

Cite this: *Chem. Commun.*, 2023, 59, 12859

Received 19th June 2023,
Accepted 30th September 2023

DOI: 10.1039/d3cc02932h

rsc.li/chemcomm

Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report $\alpha\beta,\alpha'\beta'$ -diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L, D-transpeptidase Ldt_{Mt2} from *Mycobacterium tuberculosis* and the main protease from SARS-CoV-2 (M^{pro}) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.

Most covalently reacting enzyme inhibitors bear an electrophilic functional group that reacts with a nucleophile to enable covalent protein modification.¹ Although many such inhibitors work by apparently simple acylation, alkylation or conjugate addition reactions, some undergo further reaction after initial covalent modification. Such mechanism-based inhibitors can be found in drugs,^{2–4} with one such example being inhibitors of the nucleophilic serine- β -lactamases, such as clavulanic acid.^{5,6}

Despite the long-standing importance of covalently reacting drugs, concerns regarding potential toxicity have hindered their development. Covalently reacting drugs are, however, the subject of recent renewed interest,^{1,7} and are currently the basis for multiple drug development programs, including in oncology and antimicrobials.^{8–11} Covalent targeting of a prevalent oncogenic mutation in K-Ras (K-Ras^{G12C}) has led to development of sotorasib and adagrasib.¹² Various medicinal chemistry programs targeting the main protease (M^{pro}) of SARS-CoV-2 have

focussed on covalent reaction of the catalytic cysteine residue, with nirmatrelvir, a reversibly reacting nitrile-bearing inhibitor, being approved for COVID-19 treatment.^{13,14} The L,D-transpeptidase Ldt_{Mt2} of *Mycobacterium tuberculosis*, which is a target for TB treatment,¹⁵ is amenable to covalent inhibition *via* reaction with its catalytic cysteine.^{16–18}

Epoxides are an established class of electrophilic alkylating agents, and are used to inhibit nucleophilic cysteine (and serine) proteases.^{1,19,20} Many epoxide inhibitors of cysteine or serine proteases contain peptide backbones, *e.g.* proteasome inhibitors,^{21–24} though the small molecule epoxide fosfomycin is a clinically important antibiotic (Fig. 1A).^{25,26}

We are interested in identifying new types of covalently reacting modulators of biological function. Recently, we

reported on a high-throughput screen aiming to identify new electrophilic inhibitors of $\text{Ldt}_{\text{Mt}2}$ and other nucleophilic enzymes.²⁷ Here, we describe the identification of the small molecule *trans,trans* $\alpha\beta,\alpha'\beta'$ -diepoxyketone (DEK) **1** (Fig. 1B), and the potency and mechanism of **1** and related DEKs **4–11** for $\text{Ldt}_{\text{Mt}2}$ and SARS-CoV-2 M^{pro} inhibition; the results reveal DEKs as a mechanistically interesting class of electrophile.

Symmetrical DEKs have 3 obvious positions that may react with nucleophiles and have potential to undergo further reactions (Fig. 1C). DEK **1** exhibited potent inhibition of $\text{Ldt}_{\text{Mt}2}$, with a pIC_{50} of 7.2 ± 0.1 , with 30 min pre-incubation (Fig. 1B). To investigate the mode of reaction of **1** with $\text{Ldt}_{\text{Mt}2}$, we carried out protein-observed mass spectrometry employing solid-phase extraction (SPE-MS). The results reveal that **1** covalently reacts with $\text{Ldt}_{\text{Mt}2}$, giving an initial adduct (**2**) with a +267 Da mass shift relative to unmodified $\text{Ldt}_{\text{Mt}2}$ (Fig. 2B and Table S1, ESI[†]), corresponding to addition of one molecule of **1** to $\text{Ldt}_{\text{Mt}2}$, which has a single cysteine (Cys354). This adduct (**2**) was transient,

converting within 2 h into one with a mass shift of +160 Da relative to unmodified $\text{Ldt}_{\text{Mt}2}$, provisionally assigned as **3**. We proposed the reaction involves nucleophilic attack of Cys354 on the carbonyl-group adjacent carbon of one of the symmetrical epoxides, with ring opening to form **2**, followed by retro-aldol fragmentation, releasing benzaldehyde (Fig. 2C). Alternatively, the reaction may proceed through reaction at the carbonyl carbon to generate a hemithioketal, after which rearrangement may occur (Fig. 2C).²⁸

