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Here, we utilized designed condensates formed by liquid-liquid
phase separation (LLPS) of cationic and aromatic peptide to seques-
ter tyrosine-based carbon dots (C-dots). The C-dots fluorescence is
quenched and retrieved upon partitioning and release from con-
densates, allowing a spatial regulation of C-dots fluorescence
which can be utilized for biosensing applications.

Synthetic biomolecular condensates are supramolecular disor-
dered compartments, that are inspired by cellular condensates
such as stress granules and nucleoli." These designed compart-
ments are formed via liquid-liquid phase separation (LLPS)
of proteins,” polypeptides,® or peptides®™ with or without
nucleic acids,'® where a molecule-rich liquid phase is con-
densed within a molecule-poor phase. An attractive character-
istic of synthetic biomolecular condensates is that they can be
designed to assemble/disassemble or change their properties in
response to stimuli. Examples of such systems include con-
densates which change their chemical composition upon enzy-
matic activation,'™'? oxidation,"”* or addition of chemical
fuel." Condensates can also be designed to change their
material properties following a light trigger>"® or disassemble
upon stimuli such as pH'® and temperature.’”

Owing to their responsiveness and ability to efficiently
sequester (macro)molecules, synthetic condensates are being
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material synthesis.”> Other than being used as reactors, bio-
molecular condensates, particularly those formed by peptides,
may serve as delivery vectors of therapeutic biomolecules®
including intracellular delivery.”® However, the design of con-
densates for biosensing applications is yet to be explored.

Building on the ability of designed condensates to sequester
large payloads including nanoparticles,”* we sought to develop
a biosensing system based on the sequestration of optical
nanoparticles in synthetic condensates, including C-dots.'®
Owing to the responsive nature of condensates and their ability
to encapsulate nanoparticles, we envisioned that the encapsula-
tion and release of C-dots from condensates can provide a means
to regulate C-dots optical properties. We recently reported on
minimalistic condensates that are formed by LLPS of designer
14-mer peptides containing 3 aromatic amino acids.® These
condensates showed high encapsulation efficiency towards aro-
matic small molecule dyes. Thus, we hypothesized that conden-
sates formed by aromatic amino acid-containing peptides will
sequester optical nanoparticles containing aromatic moieties by
n-7 interactions.

An example of widely used fluorescent nanoparticles with
tunable optical properties are quantum dots.>>*® The optical
properties of quantum dots mainly depend on their size and
chemical composition. For instance, quantum dots are known to
emit light at a wavelength proportional to their diameter for a
given excitation wavelength,”” thus their fluorescence can be
tailored for specific applications. Quantum dots may be synthe-
sized from inorganic or carbon-based molecules, where the latter
are known as C-dots. The fluorescent properties of C-dots are
dependent on the chemical content of their crystalline carbonac-
eous core.”® In addition, the fluorescence of C-dots is known to be
excitation dependent. C-dots are also characterized by “structural
memory”, the ability to present functional groups of their pre-
cursors on the surface of the carbon core.”® C-dots may be
classified based on their structure, atom content, and heteroge-
neity in the crystalline core made mainly out of carbon.*® C-dots
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Fig. 1 Schematic illustration of the designed peptide-YCDots conden-
sates. Top panel: Synthesis of YCDots by heating tyrosine and citric acid.
Bottom panel: Formation of peptide-YCDots condensates by LLPS of
designer peptide (WGR-1) in the presence of YCDots. The fluorescence
of the YCDots is quenched upon LLPS. Following degradation of the
condensates over time, the YCDots fluorescent signal is retrieved.

