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Coarse-grained versus fully atomistic machine
learning for zeolitic imidazolate frameworks†

Zoé Faure Beaulieu, Thomas C. Nicholas, John L. A. Gardner,
Andrew L. Goodwin * and Volker L. Deringer *

Zeolitic imidazolate frameworks are widely thought of as being

analogous to inorganic AB2 phases. We test the validity of this

assumption by comparing simplified and fully atomistic machine-

learning models for local environments in ZIFs. Our work addresses

the central question to what extent chemical information can be

‘‘coarse-grained’’ in hybrid framework materials.

Zeolitic imidazolate framework (ZIF) materials1 have garnered
interest because of their fundamental properties2 as well as
emerging applications.3 ZIFs are a class of metal–organic
frameworks (MOFs) with zeolite-like architectures, showing
characteristic properties of both groups. Like inorganic zeo-
lites, ZIFs are chemically and thermally stable whilst having
markedly higher surface areas and pore volumes. Beyond the
crystalline state, ZIFs have been synthesised and characterised
in various glassy4 and liquid forms;5 for a review, see ref. 6.

ZIFs are built up of cationic metal centres and anionic linker
molecules. Based on topology and geometry, as well as formal
charges, ZIFs have long been thought of as tetrahedral AB2

networks analogous to SiO2 (Fig. 1a).1a Consequently, the
conceptual mapping to zeolites has informed the synthesis
and understanding of ZIFs.7 However, the extent to which this
analogy holds quantitatively remains an open question – it is yet
unclear whether the energy landscape of ZIFs can be quantified
without a fully atomistic description, and whether established
stability trends in zeolites8 map onto hybrid ZIF phases,
especially given that both materials classes access different
crystal topologies.

Describing ZIFs as AB2 networks, as illustrated in Fig. 1b,
is an example of structural coarse-graining (cg): a group of
atoms or an entire molecule is represented by a single pseudo-
atom (‘‘bead’’). This approach is popular in computational

chemistry, as lowering the structural resolution enables
faster simulations; for example, cg dynamics are now abun-
dantly used in biomolecular modelling.9 Conceptually similar
cg approaches can help to rationalise interactions in complex
disordered networks, as we have recently shown for amorphous
calcium carbonate.10

Here, we test how well ZIFs can be described as coarse-
grained AB2 networks from the viewpoint of chemical machine
learning (ML). We create ML models for the energies of local
environments in ZIFs and compare the accuracy that can be
reached with cg versus fully atomistic representations. We have
previously shown that cg-ML models enable unsupervised
learning in this domain, by visualising structural relationships
between ZIFs and inorganic AB2 networks.12 Our present work
now shows that energetics in Zn(Im)2 (where Im = imidazolate)
can be described, to useful accuracy, by supervised cg-ML
models. Our study complements wider-ranging activities on
cg force-field development,13 and at the same time it addresses
general questions about the nature of hybrid framework
materials.

Fig. 1 Coarse-graining the structure of the chemically simplest ZIF mate-
rial, Zn(Im)2. (a) The central question in the present work: to what extent is
Zn(Im)2 (left) similar to silica (right), beyond the topological and geometric
analogy noted in ref. 1a? (b) Schematic of the coarse-graining approach,
visualised using VESTA.11
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To create the input data for this study, we took a large set of
AB2-connected networks – which included the experimental ZIF
topologies – from ref. 12b. We decorated them with Zn2+

cations and Im� linkers throughout, generated copies of the
resulting structures with random distortions (but no full bond
breakages), and evaluated their energies with an empirical
force-field model from ref. 14.‡ In addition to per-cell (total)
energies, this model by construction yields per-atom (local)
energies – allowing us to build a ‘‘synthetic’’ dataset with which
the properties of ML models can be studied, following ideas in
ref. 15 and 16.

