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We investigate the performance of uncertainty quantification
methods, hamely deep ensembles and bootstrap resampling, for
deep neural network (DNN) predictions of transition metal K-edge
X-ray absorption near-edge structure (XANES) spectra. Bootstrap
resampling combined with our multi-layer perceptron (MLP) model
provides an accurate assessment of uncertainty with >90% of all
predicted spectral intensities falling within +3¢ of the true values
for held-out data across the nine first-row transition metal K-edge
XANES spectra.

Supervised/unsupervised machine-learning (ML) models that are
able to learn patterns in big data have transformed many aspects
of modern life, and their impact is beginning to be felt strongly
in computational chemistry." Performant ML models that are
able to make accurate predictions of properties and observables
instantaneously have already been leveraged to great effect in
areas such as materials, catalyst, and drug design,” chemical
reaction prediction,® and atomistic modeling.*

Accurate ML models make it possible to accelerate the pre-
diction of a property of interest and the quality of these models is
often only limited by the quality and quantity of the data used for
training. Consequently, when a model is broadly applied it is
likely that out-of-sample data will be encountered. In such cases
the ability of these models to recognise and quantify the uncer-
tainty associated with a specific prediction becomes crucial.
Uncertainty within ML models can arise from inherent noise or
be related to what a model does not yet know. These are typically
referred to as aleatoric and epistemic uncertainty, respectively.’
The former could arise from the absence of a single solution to
the problem of finding a set of internal weights for a model and
therefore reoptimising a model multiple times will generate a
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distribution of weights and consequently predictions. The latter,
is associated with incomplete training data, i.e. where the train-
ing and testing data follow different distribution patterns.

Understanding and accurately assessing the uncertainty
arising from both sources is a key piece of information required
within the ML workflow if they are to become widely adopted by
research communities, especially in supporting non-experts users
to rapidly assess the reliability of their data. However, accurate
uncertainty quantification also provides a strategy for targeted
approaches for growing a given training set, based upon unsa-
tisfactorily high uncertainties,® especially important when data is
time-consuming or expensive to acquire. The importance and
aforementioned benefits of obtaining an accurate quantification
of uncertainty has led to a significant research effort in the field
and the development of several techniques including; Monte
Carlo dropout,” deep ensembles,® bootstrap resampling” and
Bayesian neural networks."”

Recently progress in X-ray science driven by the emergence
of facilities capable of delivering high-brilliance ultrashort
pulses of X-rays'' has been the driving force for significant
progress in ML models capable of predicting X-ray spectro-
scopic observables from an input property or structure.'>'?
Very recently, works extending these models to quantify uncer-
tainty have also been demonstrated for X-ray emission'* and
absorption at the C, N and O K-edges."” Consequently, in this
article, we apply the deep ensembles and bootstrap resampling
methods to our DNN used to predict the lineshape of first-row
transition metal K-edge XANES spectra’®'” and demonstrate its
ability to assess pointwise uncertainty using only information
about the local coordination geometry of the transition metal
complexes. Details of the DNN and training sets are provided in
the ESL¥

Fig. 1 shows a schematic of the bootstrap resampling
method® used to assess uncertainty. Here, N machine learning
models are optimised using N reference datasets (2;) sampled
from the original reference dataset (2). Each 2; has the same
number of samples as & and consequently the random sam-
pling used to generate Z; means that while each occurrence will
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Fig. 1 Schematic of bootstrap resampling: N models are optimised using
N reference datasets sampled with replacement from the original reference
dataset; each one is the same size as the original reference dataset and,
consequently, may contain repeated instances of the same sample. These
N models are used to produce N independent predictions from which a
mean and standard deviation can be derived. The red circles indicate
neurons models in which dropout has been activated. The deep ensem-
bling approach takes the same form, without resampling the training data.

only include a fraction of the instances from &2, they will
contain repeats. The underlying assumption of this approach
is that if & is a good approximation of the underlying distribu-
tion, each %; will also be.'®> The models trained using the
independent Z; training sets and a different random initialisa-
tion of weights for each occurrence are then used to produce N
independent predictions of the “held-out”” dataset from which a
mean and standard deviation for each sample prediction can be
computed. Throughout, the number of independent instance
was set to 15 to achieve convergence (See Fig. S1, ESIf). The
deep ensembles method uses the same approach, but in each
case the models are trained using the same reference dataset,
2, variation in the models therefore arise only from the
random initialisation of the weights as the models are trained.
Consequently, deep ensembles will only capture aleatoric
uncertainty associated with the natural variations in the model,
while bootstrap resampling will also capture uncertainty asso-
ciated with the structure of the dataset.

