ChemComm ## CORRECTION **View Article Online** Cite this: Chem. Commun., 2023, **59**, 13655 ## Correction: Strengthening Pt/WO_x interfacial interactions to increase the CO tolerance of Pt for hydrogen oxidation reaction Daojun Long, ab Xinyu Ping, ab Jingtian Ni, ab Fadong Chen, ab Siguo Chen, *ab Zidong Wei, ab Lin Guo*c and Jinyu Zhengc DOI: 10.1039/d3cc90365f rsc.li/chemcomm Correction for 'Strengthening Pt/WO, interfacial interactions to increase the CO tolerance of Pt for hydrogen oxidation reaction' by Daojun Long et al., Chem. Commun., 2023, https://doi.org/10.1039/ d3cc03990k. The authors regret that they have discovered an error in the description of the relative pressure (P/P_0) when referring to Fig. S7 within the Results and discussion section of the original article's main text. Values of 0.2-0.3 were provided, whereas the correct values should be 0.5-0.8. The corrected sentence is shown below: The Pt/WO_x@NC surface was mesoporous, as evidenced by the increase in the N₂ adsorption-desorption isotherms at the relative pressure (P/P_0) of 0.5–0.8 (Fig. S7, ESI†). The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. ^a College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China. E-mail: csg810519@126.com ^b State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China ^c State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co, Beijing, China. E-mail: guolin.ripp@sinopec.com