We focus on machine-learning the energetic stability of the
Zn2+ cations in Zn(Im)2 within the present work. We assume
that the energetics of Zn2+ sites are described by the atomic
energies of the cations themselves, e(i)

Zn, and those of their
immediate surroundings. Specifically, we assign the energy of
any Im� linker to each of its two Zn2+ neighbours in equal
parts – just like in SiO2, an O atom that connects two corner-
sharing tetrahedra would be attributed half-and-half to both.
We obtain the energy of the j-th linker, e( j)

Im, by summing over
the local energies of all C, N, and H atoms in this particular
molecule, and hence,

eðiÞlocal ¼ eðiÞZn þ
1

2

X4

j¼1
eð jÞIm

yields the local-environment energy of the i-th Zn2+ cation in a
given ZIF structure, which is our learning target. We note
that using the above definition, summing up e(i)

local over the
unit cell conveniently yields the energy of the entire structure,

and that the decomposition into local contributions is analo-
gous to a key assumption in ML interatomic potential
development.18 We reference the energy values to crystalline
ZIF-zni, which is the thermodynamically stable form at ambient
conditions.19

To create atomistic and cg models, we use Gaussian process
regression (GPR),17 an established and data-efficient ML
approach. We use the Smooth Overlap of Atomic Positions
(SOAP) technique20 to construct descriptor (feature) vectors,
x1 to xN, representing the Zn2+ environments, and from those
we build the kernel matrix, KNN, measuring the similarity of
environments. The ‘‘ground-truth’’ labels, y1 to yN, are collected
in a vector, y, and hence the coefficients, c, are obtained by
solving c = [KNN + R]�1y (Fig. 2a). In this, R adds a regularisation
term, corresponding to expected ‘‘noise’’ in the input, here
applied as a constant value for all atoms. Predictions for a new
Zn2+ environment, ŷ(x), are made by computing the SOAP
similarity, k, between x and every training point, and then
evaluating ŷ(x) = cTk.‡ We emphasise that our ML models do
not contain explicit pair, angular, or dihedral terms – this way,
they have the ability to be more flexible than parameterised
force fields (see ref. 21 for a relevant work on coarse-grained
MOF force fields fitted to an atomistic one). We show results for
the regression of the local-environment energies in our ZIF
dataset in Fig. 2b. The panels in this figure allow us to assess
the quality of the GPR ML models compared to the ground-
truth (training) data: the scatter plots illustrate how far each
prediction deviates from the identity. The plots show cross-
validation results, so that the testing data are not included
when training any one specific model.

Fig. 2 Machine-learning models for the energetic stability of local environments in ZIFs. (a) Schematic of Gaussian process regression (GPR), adapted
from ref. 17 and originally published under a CC BY licence (https://creativecommons.org/licenses/by/4.0/). (b) Scatter plots of local-environment
energies as defined in the text (the ‘‘ground-truth’’ learning target) on the horizontal axis, and our GPR ML predictions on the vertical axis. The values were
obtained by 5-fold cross-validation. From left to right, we characterise GPR models based on: a fully atomistic description; a cg description where the
linker molecules are described by single ‘‘B’’ beads (Fig. 1b); and a more aggressively coarse-grained model where only A-site species are represented. (c)
Learning curves showing the model root mean square error (RMSE) depending on the number of training datapoints. The RMSE for the largest number of
training points is indicated by a dashed grey line in each panel.
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Fig. 2b allows us to directly compare a fully atomistic GPR
model and the corresponding cg-GPR fits. Even though we have
made the structural representation notably simpler, there is
only modest loss in accuracy in an AB2-based cg model that
includes the locations of the Im� linkers. In contrast, an A-only
cg model (that represents the ZIF structures by considering only
the cation sites and ignoring the location of the linkers) leads to
a much poorer prediction of the local-environment energies,
because too much structural information has been lost.

The learning curves in Fig. 2c, showing the evolution of the
error with increasing number of training datapoints, suggest
that the ML model predictions are close to converged with
regard to the amount of training data used in the fit, particu-
larly in the cg cases. Further addition of training data is
expected to bring only a small benefit; there will remain a
residual error due to the locality (‘‘near-sightedness’’) of the
model and the applied regularisation. For the fully atomistic
GPR model, the quality of prediction is about 50 meV per
formula unit, or E1 kcal mol�1. The accuracy decreases by a
factor of 1.5 compared to the fully atomistic models if the Im�

units are coarse-grained, but by a factor of almost 3 if they are
omitted entirely.