The identity of **3** was validated by X-ray crystallography, using reported conditions,²⁷ wherein **1** was introduced through soaking; a structure of $\text{Ldt}_{\text{Mt}2}$ reacted with **1** was obtained (2.15 Å resolution, P121 space group, PDB: 8BK3, Table S2, ESI[†]). As reported, $\text{Ldt}_{\text{Mt}2}$ crystallised with two molecules (chains A and B) in the asymmetric unit. While this structure manifested clear additional electron density at the chain A active site, only partial density was observed at that of chain B, thus inhibitor modelling was only performed in chain A. The additional electron density in chain A supports the proposed structure of adduct **3** (Fig. 2). The carbonyl of **3** projects into the proposed oxyanion hole, formed by the backbone NH groups of His352, Gly353 and Cys354 (distances of 3.0 Å, 3.4 Å and 3.2 Å, respectively).²⁹ Extensive hydrophobic interactions of **3** with active site residues Tyr318, His352, Trp340, Thr320, and Met303 were observed.

In aqueous solution, **1** was found to be stable for at least 12 h (Fig. S3, ESI[†]). Cysteine reacted with **1**, apparently yielding a product analogous to adduct **3** (Fig. S4, ESI[†]). No evidence for reaction of **1** with serine, lysine, threonine, tyrosine, arginine, or histidine was observed by ¹H NMR or LCMS under the tested conditions (Fig. S5, ESI[†]).

To further analyse the inhibitory potency and mechanism of the DEKs, we prepared derivatives of **1**. Synthesis involved preparation of the diene ketones *via* solvent-free aldol condensation, mediated by lithium perchlorate and Et₃N,³⁰ followed by epoxidation using ²BuOOH and KF-Al₂O₃,^{31,32} to yield stereoisomeric mixtures of DEKs **1** and **4–11** (Fig. 1D and Table S3, ESI[†]).

No substantial difference in inhibition between diastereomerically pure **1** and enantiomerically pure **1** was observed. While we did not obtain the pure *cis,cis* diastereomer of **1**, a diastereomeric mixture of **1** (~1:3 ratio of *trans,trans*:*cis,cis* stereoisomers) manifested potent, but decreased, $\text{Ldt}_{\text{Mt}2}$ inhibition compared to diastereomerically pure **1** ($\text{pIC}_{50} 5.6 \pm 0.04$ compared to 6.2 ± 0.07 for diastereomerically pure **1**, with 15 min preincubation, Fig. S6, ESI[†]). The results imply the importance of the *trans,trans* stereochemistry for potent $\text{Ldt}_{\text{Mt}2}$ inhibition by the DEKs. Recrystallisation of diastereomeric mixtures from ethanol afforded the corresponding pure *trans,trans* diastereomers, as supported by ¹H NMR analysis and small molecule X-ray diffraction (Table S4, ESI[†]), except for DEKs **5** and **8**, which were tested as diastereomeric mixtures (*trans,trans:cis,cis* ratio ~2:1 and ~1.2:1, respectively).