Fig. 2 shows histograms of the coverage, defined the percen-
tage of calculated spectral data points which fall within +3¢ of
the average predicted spectra. This has been computed using the
spectra predicted using the MLP model and bootstrap resam-
pling approach for the held-out sets of each of the 9 first-row
transition metal K-edge XANES spectra. The median coverage
obtained from these histograms is tabulated, alongside the
median percentage error, Au and corresponding interquartile
range are shown in the Table 1. Across the nine first-row
transition metal reference datasets, the median coverage is
100%, with the exception of V and Cr which are 98.7% and
97.3%, respectively. The average Py, i.e. the probability that 90%
of the data points for a held-out sample falls within +3¢ of the
prediction, is ~93.6%, while the average Pg, is ~97.7%. The
median Ay is typically <5%, with an average of 4.4%, in excellent
agreement with ref. 16, indicating that the use to bootstrap
resampling approach to assess uncertainty does not impact the
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overall performance of the network. As shown in Table S1 (ESIT),
the MLP combined with deep ensembles method demonstrates a
slightly improved overall performance, with an average median
Ap ~4.1%. However, this small improvement is offset by a clear
reduction in the median coverage to ~98.4%. As described in the
ESIf, we have also implemented bootstrap resampling or deep
ensembles methods with a convolutional neural network (CNN).
While comparable, the performance of the CNN is slightly worse
than the MLP, although it is noted that the latters performance is
achieved with a reduced number of internal weights, 114 000 vs.
414 208.

While the coverage demonstrates the performance of the
uncertainty quantification methods, it can only be used as a
metric if the calculated spectrum exists, which would negate the
purpose for the use of DNN for future applications. Conse-
quently, Fig. 3a shows parity plots of the mean-squared error
(MSE) between the predicted, fipredicted, and calculated, ficarcutated
spectra against ¢ for every energy point of the 250 held-out
spectra at the Fe K-edge. Fig. 3b shows the corresponding plots
with the MSE and ¢ calculated for each spectrum in the held-out
set, rather than each energy point. The corresponding plots for
the other elements are shown in Fig. S2-S9 (ESIt). The Pearson
correlation (p) for all elements is shown in Table 1 and indicates
a strong correlation with an average p = 0.82 and 0.84 observed
across the 9 transition metal datasets for energy point and
spectrum, respectively.

Fig. 3a indicates that this correlation exhibits two distinct
regions of uncertainty as a function of energy. Firstly, the low
energy region (blue) is associated with the pre-edge region
of the spectrum and therefore exhibits a smaller MSE and
smaller ¢ as the spectral intensity is weak. At higher energies
(>7115 eV) the variation in the spectral intensity is larger and
therefore so is ¢. In agreement with the observations of Ghose
et al.'® Fig. 3a also shows, for a given o, a dispersion of data
points towards lower MSE. This is consistent with a model
underconfidence, i.e. the predictions can be accurate (i.e. small
MSE), but still produce a significant ¢. This underconfidence is
confirmed using the calibration curves shown in Fig. S10-S18
(ESIt) which predominantly show the data slightly above the
diagonal calibration line."® However, it is stressed that during
assessment of models, underconfidence is much preferred to
overconfidence and overall this analysis shows ¢ can be used as
an assessment of the error of a predicted spectrum. Fig. S10-S18
(ESIf) also show histograms of the o calculated and used to
assess the sharpness and coefficient of variation in Table 1 and
Table S1 (ESIT). In all cases, the ¢ exhibits a narrow distribution,
with an average o (sharpness) substantially smaller than the
spectral variations the model is attempting to predict.

Fig. 4 shows illustrative examples of Fe K-edge XANES
spectra taken from around the median (45th-55th percentile),
lower (0th-10th percentile) and upper (90th-100th percentile)
when performance is ranked over all held-out DNN predictions
by MSE. The corresponding plots for the other elements are
shown in Fig. S9-S16 (ESIf). The dark grey line show the
average predicted spectrum, the light grey region represents
+30 of the predicted spectrum and the dotted line is the
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Fig. 2 Histograms of the coverage, defined the percentage of calculated spectral data points which fall within -3¢ of average spectra, predicted using
the multi-layer perceptron model and bootstrap resampling approach. Evaluated on nine held-out transition metal test datasets (Ti—Zn) containing 250

randomly selected samples.

