lower values (e.g. \(\approx 40\) and \(60\) °C, Fig. 3a and c). Again, experimental data could be satisfactorily fitted using simulations. No attempt to reach...
higher temperatures experimentally was made at this stage, due to the current design of the milling equipment which involves standard rubber O-rings and joints. Nevertheless, because the simulations performed could convincingly reproduce the experimental curves at 40, 60 and 80 °C (see red vs. black curves in Fig. 3a and c), further simulations were then performed (i) to evaluate the influence of the induction heating parameters on the heating rate (dT/dt) and the maximum temperature reachable, and (ii) to study the potential effect of other parameters on the performance of this heating/milling system (e.g. composition of the beads).

As shown in Fig. 3d, simulations predict that in the case of the [ss jar/ss bead] system, by varying the coil current (I) up to 100 A, temperatures as high as ≈ 300 °C can potentially be easily reached by induction heating after just 1 minute. Along the same line, these simulations show how the heating rate can be tuned by changing the current in the coils (see Fig. 3f), allowing a temperature ≈ 80 °C to be accessed in just 15 s. Similar trends can be derived for the [PMMA jar/ss bead] system, the difference being that it is no longer the jar which gets heated but the bead itself (see Fig. 3b and f). The small discrepancies between the heating rates of both systems, as illustrated in Fig. 3f, are mainly due to the differences in size and shape of the heated ss objects (i.e. jar vs. bead). Thus, i-BM appears as an attractive method to finely control the heating conditions during BM, and both mathematical functions relating the heating rate and maximum temperature as a function of I (showing a I^2 dependency, as explained in ESI,† Section II-c) can be used as a guideline for setting up future experiments and achieving a specific temperature.

Given that in the literature, several examples highlight the advantages of being able to vary the composition of milling jars and beads in mechanochemistry,33,34,49–51 additional tests were also carried out to determine how i-BM can be adapted to other
jars, such as those made of tungsten carbide (WC) and copper, or to other beads, such as the commercially available ones made of a ss core coated by a PTFE layer (noted hereafter as ss@PTFE), which are interesting to use for reactions involving reagents that are incompatible with metallic milling jars/beads. First, using simulations (Fig. 3e), it was found that for the same induction current (maximum of 50 A), the heat produced by a material with intrinsic magnetic properties like ss is unbeatable, in comparison to non-magnetic materials like copper and tungsten carbide: a temperature increase ΔT of $\approx 60 \, ^\circ C$ and $\approx 4 \, ^\circ C$ was calculated for ss and copper, respectively. The heating current used in i-BM would need to be further increased to achieve a more pronounced heating of Cu and WC jars. Second, regarding the ss@PTFE beads, complementary experiments and simulations were performed (Fig. S5, ESI†), showing that when covered by a PTFE coating, the heating produced by a ss bead is still significant. Indeed, under the heating conditions we tested (i.e. with a maximum induction current of 50 A), a stable temperature $\approx 40 \, ^\circ C$ could be reached for the ss@PTFE bead. Based on simulations like the one reported in Fig. 3f, an even more pronounced heating of the ss core (and thus of the PTFE shell) should be achievable by further increasing the current in the coil. Overall, these additional experiments and simulations point to how i-BM can be used with different types of milling jars and beads, making it adaptable to a wide diversity of BM reactions.

Lastly, because other geometries of milling jars are also commonly employed in mechanochemistry, complementary simulations were also performed, to evaluate how these may affect the outcome of i-BM reactions. As shown in Fig. S8 in ESI† when using cylindrical-shaped jars, similar outcomes can be expected as for the more spherical reactors. Indeed, in the case of ss jars, a screening effect will occur, which leads to a confinement of the magnetic field at the metal’s surface. The heat generation is then located on the surface of the jar, and the heat dissipation will depend on the surface-to-volume ratio of the jar. In other words, the shape of the jar will affect the temperature evolution during the i-BM process. In the case of PMMA jars, however, because the material is an insulator, there is no screening effect, and the jar is “transparent” to magnetic fields (whatever its geometry). Overall, such simulations can provide preliminary guidelines as to how to further adapt and use i-BM in a wide diversity of reactions. Last but not least, it is interesting to note that, due to its simple composition and geometry (copper pipes), the coil design is also highly adjustable to different jar geometries and different milling configurations, and can provide additional options to further tune the i-BM process, so that it can be adapted to other milling equipment and set-ups (including for operando analyses).