Dose-response assays of **4–11** with $\text{Ldt}_{\text{Mt}2}$ showed decreased potency compared to **1** (Table S3 and Fig. S1, ESI[†]). Determination of the second-order rate constants for covalent target

Fig. 2 X-ray crystallography and protein-observed SPE-MS studies inform on the mechanism of DEK inhibition. (A) Views from a crystal structure derived by reaction of $\text{Ldt}_{\text{Mt}2}$ with DEK **1** (yellow, PDB: 8BK3). The immunoglobulin-like domains are in teal and cyan. The catalytic domain is grey, with the active site lid in green. The mF₀-DF_c polder OMIT map is contoured at 3.0 σ , carved around Cys354 bound **1** (refined as **3**) and shown in blue mesh. Polar interactions are shown in black dashes. (B) Protein-observed SPE-MS experiments inform on the mechanism of reaction of **1** (20 μM) with $\text{Ldt}_{\text{Mt}2}$ (1 μM). (C) The proposed mechanisms for reaction of Cys354 of $\text{Ldt}_{\text{Mt}2}$ (in green) with **1** via reaction with (i) the carbonyl adjacent carbon or (ii) the carbonyl carbon, followed by retro-aldol fragmentation.

inactivation (k_{inact}/K_I)³³ for Ldt_{Mt2} manifested the highest rate of inhibition for **1** (k_{inact}/K_I of $484.3 \pm 28.4 \text{ M}^{-1} \text{ s}^{-1}$, Table S3 and Fig. S7, ESI[†]). DEKs **5–7** and **9** were observed to inhibit Ldt_{Mt2} , while no evidence for inhibition was observed with **4**, **8** and **10**. The kinetic rate constant for reactivity with GSH (k_{chem})^{27,34} was found to be below the assay limit for all DEKs (k_{chem} of $<0.08 \text{ M}^{-1} \text{ s}^{-1}$ and half-life ($t_{1/2}$) $>8.7 \text{ h}$), except **7** and **8** (k_{chem} of 1.71 ± 0.24 and $1.11 \pm 0.20 \text{ M}^{-1} \text{ s}^{-1}$, and $t_{1/2}$ of 24 min and 38 min, respectively; Table S3 and Fig. S8, ESI[†]). DEKs therefore apparently exhibit lower intrinsic reactivity compared to the common cysteine reactive acrylate, maleimide and isothiocyanate groups ($t_{1/2} < 1.0 \text{ min}$), and, with the exceptions of **7** and **8**, chloroacetamide (5.8 h).³⁵ MS studies of the reaction of GSH and **1** manifested an adduct analogous to **3** (Fig. S9, ESI[†]).

Protein-observed SPE-MS assays of **4–11** demonstrated covalent modification of Ldt_{Mt2} with **4–10**, which manifested adducts analogous to those with **1** (Fig. S2 and Table S1, ESI[†]) supporting the generality of the proposed mechanism. Additional peaks of +18 Da were observed with both unfragmented and fragmented adducts of **4–10**, likely due to ring opening of the second epoxide (Fig. S10, ESI[†]). With **1**, **5**, **6** and **7**, over 24 h, a second fragment adduct was observed with a +56 mass shift relative to the unmodified enzyme (Fig. S10, ESI[†]).

DEK **1** apparently displayed a low level of β -elimination of the reacted Cys354 residue, likely to form a dehydroalanine residue (Dha, ~5% in 24 h, as evidenced by a -34 Da mass shift relative to unmodified Ldt_{Mt2} , Fig. S2 and S10, ESI[†]).^{36–38} Interestingly, the *ortho*-trifluoromethoxy substituents on the phenyl groups of **5** promoted Dha formation (~30% in 24 h). Dha formation was additionally observed following reaction with **4** (~2.5% in 24 h) and **7** (~16% in 24 h). In the cases of **6** and **8–10**, no evidence for Dha formation was observed.

While inhibition assays with the α,β -monoepoxyketone **12** did not manifest inhibition of Ldt_{Mt2} , protein-observed SPE-MS assays of Ldt_{Mt2} (1 μM) with **12** (100 μM) evidenced covalent reaction. As with DEKs **1** and **4–10**, initial measurements (2 h) showed the most abundant adduct to have a mass shift of +224 Da, corresponding to the addition of a single molecule of **12**. A +119 Da adduct was observed to become abundant after 6 h (Fig. S2, ESI[†]), indicating that the retro-aldol fragmentation is conserved between mono- and diepoxy derivatives.

