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The integration of two or more different types of metal-organic frameworks (MOFs) into hybrid MOF-on-
MOF heterostructures has been widely studied, and the diversity of MOF-on-MOF heterostructures can be
effectively increased by exploring the integration strategy of different MOF building blocks. Here, we report
the structure regulation of MOF-on-MOF hybrids via controlling the heterogeneous nucleation and
homogeneous nucleation growth of guest MOFs. By using ZIF-90 as the host and ZIF-8 as the guest,
binary ZIF-90@ZIF-8 complexes can be synthesized. Moreover, the nucleation mode of ZIF-8 depends on
the addition sequence of metal ions and ligands of the guest MOF, including heterogeneous nucleation
and homogeneous nucleation. Therefore, ZIF-90@ZIF-8 hybrids with a core-shell structure and smooth
surface or a core-satellite structure and rough surface are successfully prepared, increasing the structural
diversity of MOF-on-MOF materials.
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Introduction

Metal organic frameworks (MOFs) are a family of porous
materials constructed by connecting metal ions/clusters with
bidentate/polydentate organic ligands."™ With large specific
surface areas, high pore volumes and tunable structures,
MOF-based materials have been applied in many fields,
including  catalysis, gas adsorption/separation/storage,
nonlinear optics, sensing and detection, and biomedical
applications.”” Particularly, MOFs in nanoparticle forms for
biomedicine have become a rapidly developing hot research
topic.*'® Compared to traditional MOFs with larger particle
sizes, MOF nanoparticles possess additional advantages, e.g.,
enhanced biological activity and chemical/colloidal
stability."’™® In recent years, an intriguing MOF-on-MOF
hybridization design has received special attention via
integration of two or more different types of MOFs in one
composite.'*™® The MOF-on-MOF design can enrich not only
the composition (e.g. ligands and/or metal centers) but also
the structural diversities (e.g. pore sizes, surface properties
and functions) of MOFs.
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Zeolitic imidazolate frameworks (ZIFs) are considered as a
subcategory of MOFs and have been developed rapidly since
they combine the properties of both MOFs and zeolites, and
have high thermal stability."”” Among various ZIFs, ZIF-8'® is
one of the most popular members and has attracted great
attention in catalysis,'®' adsorption and separation,> and
electrochemistry.>® In parallel, ZIF-90 has gained increasing
research interest as it contains a reactive aldehyde group in
the framework with ease of further functionalization.**?®
Recently, Mo and co-workers reported ZIF-8@ZIF-90 as
advanced fluorescence-encoding materials.*® However, the
synthesis of ZIF-90@ZIF-8 has not been reported. Moreover,
MOF-on-MOF binary compositions can be adjusted into
core-shell, core-satellite, yolk-shell, hollow multi-shell,
asymmetric and  film architectures® via  various
strategies.”® ' For example, Oh's group prepared MOF-on-
MOFs with core-shell-type and semitubular morphologies,
using the same host MOF and different guest MOFs.*® Liu
and co-workers synthesized MOF-on-MOF heterostructures
with the growth sites of guest MOFs determined by host
MOFs with different morphologies.”® Nevertheless, it has
been rarely reported that the architecture of MOF-on-MOFs
can be regulated using one host MOF with the same
morphology and the same type of guest MOF.

Here, by using ZIF-90 as the host and ZIF-8 as the guest,
binary ZIF-90@ZIF-8 complexes with core-shell and core-
satellite structures were synthesized for the first time. As
shown in Fig. 1, the structures of the hybrids can be
regulated by controlling the heterogeneous nucleation and

This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Schematic illustration of the synthesis of ZIF-90@ZIF-8.

homogeneous nucleation growth of the guest MOF, simply
via changing the addition sequence of metal ions and ligands
of the guest MOF during the synthesis. When 2-MeIM is
introduced before Zn**, the heterogeneous nucleation and
growth of ZIF-8 on ZIF-90 core particles lead to ZIF-90@ZIF-8-
A with a core-shell structure and smooth surface. When Zn>*
is added first, ZIF-8 nanoparticles tend to form via
homogeneous nucleation in solution, then conjugate with
ZIF-90 and generate ZIF-90@ZIF-8-B with a core-satellite
structure and rough surface. Different from studies where
using host MOFs with different morphologies or different
types of guest MOFs are necessary, the structural regulation
involves the same host-guest pair in our strategy (ZIF-90
rhombic dodecahedron-ZIF-8).

