ChemComm

CORRECTION

View Article Online

Cite this: Chem. Commun., 2023, **59**, 11593

Correction: Cyclopentane FIT-PNAs: bright RNA sensors

Odelia Tepper,*a Hongchao Zheng,b Daniel H. Appella*b and Eylon Yavin*a

Correction for 'Cyclopentane FIT-PNAs: bright RNA sensors' by Odelia Tepper et al., Chem. Commun., 2021, 57, 540-543, https://doi.org/10.1039/D0CC07400D.

DOI: 10.1039/d3cc90303f

rsc.li/chemcomm

The authors regret that the quantum yields reported in Table 2 were miscalculated. This mistake does not change the findings of this report that cyclopentane (cp) modifications increase the brightness of these RNA probes.

The quantum yields in Table 2 were calculated, mistakenly, according to the following equation:

$$\phi_{\rm f} = (\phi_{\rm R} \times I/I_{\rm R}) \times ({\rm O.D.}_{\rm R}/{\rm O.D.}) \times (\eta^2/\eta_{\rm R})$$

The correct equation is:

$$\phi_{\rm f} = (\phi_{\rm R} \times I/I_{\rm R}) \times (\text{O.D.}_{\rm R}/\text{O.D.}) \times (\eta^2/\eta_{\rm R}^2)$$

The corrected Table 2 is shown here.

The following sentences in the main text should be corrected accordingly as follows:

Page 541, right column, first paragraph: "For double-cp modified FIT-PNA (4 and 7) we observe significantly higher QY (0.25 and 0.29 for 4 and 7 respectively, Table 2)."

Table 2 Photophysical properties of duplex cpFIT-PNAs with complementary RNA. All measurements were conducted at RT. Annealing was conducted by incubation of FIT-PNA: RNA at 37 °C for 2 hours

FIT-PNA	$\lambda_{max,abs}$ (nm)	$\varepsilon_{\mathrm{max}} \left[\mathrm{mM}^{-1} \ \mathrm{cm}^{-1}\right]$	Φ	$BR \left[mM^{-1} \ cm^{-1} \right]$	I/I_0	$T_{ m m}$	$\Delta T_{ m m}$
1	588	83.2	0.14	11.6	12	50.2	
2	590	91.0	0.14	12.7	15	53.7	(+3.5)
3	589	95.2	0.20	19.0	12	53.7	(+3.5)
4	590	85.8	0.25	21.4	46	54.7	(+4.5)
5	587	82.3	0.15	12.3	24	51.8	
6	586	85.7	0.25	21.4	46	53	(+1.2)
7	586	90.6	0.29	26.3	47	52.9	(+1.1)

Page 541, right column, second paragraph: "Thus, cpPNA mono-substitutions at the carboxy side to BisQ (FIT-PNAs 3 and 6) results in comparably high QYs for a single substitution (0.20 and 0.25, respectively), whereas a single substitution at the amino side to BisQ (FIT-PNA 2) does not increase the QY (0.14) compared to unmodified FIT-PNA (FIT-PNA 1) and has a small effect on FIT-PNA brightness (12.7 for FIT-PNA 2 vs. 11.6 for FIT-PNA 1, Table 2)."

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a The Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel. E-mail: eylony@ekmd.huji.ac.il

^b Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, USA. E-mail: appellad@niddk.nih.gov