CrystEngComm

CORRECTION

View Article Online

Cite this: CrystEngComm, 2023, 25,

Correction: Shaping particle size distribution of a metastable polymorph in additive-assisted reactive crystallization by the Taguchi method

Hung Lin Lee, Chia Ling Yang and Tu Lee*

DOI: 10.1039/d3ce90009f

rsc.li/crystengcomm

Correction for 'Shaping particle size distribution of a metastable polymorph in additive-assisted reactive crystallization by the Taguchi method' by Hung Lin Lee et al., CrystEngComm, 2022, 24, 7176-7192, https://doi.org/10.1039/D2CE00355D

The authors regret that the standard deviations for trials 1 and 2, representing their PSD widths, and the S/N ratios in Table 5 of the original published article were incorrect. This error occurred when we re-examined all fitting results at the revision stage, but did not put the revised results in Table 5 of our revised manuscript. The error does not affect the other results, discussion, and conclusions of the article. The corrected values should be as shown below.

Table 5 Summary of experimental results in terms of the mean particle size and PSD of α -GLU

	For mean particle size					For PSD		
Expt.	x_1 (µm) (trial 1)	x_2 (µm) (trial 2)	\bar{x} (μ m)	σ (μ m)	S/N ratio ^a (dB)	$\sigma_{\mathrm{PSD},1}$ ($\mu \mathrm{m}$) (trial 1)	$\sigma_{\mathrm{PSD},2}$ ($\mu\mathrm{m}$) (trial 2)	$S/N \text{ ratio}^b (dB)$
1	238.1	226.6	232.4	8.2	29.08	122.82	215.38	-44.88
2	134.9	143.6	139.2	6.2	27.10	131.01	110.77	-41.68
3	128.6	134.9	131.7	4.4	29.48	128.48	129.83	-42.22
4	176.9	215.3	196.1	27.1	17.18	116.40	103.40	-40.84
5	225.2	235.0	230.1	7.0	30.38	224.08	108.51	-44.91
6	121.5	120.2	120.9	0.9	42.48	126.07	72.71	-40.25
7	200.7	303.5	252.1	72.7	10.75	122.95	211.73	-44.77
8	107.9	101.3	104.6	4.7	26.96	70.16	80.81	-37.58
9	117.7	120.3	119.0	1.8	36.36	106.73	118.53	-41.04

^a The S/N ratio was calculated based on eqn (12). ^b The S/N ratio was calculated based on eqn (13).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.