Experimental

Chemicals and materials

Zinc nitrate hexahydrate (Zn(NOs;),-6H,0, 98%) and
dimethylacetamide (DMAC, 99%) were purchased from
Sinopharm Chemical Regent Co., Ltd. Zinc acetate (Zn(CHj-
COO0),, 99.5%, Adamas-beta), imidazole-2-carboxyaldehyde
(2-ICA, 98%, Adamas-beta), 2-methylimidazole (2-MeIM,
Aldrich) and methanol (AR, 99%, Adamas-beta) were used as
received. Deionized water was used in all experiments (Milli-
DI Water Purification System).

Synthesis of ZIF-90

ZIF-90 nanoparticles were prepared according to a literature
protocol with slight modification.”® In a typical synthesis,
2-ICA (1.922 g, 20 mmol) was added to 25 mL of DMAC and
heated to 80 °C until 2-ICA was completely dissolved. Then,
the solution was cooled to room temperature before adding
25 mL of Zn(NOj3),:6H,O (595 mg, 2 mmol) in DMAC,
followed by stirring at 30 °C for 4 h. Afterwards, 50 mL of
methanol was added to the mixture and stirred for another 5
min. Finally, the mixture was aged for 25 min, and the
formed particles were separated by centrifugation and
washed with methanol five times.

Synthesis of ZIF-90@ZIF-8-A

To synthesize the ZIF-90@ZIF-8-A heterostructure, 3 mg of
ZIF-90 was dispersed in 6 mL of methanol solution, and then
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3 mL of 80 mM 2-MeIM methanol solution was added to the
solution under stirring at room temperature. After stirring for
5 min, 3 mL of 20 mM Zn(NOs),-6H,0 methanol solution
was added. Then, the mixture was allowed to react for 2 h
under stirring before aging for another 12 h. The final
product was collected by centrifugation, and washed with
methanol three times. This sample was named as ZIF-
90@ZIF-8-A.

Synthesis of ZIF-90@ZIF-8-B

To synthesize the ZIF-90@ZIF-8-B heterostructure, 3 mg of
ZIF-90 was dispersed in 6 mL of methanol solution, and then
3 mL of 20 mM Zn(NO3),-6H,O methanol solution was added
to the solution under stirring at room temperature. After
stirring for 5 min, 3 mL of 80 mM 2-MeIM methanol solution
was added. The mixture was allowed to react for 2 h under
stirring before aging for another 12 h. The final product was
collected by centrifugation, washed with methanol three
times, and named as ZIF-90@ZIF-8-B.

Synthesis of ZIF-8

ZIF-8 nanoparticles were prepared following a reported
method.** 1.8 mmol of zinc acetate and 18.0 mmol of
2-methylimidazole were each individually dissolved in 12 mL
of methanol for 1 h. The two prepared solutions were mixed
and stirred for 10 min, followed by sonication for 1 min.
Then, the mixed solution was immersed in an oil bath at 70
°C for 10 min. The solution was allowed to cool to room
temperature and the resultant ZIF-8 particles were collected
by centrifugation and washed three times with methanol.

Characterization

Scanning electron microscopy (SEM) images were acquired
using a scanning electron microscope (HITACHI-S4800).
Transmission electron microscopy (TEM) images were
obtained with a Hitachi HT7700. X-ray diffraction (XRD)
patterns were recorded using a Smartlab SE X-ray
diffractometer with Cu Ko radiation (1 = 0.154 nm). The
Fourier transform infrared (FTIR) spectra of samples were
collected on a Thermo Fisher FT-IR-Nicolet IS50 by the
attenuated total reflectance method.