can also be synthesized from simple building blocks such as
amino acids.?**° The functional group presented on the synthe-
sized C-dots, originating from the amino acid, determines the
quantum yield in correlation to hydrophobicity and volume.**
Here, we synthesized C-dots from the aromatic amino acid
tyrosine. We showed that these C-dots partition in synthetic
condensates that are formed by LLPS of an aromatic amino
acid-containing peptide. The fluorescence of partitioned C-dots
is quenched due to their confinement and retrieved upon
disassembly of the condensates. Thus, the designed peptide-
C-dots condensates can be further developed to respond to
microenvironmental physical or biochemical cues for the detec-
tion of pH fluctuations or increased local enzyme expression.
We first synthesized C-dots from citric acid (CA) and tyrosine
(Y), designated for interaction with phase-separating peptides
(Fig. 1). The tyrosine-based C-dots, termed YCDots, were
synthesized via hydrothermal treatment, in an aqueous
solution®® under conditions of continuous heat.*> The for-
mation of the desired product was confirmed by using surface
chemistry, optical properties, and morphology. First, we used
UV-Vis absorption spectroscopy to analyze the resulting
YCDots. Compared to its precursors, tyrosine and citric acid,
the YCDots showed an absorbance peak at 230 nm (Fig. 2a).
This absorbance maximum is attributed to a m-n* transition,
which is characteristic of C-dots.** In addition, the absorbance
peak at 280 nm, present in both the YCDots and the tyrosine
spectra, indicates the preservation of the phenol moiety on the
surface of the conjugated C-dots (Fig. 2a). In contrast, the
precursor citric acid exhibited low absorbance in the UV region.
To further analyze the functional groups on the YCDots
surface, we performed FTIR analysis. The YCDots and tyrosine
both exhibit common peaks at ~2000 cm ™" and ~3000 cm ™"
(Fig. 2b), corresponding to the phenol group and the hydroxyl
moiety within the phenol group, respectively.*® These findings
coincide with the structural memory property of C-dots.,> for
the phenol group originating in tyrosine is preserved on the
YCDots surface in a conjugated form (Fig. 1).
Next, we performed fluorescence spectroscopy analysis of
the YCDots. For this, the emission of YCDots was measured at
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Fig. 2 Spectroscopy and microscopy analysis of YCDots. (a) UV-Vis
absorption spectra of YCDots, tyrosine (Y), and citric acid (CA). (b) FT-IR
absorption spectra of YCDots, Y, and CA. (c) Fluorescence spectroscopy
analysis of YCDots showing emission spectra at varying excitation wave-
lengths. (d) Excitation/emission plot of YCDots showing the emission
maxima wavelength as a function of excitation wavelength. (e) TEM
micrograph of YCDots. (f) Size distribution of YCDots as observed via TEM.

increasing excitation wavelengths at a range of 350-450 nm.
The YCDots showed specific emission maxima up to excitation
of 425 nm, where the emission maxima become broader and
lower in intensity at higher excitation wavelengths (Fig. 2c).
Moreover, the emission maxima redshift in an excitation-
dependent manner®® (Fig. 2d).

To characterize the morphology and size of the YCDots, we
used transmission electron microscopy (TEM) imaging (Fig. 2e).
The TEM analysis confirmed the formation of nanometer-sized
particles, with a size distribution which varies between 4-22 nm
(Fig. 2f). The relatively wide size distribution is in line with a
broad absorption and emission spectra,® in terms of C-dots
properties.**

To further analyze the functional groups on the surface of
the YCDots, we performed XPS analysis (Fig. S1, ESIT). The
formation of C-dots is validated by the peak at 289.8 eV of the
XPS spectrum for the C 1s of the product (Fig. Sib, ESI}).
Moreover, the peak at 401.72 eV in the N1 spectrum suggests
that the YCDots core is doped with the nitrogen that originates
from the amine group of the tyrosine (Fig. Sic, ESIf). The
presence of doped nitrogen may lead to a redshift in the
emission spectra,®® further contributing to the broad fluores-
cence of the C-dots.>® This coincides with the dependence of
fluorescence on heteroatoms doped into the carbonaceous
crystalline core of the C-dots.*® The peak at 532.67 eV for the
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O1 provides further indication of the presence of phenol groups
on the surface of the YCDots (Fig. $1d, ESI).>® Thus, the XPS
results confirm the formation of YCDots and shed light on their
optical properties.

Once YCDots formation was validated, we sought to encap-
sulate them in peptide condensate, which are formed by
peptide LLPS in the presence of the YCDots. For this, we used
a 14-mer LLPS-promoting peptide WGRGRGRGWPGVGY noted
as WGR-1 (Fig. S2, ESIf). The peptide contains three glycine-
arginine (RG) dyads, where the glycine promotes flexibility of
the backbone and the arginine promotes electrostatic and n-n
interactions, which overall promote phase separation. The
peptide also contains three aromatic amino acids: two trypto-
phans (W) and one tyrosine (Y), and elastin-like polypeptide
(ELP) domain, which also promotes phase separation.’” Pep-
tide condensates containing YCDots were formed by first dis-
solving the YCDots (0.5 mg mL™") in phosphate buffer with
0.2 M NaCl at pH 7.5, and thereafter dissolving the WGR-1
peptide (20 mM) in the YCDots solution. Upon increasing the
pH to 7.5, the solution became turbid, and condensates were
formed due to the deprotonation of the terminal amine and
decrease of electrostatic repulsion between the cationic peptide
molecules, which facilitates peptide-peptide interaction and
phase separation.*