While Ldt_{Mt2} contains only a single cysteine, in principle, the DEKs may alkylate other nucleophilic residues.^{39,40} To investigate whether the DEKs react selectively with Cys-354 of Ldt_{Mt2} , we performed protein-observed SPE-MS assays with Ldt_{Mt2} that had been preincubated with ebselen, which is known to selectively and irreversibly react with Cys354.¹⁶ When **1** and **4–10** were combined with the Ldt_{Mt2} -ebselen complex, no reaction was observed, evidencing that inhibition arises from at least partially, selective reaction with Cys354 (Fig. S11, ESI[†]).

To further investigate the reactivity of DEKs with nucleophilic cysteine enzymes, dose-response assays of **1** and **4–11** were performed with SARS-CoV-2 M^{pro} ;^{41,42} note that the covalent reaction of SARS-CoV M^{pro} with epoxides has been reported.⁴³ While DEKs **1** and **9** were inhibitors of M^{pro} (pIC₅₀ values of

4.6 ± 0.3 and 5.9 ± 0.2 , respectively), no inhibition was observed with **4–8** and **10–11** (Table S3 and Fig. S12, ESI[†]), providing further evidence for potential of the DEKs to react selectively.

Protein-observed SPE-MS experiments with M^{pro} and the DEKs **1** and **9** (Fig. S13, ESI[†]) manifested a +266 Da adduct (analogous to species **2**, Fig. 2C), with a +160 Da adduct (analogous to species **3**) becoming apparent over time. A second molecule of **1** was observed to bind to M^{pro} after 3 h (as evidenced by a mass shift of +266 Da relative to the +160 adduct), indicating reaction with a second residue, likely with one or more of the 12 cysteine residues of M^{pro} . Notably, the second adduct did not fragment by retro-aldol reaction, implying that this pathway can be promoted by the active site, likely by binding of one of the DEK-derived oxygens in the oxyanion hole of M^{pro} .⁴⁴ Incubation of M^{pro} with **9** resulted in a single adduct of +186 Da, which can be assigned to a fragmented species analogous to species **3** (Fig. 2C).

As epoxide-bearing compounds may inhibit serine proteases, notably including proteasomes,^{45,46} we tested the ability of the DEKs to inhibit the nucleophilic serine enzyme BlaC, a class A β -lactamase of *M. tuberculosis*. None of compounds **1** and **4–12** exhibited inhibitory potency for BlaC (Fig. S14, ESI[†]).

The combined results of the reaction of DEKs with GSH, cysteine, Ldt_{Mt2} and SARS-CoV-2 M^{pro} , imply a conserved reaction mechanism, involving epoxide opening followed by retro-aldol reaction. Importantly, the results reveal different reactivity of the 12 M^{pro} cysteine residues with DEKs, indicating that selectivity for some proteins should be achievable; note that previous results showed that excess ebselen reacts covalently with all 12 cysteine residues.⁴⁷

The results identify DEKs as a new class of nucleophilic cysteine reacting covalent ligands. Variations on the DEK functionality can be readily envisaged *e.g.*, by substituting one or both epoxides for other covalently reacting electrophiles, such as aziridines or acylating agents. Notably, some natural products contain more than one epoxide, sometimes in a contiguous arrangement,⁴⁸ though to our knowledge the DEK functional group has not been identified in natural products. Interestingly, DEKs have 5 hypothetical sites for reaction with nucleophiles (Fig. 1C), and they hold potential for subsequent addition of a second nucleophile. This could be useful in enabling (i) formation of cross-linked enzyme-inhibitor complexes (as can occur with other mechanism based inhibitors, *e.g.*, certain β -lactamase inhibitors),⁴⁹ (ii) labelling of an inhibited protein for analytical or diagnostic purposes, (iii) the capture of enzyme substrates, and (iv) covalent gluing of protein–protein interactions; note that epoxides are used in commonly used polyepoxide glues.⁵⁰ The ability of DEKs to fragment after initial covalent reaction might be useful in releasing a functional fragment, *e.g.*, a cytotoxic agent (the cytotoxicity of benzaldehyde in tumour cells has been reported⁵¹).