Having demonstrated the versatility of i-BM for heating different reaction media in mechanochemistry, its interest for various specific applications was then looked into, when using either {ss jar/ss bead}, or {PMMA jar/ss bead} systems, as described in the next section.

Applications of i-BM to the study of different reaction systems

Studying mechanisms in mechanochemical reactions. As mentioned in the introduction, one of the major goals today in the field of mechanochemistry is to be able to understand the details of reaction mechanisms, including deciphering the relative contributions of milling and heating during reactions. This is particularly important when it comes to synthesizing compounds and materials of high added-value using mechanochemistry, such as isotopically enriched ones, as it may help reach higher purity phases with higher enrichment levels. Thus, we decided to see how using i-BM, further improvements in oxygen-17 isotopic labeling schemes could be achieved (17O being a highly valuable isotope for NMR spectroscopy, which suffers from a very low natural abundance of only 0.04%). Two examples are provided below, in the context of the oxygen-isotopic labeling of silica on one hand, and of fatty acids on the other.

In a recent work by Chen et al., it had been shown that 17O-enriched silica can be prepared using mechanochemistry, starting from fumed silica (Aerosil 200, a porous form of silica, made of aggregated nanoparticles), and performing the milling for 15 minutes in a vertical mixer mill in presence of stoichiometric amounts of 17O enriched water. Although the 17O-labeling was successful, the enrichment level achieved was only $\approx 5\%$, which is beneath the maximum value potentially accessible given the amount of labeled water engaged. To further increase the amount of 17O-enriched siloxanes, several options can be considered, like (i) increasing the amount of enriched water used in the reaction (which is not an attractive alternative, considering the high cost of 17O-enriched water), (ii) further increasing milling time (which may imply a more significant contamination of the powder by the wear of the ss jar), or (iii) heating the medium during the milling in order to accelerate the kinetics of the reaction. Given that the vertical mixer mill which had been used by Chen et al. is precisely the one adapted to i-BM heating, the latter option was looked into here.

Fumed silica was milled in presence of 17O-enriched water, at room temperature (i.e. without heating) or using i-BM (i.e. heating at $\approx 65 \, ^\circ C$) for 5 and 15 minutes. The 17O solid state NMR spectra of the different phases were then recorded under identical measurement conditions, focusing in all cases on the signature of 17O-labeled siloxane bridges (Fig. 4a). The amount of enriched siloxanes was found to increase between 5 and 15 minutes of milling, in agreement with previous observations. However, no further enrichment was observed when using i-BM. This implies that the kinetics of isotopic labeling of siloxanes are mainly limited by the actual milling process (rather than by the need to cross an activation barrier through heat-treatment), and that it is more the disruptions caused at the surface of the particles during the milling which enable creation of reactive surface sites, for the siloxane enrichment to take place. This conclusion is further supported by the fact that (i) only small changes in the specific surface area and distribution in volume of the pore sizes occur when adding heating during the milling (Fig. 4b), and (ii) a lower level of enrichment occurs when milling at room temperature a crystal-line form of silica (quartz microparticles) compared to aerosil. Such insight into the enrichment mechanism of silica
is particularly valuable in view of further optimizations of the labeling: it suggests that it is more by using different silica precursors (with different particle size or surface area), or different milling configurations (e.g. different type of mixer mill, or change in material, size and number of beads used) that a more extensive enrichment may be achieved.