Table 1 Summary of the median percentage errors, Au (%), interquartile
range and coverage (Cover.). Pearson correlation between Au and ¢ for
each energy point (pay_,) and each spectra (p325,). The sharpness (Sharp.)
and coefficient of variation (C,) for the uncertainty prediction are also
shown and discussed in the ESI. Results obtained using the MLP and the

bootstrap resampling method

Edge Ap IQR  Cover. pal,  p%*,  Sharp. c,

Ti 5.3 5.0 100.0 0.85 0.72 0.04 0.85
\'% 4.6 7.5 98.7 0.79 0.93 0.02 1.03
Cr 3.9 5.3 97.3 0.79 0.86 0.02 1.12
Mn 4.3 4.7 100.0 0.85 0.91 0.02 1.06
Fe 5.0 5.0 100.0 0.83 0.77 0.03 0.88
Co 4.5 4.0 100.0 0.82 0.87 0.02 1.06
Ni 4.5 4.0 100.0 0.81 0.84 0.02 0.96
Cu 4.0 3.5 100.0 0.81 0.82 0.01 0.82
Zn 3.7 3.3 100.0 0.80 0.88 0.01 1.15

calculated spectrum. For the latter, the dots are blue if they fall
within £3¢ of the average predicted spectrum, and red if not.
The first row, i.e. the best performers within the top 0th-10th
percentile, exhibit accurate predictions with a small 3¢, con-
sistent with the model confidence. In contrast, the third row,
i.e. the worse predictions within the lowest (90th-100th) per-
centile, exhibit a significant increase in 30, expected given the
larger MSE of the predictions. Finally, the second row which
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Fig. 3 Parity plots for every data point (a) and spectrum (b) of the mean-
squared error (MSE) between the predicted, fipredicted. aNd target, ficaicutated
K-edge XANES spectra against the standard deviation, ¢, calculated using
the Bootstrap resampling approach and the MLP network. The colours in
(a) represent the energy over the full spectral range. Inset each plot are the
Pearson correlation.
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Fig. 4 Example K-edge XANES spectra for Fe-containing samples. The
upper three panels show K-edge XANES spectra from the Oth-10th
percentiles, i.e. the best performers when held-out set is ranked by MSE.
The centre three panels show K-edge XANES spectra from the 45th—55th
percentiles, i.e. around the median. The lower three panels show K-edge
XANES spectra from the 90th—100th percentiles, i.e. the lowest perfor-
mance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.

shows examples around the median illustrates a small MSE and
for HACBUI and OBOSED a corresponding small 3¢. In con-
trast, despite being a good prediction, CEGWAP exhibits a large
30, consistent with the underconfidence discussed above. The
source of this underconfidence is likely to be the presence of
linear bonds, such as CO or CN. The structures can be obtained
from ref. 20. In XANES spectra the scattering pathways along
these linear bonds play a much more important role than
similar structures containing non-linear bonds due to the
focusing effect.”' Indeed, such bonds feature in 60% of the
samples exhibiting the largest ¢ from the held-out data, and
consequently are clearly challenging for the model to predict.
Finally, Fig. S27 (ESIf) shows the predicted spectra for
6 example complexes including multiple metal sites and heavy
elements, such as Ru and Tc not in the original training set. As
expected, all spectra exhibit, a large uncertainty, consistent
with the model being unable to accurately predict samples
which differ so much from the training data, highlighting that
our uncertainty quantification approach remain valid for out of
distribution samples.

In summary, we have implemented and assessed methods
for uncertainty quantification of XANES spectra. We have
demonstrated the ability of our DNN, which provide accurate
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predictions of the spectral lineshapes, to assess the uncertainty
from each prediction, with >90% of all predicted data points
falling within 3¢ of the target calculated spectrum for held-out
sets. Our results also demonstrate a strong correlation between
MSE and ¢, meaning that it can be used as a metric to accurately
assess the uncertainty for a particular prediction. These results
will not only allow non-experts to assess the reliability of the
data, but it also provides a strategy for specifically targeted
approaches for growing a training set, based upon unsatisfac-
torily high uncertainties.
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