We are very grateful to Eidarus Salah for SARS-CoV-2 M^{pro} . We thank the Department of Biochemistry (Oxford) for the use of the 950 MHz spectrometer and Dr Patrick Rabe supporting

NMR experiments. The project was co-funded by the Tres Cantos Open Lab Foundation (Project TC241 and project TC297). It was supported by funding from the Biotechnology and Biological Sciences Research Council (BBSRC) [BB/M011224/1] and the Wellcome Trust (106244/Z/14/Z).

Conflicts of interest

There are no conflicts to declare.

Notes and references

1. J. Singh, R. C. Petter, T. A. Baillie and A. Whitty, *Nat. Rev. Drug Discovery*, 2011, **10**, 307–317.
2. J. G. Robertson, *Biochemistry*, 2005, **44**, 5561–5571.
3. C. T. Walsh, *Annu. Rev. Biochem.*, 1984, **53**, 493–535.
4. R. B. Silverman and M. W. Holladay, *The organic chemistry of drug design and drug action*, Academic press, 2014.
5. R. P. Brown, R. T. Aplin and C. J. Schofield, *Biochemistry*, 1996, **35**, 12421–12432.
6. D. Sulton, D. Pagan-Rodriguez, X. Zhou, Y. Liu, A. M. Hujer, C. R. Bethel, M. S. Helfand, J. M. Thomson, V. E. Anderson, J. D. Buynak, L. M. Ng and R. A. Bonomo, *J. Biol. Chem.*, 2005, **280**, 35528–35536.
7. R. A. Bauer, *Drug. Discovery Today*, 2015, **20**, 1061–1073.
8. J. M. Dixon, *Expert Rev. Anticancer Ther.*, 2002, **2**, 267–275.
9. D. Thomas and J. Zalcberg, *Clin. Exp. Pharmacol. Physiol.*, 1998, **25**, 887–895.
10. H. Xu, C. Faber, T. Uchiki, J. Racca and C. Dealwis, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, **103**, 4028–4033.
11. D. J. Waxman and J. L. Strominger, *Annu. Rev. Biochem.*, 1983, **52**, 825–869.
12. J. Liu, R. Kang and D. Tang, *Cancer Gene Ther.*, 2022, **29**, 875–878.
13. H. Yang and J. Yang, *RSC Med. Chem.*, 2021, **12**, 1026–1036.
14. D. R. Owen, C. M. N. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman, A. Dantonio, L. Di, H. Eng, R. Ferre, K. S. Gajiwala, S. A. Gibson, S. E. Greasley, B. L. Hurst, E. P. Kadar, A. S. Kalgutkar, J. C. Lee, J. Lee, W. Liu, S. W. Mason, S. Noell, J. J. Novak, R. S. Obach, K. Ogilvie, N. C. Patel, M. Pettersson, D. K. Rai, M. R. Reese, M. F. Sammons, J. G. Sathish, R. S. P. Singh, C. M. Steppan, A. E. Stewart, J. B. Tuttle, L. Updyke, P. R. Verhoest, L. Wei, Q. Yang and Y. Zhu, *Science*, 2021, **374**, 1586–1593.
15. R. Gupta, M. Lavollay, J.-L. Mainardi, M. Arthur, W. R. Bishai and G. Lamichhane, *Nat. Med.*, 2010, **16**, 466–469.