Still in the context of 17O isotopic labeling, an extensive study of the enrichment of fatty acids using mechanochemistry was performed recently by Špačková et al.16 For reactions in which the labeling step consisted in hydrolyzing a fatty acid which had been activated using CDI (1,10-carbonyl-diimidazole), a correlation had been found between the duration of the hydrolysis and the chain length of the fatty acid, those with the highest melting points requiring much longer milling times for the hydrolysis. For example, the hydrolysis time increased from 1 to 3 h when switching from lauric acid (C12) to palmitic acid (C16). For even longer chains, like stearic acid (C18), complete hydrolysis could only be reached after 3 h of milling upon addition of an additional base (K_2CO_3). It was thus hypothesized that by using i-BM, a reduction in the hydrolysis time should be achieved, and that it may become possible to enrich very long chain fatty acids (VLCFA, which have at least 22 carbon atoms).

A series of experiments were first carried out on palmitic acid. For this compound, the melting of the activated intermediate mixture had been measured to start around 73 °C. The hydrolysis was thus performed with and without i-BM, while setting the heating temperature at ≈ 70 °C. As shown using IR spectroscopy, after only 5 minutes of milling at 30 Hz, the C—O stretching band characteristic of the activated form disappeared, showing that the hydrolysis is complete (Fig. 5a, green vs. orange spectra, and Fig. S9 and S12 in ESI†). In absence of heating, no such observation was made, even after 1 hour of milling (Fig. 5a, blue spectrum). Similarly, in the case of stearic acid, the hydrolysis time could be reduced to less than 15 minutes when performing i-BM at a heating temperature close to the melting point of the activated mixture, without needing to use an additional base, which is a significant improvement to the previously established protocol (Fig. 5b and Fig. S10, S13 in ESI†). These observations confirm that, as hypothesized in our earlier work,16 it is indeed the change in physical state of the reactive species in the heated BM medium which enables the hydrolysis to occur. Based on these results, for the first time, the oxygen isotopic labeling of a VLCFA (behenic acid, C22) could be achieved in only 15 minutes using i-BM, while heating at 90 °C (Fig. 5c and Fig. S11 in ESI†). Such experiments clearly show how i-BM can be used to improve the efficiency and substrate-scope of ball-milling reactions, by altering the physico-chemical properties of the reaction medium (in this case to reach the melting point), and favoring the better mixing of reagents.

Changing the physico-chemical properties of milling media. One phenomenon which has been reported to occur during some ball-milling reactions is the so-called “snowball” effect. It corresponds to a physical change in the medium, during which the reagents/products progressively cover the beads during the milling process, until a relatively thick layer remains at the surface of the beads. To the best of our knowledge, this effect was initially reported by Boldyreva, during the grinding of oxalic acid dihydrate and glycine: in this case the formation
of the snowball was explained by a caking effect, induced by the release of a stoichiometric amount of liquid (coming from the water molecules of the oxalic acid dihydrate).54 Similarly, Hutchings \textit{et al.}, as well as Carta \textit{et al.}, noted the formation of a robust coating around the milling beads during the mechanochemical Knoevenagel condensation of barbituric acid and vanillin.55,56 Moreover, Andersen \textit{et al.} used Al\textsubscript{2}O\textsubscript{3} as an additive during a proline-catalysed aldol reaction performed by mechanochemistry, and observed the formation of a snowball.57 More recently, Leroy \textit{et al.} reported the transient formation of a snowball upon the progressive hydrolysis of fumed silica under mechanochemical conditions.58

The formation of snowballs can be seen as potentially problematic to ball-milling reactions, by preventing a proper mixing of the different reagents, potentially leading to inhomogeneous mixtures. As a matter of fact, in the case of the hydrolysis test on activated behenic acid (Fig. 5c), a ‘snowball’ was observed after one hour of milling at room temperature.