The encapsulation efficiency (%EE) of the YCDots in the
condensates was analyzed spectroscopically by measuring the
emission of YCDots in the supernatant following centrifugation
of the peptide condensates containing YCDots (see Method
section in ESIf). The calculated encapsulation efficiency is
~65.6 £ 5.8% (n = 5), indicating the YCDOts preferentially
partition within the condensed peptide phase compared to the
dilute phase. The YCDots encapsulation in the condensates is
also supported by the increase in the fluorescence intensity of
peptide condensates which were prepared in the presence of
YCDots compared to that of condensates which were prepared
without YCDots, as shown by confocal microscopy analysis
using e, = 405 nm (Fig. 3). Measuring the fluorescence inten-
sity of the condensates (Fig. 3c) shows that the peptide con-
densates themselves have intrinsic autofluorescence,
presumably due to the presence of aromatic residues within
the peptide sequence. Yet, the presence of YCDots increased
the fluorescence intensity of the peptide condensates, as shown
by the fluorescence intensity histograms (Fig. 3c and d). Thus,
these results suggest that the YCDots partition in the WGR-1
peptide condensates. Based on the surface chemistry analysis,
it is plausible that the YCDots partitioning is a result of n-n
stacking interactions between the YCDots and the aromatic
side chains of the WGR-1 peptide. Yet, the relatively low %EE of
the YCDots in the condensates compared with the reported
values for other vehicles (Table S1, ESIT) might be a result of
electrostatic repulsion between the arginine side chains® of the
peptide and the positively charged nitrogen (Fig. Sic, ESIt) in
the YCDots core.

We envisioned that the YCDots fluorescence intensity
will decrease upon their encapsulation in condensates due to
the tendency of C-dots to quench upon aggregation when

12300 | Chem. Commun., 2023, 59, 12298-12301

View Article Online

Communication

+ YCDots

+YCDots

Count
O = N W A OO N
Count

8
7
6
5
4
3
2
1
0

000 2000 3000 4000 5000 6000 7000 8000 9000
Fluorescence Intensity (a.u)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Fluorescence Intensity (a.u)

Fig. 3 Partitioning of YCDots in peptide condensates. (a) and (b) Repre-
sentative confocal images of WGR-1 droplets without (a) or with (b) YCDots.
(c) Fluorescence intensity distribution of WGR-1 droplets-YCDots (n = 20).
(d) Fluorescence intensity distribution of WGR-1 droplets +YCDots (n = 20).
Scale bar = 10 um.

partitioned in the condensed phase,*® and that their signal will
increase over disassembly of the condensates. Since the con-
densates are dynamic assemblies that disassemble over time
yet are stable at high temperature or high ionic strength (Fig. S3
and S4, ESIT), we monitored the fluorescence of the YCDots in
condensates as a function of incubation time by fluorescence
spectroscopy. The fluorescence intensity of partitioned YCDots
is 34% lower than that of free particles (Fig. S5, ESIT). This
partial quenching can be attributed to the presence of free
YCDots in the dilute phase or might be a result of YCDots
diffusion and mobility in the condensates. The fluorescence
signal of the partitioned YCDots increases over incubation
time, with a 5-fold increase in intensity after 24 h (Fig. 4a
and b). The abundance of the condensates significantly
decreases after 1 h of incubation, and the condensates are
completely dissociated following 3 h of incubation (Fig. 4c).
Here, we developed a peptide condensate system that
enables C-dot encapsulation and fluorescence control. The
C-dots design based on the amino acid tyrosine as a precursor,
relies on phenol group functionalization that promotes attrac-
tive forces with the aromatic peptide side chains. The efficiency
of C-dots encapsulation in the condensates is however con-
strained by repulsive forces caused by doping with positively
charged nitrogen from the tyrosine amine groups. This limita-
tion may be resolved by designing C-dots from different pre-
cursors i.e., acidic amino acids, and changing the composition
of the LLPS-promoting peptide building blocks accordingly. We
demonstrated that the release of partitioned C-dots from
deconstructed condensates regulates their fluorescence signal.
This system can be further developed as a stimuli-responsive
platform for applications in precision biosensing, by leveraging
the optical characteristics of C-dots and the capacity of con-
densates to respond to physical or biochemical stimuli. For
instance, condensates formed mainly through electrostatic
interactions can disassemble and release C-dots upon
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Fig. 4 Spectroscopy and microscopy analysis of YCDots partitioned in
WGR-1 droplets over time. (a) Time-dependent fluorescence spectra of
partitioned YCDots over time (lex = 375 nm). (b) Time-dependent change
in relative fluorescence intensity of partitioned YCDots, corresponding to
(@) (lex = 375 NnM, Jem = 425 nm). (c) Time-dependent deformation of
WGR-1 condensates with YCDots, compared to WGR-1 condensates
without YCDots visualized by bright field microscopy (scale = 50 pm).

phosphorylation by specific cancer marker kinases for detec-
tion of diseased tissues.
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