With an initial proof-of-concept in hand, we probed the ML
models in more detail by investigating how they depend on the
hyperparameters used in the fit. The most important ones
control the behaviour of the SOAP descriptor: the cut-off radius,
rcut, and the smoothness of the atomic neighbour density, sat.
The former determines the locality of information that the
descriptor incorporates for a given environment; the latter
affects the ability of the model to generalise to new structures
by gradually reducing the precision of the information about
atomic sites. Whilst the results in Fig. 2 have been obtained
with optimised hyperparameters for each model type, Fig. 3
now shows the results of a grid search that more systematically
explores the effect of both hyperparameters on the model error.
We sampled values of rcut and sat up to 15 Å and 2 Å,
respectively, and thus a much wider range than used in typical
SOAP-based ML potentials (rcut E 5 Å; sat E 0.5 Å; ref. 17).

The loss landscape, i.e., the variation of errors with hyper-
parameter settings, is quite shallow around the minima.
Hence, a small change in rcut or sat has little impact on the
performance of the model, particularly for the cg ones. The fully
atomistic GPR model is optimised by a lower rcut value than its
cg counterparts (Table S1, ESI†): at a fixed cut-off, the atomistic
representation contains more information about the local
environment, presumably reducing the number of neighbours
(within rcut) that need to be included. To test whether changes
in rcut or sat affect the main conclusions, we cross-checked how
using the optimised hyperparameters for one representation
affects the prediction error of another (Table S2, ESI†).

Comparing the three plots in Fig. 3 side-by-side, it becomes
apparent once more how the quality of the models depends on
the degree of structural coarse-graining. Reducing the Im�

linkers to single beads leads to models with reasonable errors
(Fig. 3b) – whilst leaving them out entirely is clearly unfavour-
able (Fig. 3c). We also checked the RMSEs for predicting only
the Zn2+ energies, e(i)

Zn; the trends observed are qualitatively
consistent with those for e(i)

local (Table S3, ESI†). Future work on
ML models for this prototypical ZIF material might therefore
involve fully atomistic and AB2-like cg representations, with the
latter reducing the number of coordinates to be considered
from 51 per Zn(Im)2 unit to only 9 per AB2 equivalent.

In conclusion, our work has shown that local-environment
energies in ZIFs can be ‘‘machine-learned’’ using cg structural
representations, with less than a factor of 2 loss of accuracy
compared to established, fully atomistic approaches. In doing
so, we showed that local energies from an empirical force
field for ZIFs14 can be readily available ‘‘synthetic’’ regression
targets – extending prior work in the field of atomistic ML15,16

to the construction of cg models. Chemically, our results
provide direct and quantitative support for the long-standing
idea that there exists a mapping between ZIFs and zeolites
(Fig. 1a) based on their underlying tetrahedral connectivity.

What next? A direct avenue for future work is to move from
the unsubstituted imidazolate to a wider range of increasingly
anisotropic linkers (methyl-, ethyl-, benzimidazolate, etc.). We

Fig. 3 Survey of the hyperparameter space for fully atomistic GPR models (panel a) versus cg-GPR models (panels b and c). The two decisive choices are
the cut-off radius (vertical axis) and the smoothness of the atomic neighbour density (horizontal axis). The results of a grid search are given by colour-
coding, with individual grid points highlighted by small white markers. For those scans, we used a more economical setting of N = 10 000 training points,
compared to N = 32 000 otherwise.
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conducted preliminary tests which suggest that coarse-graining
methylimidazolate, mIm, as single ‘‘B’’ beads is not sufficient
to construct accurate cg-GPR models for Zn(mIm)2. Further
studies could therefore focus on coarse-graining strategies for
these ligands beyond single-bead models – as shown, e.g., by
Semino et al.,22 who used an atom-to-bead ratio of about 2.6 for
a carboxylate MOF, and Alvares et al. who studied different cg
models for ZIFs.23 In the present work, we focused on the
regression of easily available synthetic energies for local Zn2+

environments, but we note that ML techniques can similarly be
applied to other atomistic properties, such as NMR chemical
shifts.24 Having fast and accurate ML models for predicting the
latter could assist in interpreting NMR studies particularly of
glassy ZIFs.25 Finally, a clear direction for future research will
be the extension from local-energy models to the prediction of
forces on atoms, and to the development of full cg-ML force
fields enabling accurate predictions of structural, thermal, and
mechanical properties for the growing material class of ZIFs.
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ACS Cent. Sci., 2019, 5, 755–767; (g) W. Wang and R. Gómez-
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