Results and discussion

In our synthesis, ZIF-90 nanoparticles with a regular
morphology were firstly synthesized as the host. SEM
(Fig. 2a) and TEM (Fig. 2b) images of ZIF-90 both show
nanoparticles with a rhombic dodecahedral shape. The
nanoparticles have a uniform size of about 225 nm and a
smooth surface. The XRD pattern of ZIF-90 in Fig. 3a shows
six main peaks at 7.46, 10.52, 12.86, 14.86, 16.60 and 18.18°,
which can be indexed to the (0 1 1), (2 0 0), (1 1 2), (0 2 2), (0
1 3) and (2 2 2) diffractions. The results are consistent with
the simulated patterns of ZIF-90,>" indicating that crystalline
ZIF-90 nanoparticles were successfully prepared.
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Fig. 2 SEM (a, c and e) and TEM (b, d and f) images of (a and b) ZIF-
90, (c and d) ZIF-90@ZIF-8-A, (e and f) ZIF-90@ZIF-8-B. The scale bar
is 200 nm.

Then, using ZIF-90 nanoparticles as the host, ZIF-90@ZIF-
8-A and B heterostructures were synthesized (Fig. 1). SEM
(Fig. 2¢) and TEM (Fig. 2d) images reveal that ZIF-90@ZIF-8-A
shows a well-defined rhombic dodecahedral morphology with
a smooth surface and uniform size distribution, similar to
that of the host ZIF-90. However, the average diameter of ZIF-
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Fig. 3 (a) XRD spectra and (b) FTIR spectra of ZIF-90, ZIF-8, ZIF-
90@ZIF-8-A and ZIF-90@ZIF-8-B.
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90@ZIF-8-A is increased to 278 nm, indicating the
heterogeneous nucleation and growth of ZIF-8 on ZIF-90. In
contrast, ZIF-90@ZIF-8-B shows a rough surface as evidenced
from SEM (Fig. 2e) and TEM (Fig. 2f) images, different from
ZIF-90@ZIF-8-A with a smooth surface. The average size of
ZIF-8 nanoparticles is estimated to be ~25-30 nm in
diameter.

The XRD patterns of the synthesized ZIF-90@ZIF-8-A and
ZIF-90@ZIF-8-B nanoparticles are shown in Fig. 3a. It is noted
that due to the isostructural nature of ZIF-90 and ZIF-8, the
XRD patterns of all the particles, including ZIF-90@ZIF-8-A,
ZIF-90@ZIF-8-B, ZIF-90 and ZIF-8, showed diffractions at the
same positions except for slight differences in relative
intensity. It is noted that both ZIF-8 and ZIF-90 have zinc
atoms, and their compositional difference is in the ligands. In
ZIF-8, the ligand 2-MeIM does not contain oxygen, in contrast
to 2-ICA in ZIF-90 which contains an aldehyde group. To
provide information on the composition distribution in the
binary MOF composites, high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
and elemental mapping (Zn and O) images of ZIF-90@ZIF-8-A
were taken as an example, using ZIF-90 as a control sample.
In the case of ZIF-90, from the HAADF-STEM image (Fig.
S1at), Zn and O mappings (Fig. S1bf) and the superimposed
elemental image (Zn + O, Fig. Slc}), Zn and O are evenly
distributed over the entire nanoparticle range. However, for
ZIF-90@ZIF-8-A (Fig. S1d-ff), a Zn-rich outer layer (red color)
is evident in comparison with ZIF-90, consistent with the ZIF-
8 layer formed on the outer surface of ZIF-90 in the ZIF-
90@ZIF-8-A heterostructure.