Fig. 5 Influence of i-BM on the isotopic labeling of fatty acids, as demonstrated using IR spectroscopy, for (a) palmitic acid ($T_{\text{melt}} = 73 \degree C; T_{\text{i-BM}} = 70 \degree C$), (b) stearic acid ($T_{\text{melt}} = 78 \degree C; T_{\text{i-BM}} = 85 \degree C$), and (c) behenic acid ($T_{\text{melt}} = 90 \degree C; T_{\text{i-BM}} = 90 \degree C$). IR spectra of the activated FA (green), BM-hydrolysis test at room-temperature (blue, after 60 min milling) and under i-BM conditions (orange, after 15 min milling) are shown, with the dashed vertical line pointing to the C=O stretching frequency of the activated FA. Hydrolysis reactions were optimized using non-labeled or 18O-enriched water (to check the feasibility of i-BM reactions), prior to working with 17O-enriched water, in line with our previous work (which had shown that no isotopic effect on the hydrolysis rate would occur upon switching to 17O/18O-enriched water). Characterizations by mass-spectrometry of oxygen-labeled compounds are provided in ESI,† together with 1H solution NMR analyses confirming the purity of the isolated products (Fig. S9–S13 in ESI,†).

Fig. 6 Comparative scheme of the cogrinding of urea (melting point = 133–135 \degree C) with \textit{l}-leucine methyl ester hydrochloride (melting point = 151–153 \degree C), leading to the formation of a new cocrystal (melting point = 87–92 \degree C). On top, in absence of i-BM, the snowball phenomenon occurs after 4–5 min of milling at 50 Hz. On the bottom, when using i-BM to quickly heat the two ss beads through the PMMA jar up to 85 \degree C in a few seconds, the formation of the snowball is prevented. A video showing the formation of the “snowball”, and its subsequent disappearance under i-BM is provided in ESI.†
which could explain (at least in part), the lack of efficient mixing between reagents, and the absence of hydrolysis of the activated intermediate according to IR analyses. Hence, being able to prevent their formation by altering the physicochemical properties of the ball-milling medium through temperature treatment is an attractive feature.

In the course of a study involving the cogrinding urea with L-leucine methyl ester hydrochloride using a vertical P23 mixer-mill (see Fig. 6), we noticed a drastic change of physical aspect of the reagents, switching from free-flowing powders to a sticky rubber-like material, and progressively forming an envelope around the beads (snowball). Although we were able to form a new product (see Fig. S14 in ESI†), in some of the trials, the stickiness of the materials covering the balls severely hampered the milling process, up to a point that the motions of the beads were sometimes completely stopped, as they stayed “stuck” on the reactor’s walls. In such conditions, the conversion can be potentially incomplete, and/or can vary in different parts of the milling medium. Here, by using i-BM (heating of the stainless steel beads up to 85 °C during the cogrinding), we were able to avoid the formation of a snowball (see Fig. 6, and video in ESI†). Thus, this example illustrates the versatility offered by the i-BM method, not only to help achieve new chemical reactions, but also as a straightforward approach to modify the texture of reagents and the physical properties of reaction media.

Conclusion & perspectives

To conclude, in the present work, we have brought forward some of the numerous possibilities offered by induction heating in ball-milling, using a combined experimental/simulation approach. The instrumental set-up we have proposed is attractive, because (i) it is directly adaptable to commercially-available milling equipment and to a wide variety of milling jars and beads, (ii) it can enable a very fast heating of milling media (by controlling the induction-current parameters), and (iii) it can be used to heat either the walls of the milling jars or the beads themselves, depending on the choice of the materials which compose them. Importantly, our methodology allows the heating of a milling medium “from the inside” (when using a PMMA jar and ss beads, for example), which is an original feature compared to previously reported heating systems (Table 1). First examples of applications of this option are shown here in the study of snowball effects. On a broader perspective, such a feature also opens the way to “real-time” studies of BM reactions under heating conditions using standard techniques like Raman spectroscopy, which require “transparent” jars (e.g. made of PMMA or polycarbonate), and which are still only occasionally studied in mechanochemistry combinations with heating. Thus, such operando analyses coupled to i-BM should favour a better optimisation of heating/milling conditions, and participate to the discovery of reaction intermediates, new reactivities and new selectivities in the near future.