16. M. de Munnik, C. T. Lohans, P. A. Lang, G. W. Langley, T. R. Malla, A. Tumber, C. J. Schofield and J. Brem, *Chem. Commun.*, 2019, **55**, 10214–10217.
17. E. M. Steiner, G. Schneider and R. Schnell, *FEBS J.*, 2017, **284**, 725–741.
18. P. Kumar, A. Kaushik, E. P. Lloyd, S.-G. Li, R. Mattoo, N. C. Ammerman, D. T. Bell, A. L. Perryman, T. A. Zandi, S. Ekins, S. L. Ginell, C. A. Townsend, J. S. Freundlich and G. Lamichhane, *Nat. Chem. Biol.*, 2017, **13**, 54–61.
19. J. C. Powers, J. L. Asgian, Ö. D. Ekici and K. E. James, *Chem. Rev.*, 2002, **102**, 4639–4750.
20. L. Boike, N. J. Henning and D. K. Nomura, *Nat. Rev. Drug. Discovery*, 2022, **21**, 881–898.
21. E. Weerapana, G. M. Simon and B. F. Cravatt, *Nat. Chem. Biol.*, 2008, **4**, 405–407.
22. D. Greenbaum, K. F. Medzihradzky, A. Burlingame and M. Bogyo, *Chem. Biol.*, 2000, **7**, 569–581.
23. A. Albeck and S. Kliper, *Biochem. J.*, 2000, **346**, 71–76.
24. S. Kawamura, Y. Unno, A. Asai, M. Arisawa and S. Shuto, *Bioorg. Med. Chem.*, 2014, **22**, 3091–3095.
25. A. C. Dijkmans, N. V. O. Zacarías, J. Burggraaf, J. W. Mouton, E. Wilms, C. Van Nieuwkoop, D. J. Touw, J. Stevens and I. M. C. Kamerling, *Antibiotics*, 2017, **6**, 24.
26. L. L. Silver, *Cold Spring Harb. Perspect. Med.*, 2017, **7**, a025262.
27. M. de Munnik, P. A. Lang, F. De Dios Antos, M. Cacho, R. H. Bates, J. Brem, B. Rodriguez-Miquel and C. J. Schofield, *Chem. Sci.*, 2023, **14**, 7262–7278.
28. A. Krantz, *Methods Enzymol.*, 1994, **244**, 656–671.
29. S. B. Erdemli, R. Gupta, W. R. Bishai, G. Lamichhane, L. M. Amzel and M. A. Bianchet, *Structure*, 2012, **20**, 2103–2115.
30. A. Arnold, M. Markert and R. Mahrwald, *Synthesis*, 2006, 1099–1102, DOI: [10.1055/s-2006-926346](https://doi.org/10.1055/s-2006-926346).
31. W. M. Weber, L. A. Hunsaker, C. N. Roybal, E. V. Bobrovnikova-Marjon, S. F. Abcouwer, R. E. Royer, L. M. Deck and D. L. Vander Jagt, *Bioorg. Med. Chem.*, 2006, **14**, 2450–2461.
32. V. K. Yadav and K. K. Kapoor, *Tetrahedron*, 1996, **52**, 3659–3668.
33. I. Miyahisa, T. Sameshima and M. S. Hixon, *Angew. Chem., Int. Ed.*, 2015, **54**, 14099–14102.
34. T. Sameshima, I. Miyahisa, S. Yamasaki, M. Gotou, T. Kobayashi and J. Sakamoto, *Adv. Sci. Drug. Discovery*, 2017, **22**, 1168–1174.
35. L. Petri, P. Ábrányi-Balogh, P. R. Varga, T. Imre and G. M. Keserű, *Bioorg. Med. Chem.*, 2020, **28**, 115357.
36. T. J. Holmes and R. G. Lawton, *J. Am. Chem. Soc.*, 1977, **99**, 1984–1986.