To further differentiate ZIF-90 and ZIF-8 in the composites,
the FTIR spectra of the two ZIF-90@ZIF-8 nanoparticles and
ZIF-90 were also recorded. In addition, ZIF-8 nanoparticles
were synthesized and used in the FTIR study to verify the
successful modification of ZIF-8 on the ZIF-90 surface. As
shown in the TEM images (Fig. S2a and bt), ZIF-8 with an
estimated particle size of about 300 nm was synthesized. The
XRD pattern of ZIF-8 is consistent with the simulated result,
further confirming the successful synthesis of ZIF-8 (Fig.
$3t).>> From the FTIR spectra (Fig. 3b), both ZIF-90@ZIF-8
composites display one band at around 1675 cm™
corresponding to the C=0 stretching of 2-ICA (also observed
in ZIF-90),>* and another peak at 759 cm™" originating from
the stretching vibration of the C-H group in 2-MeIM (also
observed in ZIF-8).*® Collectively, the XRD, SEM, TEM and
FTIR results indicate that core-shell structure ZIF-90@ZIF-8-A
with a smooth surface and core-satellite structure ZIF-90@ZIF-
8-B with a rough surface have been successfully synthesized.

The ZIF-90@ZIF-8 hybrids with core-shell and core-satellite
structures obtained in our work are unique in composition
compared with reported MOF-on-MOFs with core-shell
structures such as ZIF-8@ZIF-67,>” Fe-MIL-88B@Fe-MIL-88C>"
and IRMOF-3@MOF-5,>% or MOF-on-MOFs with core-satellite
structures such as MIL-125@ZIF-8,>° PCN-222@PCN-608, PCN-
222@NU-1000, PCN-222@PCN-134, Zr-BTB@PCN-134,%° and
MIL-88B@UI0-66.%° Although the composition of ZIF-90@ZIF-

This journal is © The Royal Society of Chemistry 2023
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8 is identical to that of reported ZIF-8@ZIF-90,>° the spatial
arrangement is different which could have implications for
future applications. For example, it is well known that ZIF-90
is relatively hydrophilic while ZIF-8 is hydrophobic.*>*" It can
be inferred that the surface hydrophilicity/hydrophobicity of
ZIF-90@ZIF-8 and ZIF-8@ZIF-90 could be different due to the
nanostructure difference. Moreover, the structural regulation
of the same host-guest pair (ZIF-8 on rhombic dodecahedron
ZIF-90) has been achieved in our work, leading to core-shell
and core-satellite structures. This is also different from a
reported ZIF-8@ZIF-90 with only a core-shell structure,®® or
other reports of MOF-on-MOFs with core-satellite structures
by changing the type and morphology of the host MOF.?*>°

To understand the formation mechanism of the ZIF-
90@ZIF-8-A and ZIF-90@ZIF-8-B heterostructures, the
intermediate structures at different reaction time points were
monitored. In the case of ZIF-90@ZIF-8-A, a 2-MeIM solution
was firstly added into a ZIF-90 solution and stirred for 5 min
before Zn>" addition (Fig. 4a). The reaction time was counted
after the addition of Zn*' precursors. The rhombic
dodecahedral morphology is well kept at reaction times of 2,
5 and 20 min as confirmed by TEM observations (Fig. 4b-d).
However, the average diameters of nanoparticles gradually
increased to 24 nm, 31 nm and 41 nm at 2, 5, and 20 min,
respectively. This observation indicates that by adding
2-MeIM first and then Zn** to react with ZIF-90, a layer of
ZIF-8 is selectively grown on the surface of ZIF-90 by
heterogeneous nucleation, leading to the formation of the
ZIF-90@ZIF-8-A heterostructure.

To understand the interfacial interaction that drives the
heterogeneous nucleation of ZIF-8 on ZIF-90, ZIF-90 was
immersed in 2-MeIM solution, and then washed with
methanol three times to remove free 2-MeIM physically
adsorbed on surfaces and in frameworks. The solid sample
was collected and labelled as ZIF-90/M. The FTIR spectrum of
ZIF-90/M is presented in Fig. 5. The characteristic peak of
C=0 at 1675 cm " for ZIF-90 was retained after soaking in
2-MeIM solution. In addition, the appearance of a new peak
at 1101 cm™ (marked with a blue dashed line) and a
shoulder at ~936 cm™" (indicated by an arrow) suggests the