Using numerical simulations, it was shown how i-BM enables to finely tune the heating conditions (e.g. heating rate and maximum temperature reached), by playing with the nature of the milling system and/or the induction heating currents used. While simulations were mainly performed here to provide guidelines to evaluate the influence of different parameters under standard “continuous heating” conditions, they actually also provide additional interesting information. They suggest, for example, that reagents sensitive to magnetic fields should not behave much differently in i-BM compared to a-magnetic ones when using a {ss jars/ss beads} configuration because the magnetic field lines are expelled from the jar (Fig. 2a), while, a contrario, they could lead to different reactivity in the case of the {PMMA jar/ss beads} configuration, as they will be exposed to the field (Fig. 2b). On a longer perspective, using i-BM, it will also be possible to apply “heating pulses” to the milled medium, during which the temperature can periodically reach temperatures ≈ 100 °C in just a few seconds (when using a PMMA-jar/ss bead set-up for example). This is an original feature in comparison to other heating devices proposed thus far, which further broadens the scope of reaction conditions made available to chemists. Results along this line will be reported in due course.

Experimental details

Equipment for milling and induction heating

The majority of the mechanochemical syntheses were performed with a Fritsch Pulverisette-23 (P23) vertical mixer mill, using 10 mL inner-volume jars made of PMMA or stainless steel, with 10 mm diameter stainless steel beads. Induction heating ball-milling experiments (i-BM) were performed with this milling equipment. Temperature measurements were performed using an OPTIRIS PH50i thermal imaging camera. Further details on the experimental set-up can be found in ESI† (Section I), including in Fig. S1 (ESI†). Information on the accuracy of temperature measurements is provided in pages S3 and S4 of the ESI,† and the reproducibility of the plateau temperature reached for different tests is shown in Fig. S4 (ESI†).

Computational modeling

All numerical simulations were carried out using the COMSOL software suite (version 6.0) with the AC/DC module. The simulations were run on a Dell Precision 5820 workstation, consisting of an Intel Xeon W-2275 (14-core HT, 3.3 GHz, 4.8 GHz Turbo, 19.25 M cache, 165 W) processor and 64 Go of RAM; a typical simulation took less than 2 minutes. The optimization of the fit parameters was performed using a homemade Python script involving the mph and SciPy libraries. Further details on the equations used for the fits, including the physical constants of the materials composing the jars and beads, are provided in ESI† (Section II).

Ball-milling syntheses

Reagent-grade precursors were used in all reactions, and the products formed were all characterized using standard analytical techniques (see ESI†).
The 17O-labeling of silica under i-BM was performed by adapting our previously reported procedure (see ESI,† Section III-b).52 The activation and hydrolysis of palmitic, stearic and behenic acids under i-BM was carried out by adapting previously used reaction conditions, as further detailed in ESI† (Section III-c).16,60 A co-crystal between L-leucine methyl ester hydrochloride and urea was obtained by milling both reagents in stoichiometric conditions, as described in ESI† (Section III-d).

Author contributions

The study was conducted by DL and GF, in close interaction with all co-authors. NF, GF and DL worked on the design and optimization of the instrumental set-up for i-BM. NF, CL, CHC and DL performed the i-BM experiments. GF carried out the numerical simulations. NF, CL, CHC, TXM and DL interpreted the results of the syntheses and characterizations. All co-authors participated to the writing of the manuscript (including figures and table preparations).

Data availability

All data supporting the findings of this study are available within the article and supplementary information files, and also are available from the corresponding authors upon reasonable request.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant 772204; 2017 ERC-COG, MISTOTOP project). We acknowledge Prof. Franziska Emmerling for providing the PMMA reactors used for some of the syntheses shown here.

References