37. C. Bashore, P. Jaishankar, N. J. Skelton, J. Fuhrmann, B. R. Hearn, P. S. Liu, A. R. Renslo and E. C. Dueber, *ACS Chem. Biol.*, 2020, **15**, 1392–1400.
38. P. A. Lang, R. Raj, A. Tumber, C. T. Lohans, P. Rabe, C. V. Robinson, J. Brem and C. J. Schofield, *Proc. Natl. Acad. Sci. U. S. A.*, 2022, **119**, e2117310119.
39. M. Groll, K. B. Kim, N. Kairies, R. Huber and C. M. Crews, *J. Am. Chem. Soc.*, 2000, **122**, 1237–1238.
40. S. K. Grant, M. L. Moore, S. A. Fakhoury, T. A. Tomaszek Jr and T. D. Meek, *Bioorg. Med. Chem. Lett.*, 1992, **2**, 1441–1445.
41. L. Brewitz, L. Dumjahn, Y. Zhao, C. D. Owen, S. M. Laidlaw, T. R. Malla, D. Nguyen, P. Lukacik, E. Salah, A. D. Crawshaw, A. J. Warren, J. Trincao, C. Strain-Damerell, M. W. Carroll, M. A. Walsh and C. J. Schofield, *J. Med. Chem.*, 2023, **66**, 2663–2680.
42. T. R. Malla, L. Brewitz, D.-G. Muntean, H. Aslam, C. D. Owen, E. Salah, A. Tumber, P. Lukacik, C. Strain-Damerell, H. Mikolajek, M. A. Walsh and C. J. Schofield, *J. Med. Chem.*, 2022, **65**, 7682–7696.
43. T.-W. Lee, M. M. Cherney, C. Huitema, J. Liu, K. E. James, J. C. Powers, L. D. Eltis and M. N. G. James, *J. Mol. Biol.*, 2005, **353**, 1137–1151.
44. J. Lee, L. J. Worrall, M. Vuckovic, F. I. Rosell, F. Gentile, A.-T. Ton, N. A. Caveney, F. Ban, A. Cherkasov, M. Paetzl and N. C. J. Strynadka, *Nat. Commun.*, 2020, **11**, 5877.
45. L. Meng, R. Mohan, B. H. B. Kwok, M. Elofsson, N. Sin and C. M. Crews, *Proc. Natl. Acad. Sci. U. S. A.*, 1999, **96**, 10403–10408.
46. H.-J. Zhou, M. A. Aujay, M. K. Bennett, M. Dajee, S. D. Demo, Y. Fang, M. N. Ho, J. Jiang, C. J. Kirk, G. J. Laidig, E. R. Lewis, Y. Lu, T. Muchamuel, F. Parlati, E. Ring, K. D. Shenk, J. Shields, P. J. Shwonek, T. Stanton, C. M. Sun, C. Sylvain, T. M. Woo and J. Yang, *J. Med. Chem.*, 2009, **52**, 3028–3038.
47. S. T. Thun-Hohenstein, T. F. Suits, T. R. Malla, A. Tumber, L. Brewitz, H. Choudhry, E. Salah and C. J. Schofield, *ChemMed-Chem*, 2022, **17**, e202100582.
48. Q. Lu, D. S. Harmalkar, Y. Choi and K. Lee, *Molecules*, 2019, **24**, 3778.
49. P. N. Wyrembak, K. Babaoglu, R. B. Pelto, B. K. Shoichet and R. F. Pratt, *J. Am. Chem. Soc.*, 2007, **129**, 9548–9549.
50. F.-L. Jin, X. Li and S.-J. Park, *J. Ind. Eng. Chem.*, 2015, **29**, 1–11.
51. K. Ariyoshi-Kishino, K. Hashimoto, O. Amano, J. Saitoh, M. Kochi and H. Sakagami, *Anticancer Res.*, 2010, **30**, 5069–5076.