999

.ZIF 90 M Zn-2-MeIM -ZIF -8

Fig. 4 (a) Schematic illustration of the synthesis of ZIF-90@ZIF-8-A.
(b-d) TEM images of the intermediate sample collected during the
synthesis of ZIF-90@ZIF-8-A at different reaction times of 2 min, 5 min
and 20 min. The scale bar is 200 nm.
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Fig. 5 FTIR spectrum of the ZIF-90/M sample obtained after soaking
in 2-MelM solution.

presence of 2-MeIM in ZIF-90/M. Compared with the
corresponding peaks at 1111 cm™* (C-C-H formation
vibration) and 942 ¢cm™ (-CHj; in-plane bending vibration
and C-C-H formation vibration) of 2-MeIM (marked with a
red dashed line),”* these new peaks have a certain red shift.
These observations suggest that the added 2-MeIM can
coordinate with the exposed Zn central atoms on ZIF-90,
causing the weakening of -CH; and C-C-H bonds.”?
Furthermore, our observation is in accordance with a
literature report by Fan and co-workers. It is shown that the
hydrolase-mimicking activity associated with the Zn-N node
in ZIF-90 can be inhibited by acetate and EDTA,** suggesting
that there exist coordination unsaturated Zn atoms in ZIF-90
that can bind to one of the two N atoms in the imidazole ring
of the added 2-MeIM in our synthesis. Presumably, the
subsequently added Zn*" preferentially coordinates with the
remaining N atom in the 2-MeIm bond to the ZIF-90 surface,
leading to the heterogeneous nucleation of ZIF-8 on the ZIF-
90 surface.

In the synthesis of ZIF-90@ZIF-8-B, Zn>" was added into
ZIF-90 solution under stirring for 5 min, and then 2-MeIM
was introduced to allow ZIF-8 formation (Fig. 6a). After
another 2 min of reaction, tiny nanoparticles with a diameter
of about 27 nm appeared in the solution (Fig. 6b), indicating
that ZIF-8 nanoparticles tend to form via homogeneous
nucleation in methanol solution under such an addition
sequence. With the increase of reaction time to 5 min,
smaller-sized nanoparticles gradually adhered onto the
surface of ZIF-90 (Fig. 6¢). When the reaction time was
prolonged to 20 min, ZIF-90@ZIF-8-B with a rough surface
structure became dominant (Fig. 6d). Presumably, when Zn>*
was added first, ZIF-90 had no coordination effect on zZn**
thus, Zn** tended to interact with the later added 2-MeIM via
homogeneous nucleation in solution, leading to the
formation of ZIF-8 nanoparticles. It is suggested that there
exists electrostatic interaction between the negatively charged
ZIF-90 nanoparticles and positively charged ZIF-8 hosts;"

CrystEngComm, 2023, 25, 284-289 | 287
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Fig. 6 (a) Schematic illustration of the synthesis of ZIF-90@ZIF-8-B.
(b-d) TEM images of the intermediate sample collected during the
synthesis of ZIF-90@ZIF-8-B at different reaction times of 2 min, 5 min
and 20 min. The scale bar is 100 nm.

hence, core-satellite structure ZIF-90@ZIF-8-B with a rough
surface is formed, which is different from core-shell
structure ZIF-90@ZIF-8-A with a smooth surface.

Conclusions

In summary, we have demonstrated how to adjust
heterogeneous and homogeneous nucleation for the structure
regulation of ZIF-90@ZIF-8 hybrids. The nucleation mode of
guest ZIF-8 is dependent on the addition sequence of metal
ions and ligands in the presence of host ZIF-90. When
2-MeIM is introduced first, it will bond with the coordination
in ZIF-90 and trigger the
heterogeneous nucleation and growth of ZIF-8 on ZIF-90,
forming ZIF-90@ZIF-8-A with a core-shell structure and
smooth surface. In contrast, when Zn*" is added first, small
ZIF-8 nanoparticles are formed first via homogeneous
nucleation, and then adhere to the ZIF-90 surface and form
ZIF-90@ZIF-8-B with a core-satellite structure and rough
surface. This work presents a simple strategy for enriching
the structural diversity of MOF-on-MOF materials.

unsaturated Zn atoms
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