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Ruthenium-catalysed N-alkylation of anilines with sugar derivatives
proceeded via the borrowing hydrogen strategy. Primary carbohy-
drate alcohols were successfully applied to N-alkylation of aniline
derivatives to give the corresponding aminosugars in high yields.

Transition-metal-catalysed N-alkylation of amines via the bor-
rowing hydrogen strategy is a desirable process for the for-
mation of carbon-nitrogen bonds, enabling alcohols to be
employed directly as alkylating agents (Scheme 1a)." A variety
of catalytic systems based on the late-transition metals have
been developed for the N-alkylation of amines by using simple
alcohols.””® Biomass-derived alcohols, such as ethylene glycol,
1,3-propanediol, isohexides, and so on, have also been recog-
nized as important reaction partners in the borrowing hydro-
gen strategy.° However, carbohydrate alcohols have been
scarcely used for the direct N-alkylation reaction. In this
respect, in 2011, Cumpstey and Martin-Matute reported the
first example of N-alkylation of alkylamines derived from
sugars with primary carbohydrate alcohols catalysed by an
Ir(m) complex, where amine-linked pseudodisaccharides are
successfully synthesized in a single step through borrowing
hydrogen strategy (Scheme 1b).” In this context, we recently
reported o-alkylation of methyl ketones with primary carbohy-
drate alcohols as alkylating agents (Scheme 1c).® The reaction is
efficiently catalysed by an Ir(m) complex in the presence of a
strong base. During our studies on the catalytic functionaliza-
tion of sugar derivatives,®® it was found that a ruthenium
complex was effective in catalyzing the borrowing hydrogen
reaction between anilines and sugars (Scheme 1d). Here we
describe that a ruthenium/dppf type ligand complex efficiently
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Scheme 1 Borrowing hydrogen reactions.
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Table 1 Ruthenium-catalysed N-alkylation of aniline 1a with galactopyr-
anose 2a®

Ph .
NH,
1a
catalyst (5 mol% M)
+ ligand (6 mol%) F’h\N 0.0
o O .o  KeCOs(10mol%) H ><

— - .
toluene e

(@)
oy 110°C, 21 h
o o %—o
A4

Za @@

{2 —par, Ar= Ph(dppf)

! 4- CF306H4 L1)

Fe
<= —PAn 4-MeOCqH, (L2) PPh, PPh,
3,5-(CF3),CeH3 (L
DPEphos

HN/_H\p/Ph

PPh, &\R'J - Ph

PPh, per °

P\
Pth PPh, Ph
Xantphos Binap Ru-MACHO®
Entry Catalyst Ligand ield® (%)

1 RuCl,(p-cymene)], dppf 31
2 RuCl,(p-cymene)], — 0
3¢ RuCl,(p-cymene)], dppf 0
4 RuCl,(p-cymene)], L1 69
5 RuCl,(p-cymene)], L2 6
6 RuCl,(p-cymene)], L3 0
7 RuCl,(p-cymene)], DPEphos 15
8 RuCl,(p-cymene)], Xantphos 6
9 RuCl,(p-cymene)], Binap 0
107 RuCl,(p-cymene)], L1 76
11% RuCl,(p-cymene)], L1 45
124 RuCl,(p-cymene)], L1 53

13% RuCl,(p-cymene)], L1 87 (82)"
14 RuCl,(benzene)], L1 7
15 Ru3(CO)y, — 0
164 Ru3(CO)y, — 0
174 Ru-MACHO"™ — 0

“ Reaction conditions: 1a (0.24 mmol), 2a (0.20 mmol), [RuClz
(p-cymene)], (0.0050 mmol, 5 mol% of Ru), and base (10 mol%) in
toluene (0. 30 mL) at 110 °C for 21 h. » Determined by 'H NMR. ¢ With-
out K,CO;. ¢ Performed with 1a (0.20 mmol) and 2a (0.24 mmol).
¢ With Na,CO; instead of K,CO;.” With Cs,CO; instead of K,CO;. € At
140 °C in p-xylene. " Isolated yield.

catalyses N-alkylation of anilines with primary carbohydrate
alcohols, providing a new method for the synthesis of amino-
sugar derivatives.'® Aminosugars possess potential properties
that take part in a variety of biological functions, and therefore,
the development of the synthesis of the aminosugars is impor-
tant for the understanding of their functions.™

Our initial studies focused on the N-alkylation of aniline (1a)
with 1,2:3,4-di-O-isopropylidene-o-p-galactopyranose (2a) in
the presence of ruthenium complexes directed toward the
catalytic synthesis of aminosugar 3aa (Table 1).'> Treatment
of 1a (1.2 equiv.) with 2a (1.0 equiv.) in the presence of [RuCl,-
(p-cymene)], (5 mol% of Ru), dppf (6 mol%), and K,COj;
(10 mol%) in toluene, which is one of the reaction conditions
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reported by Williams and co-workers,* at 110 °C for 21 h gave
alkylated product 3aa in 31% yield (entry 1). The ligand and
base were necessary to obtain 3aa (entries 2 and 3). The aryl
groups on dppf ligands significantly influenced the reactivity.
The use of ligand L1 substituted with p-(trifluoromethyl)phenyl
groups improved the yield of 3aa up to 69% (entry 4). In
contrast, methoxy-substituted L2 diminished the yield (entry 5),
and ligand L3 inhibited the reaction, probably due to the
bulkiness (entry 6). DPEphos, Xantphos, or Binap were not
effective in catalyzing the present reaction (entries 7-9). The use
of a slight excess (1.2 equiv.) of alcohol 2a toward aniline (1a)
improved the yield up to 76% (entry 10). Na,CO; and Cs,COj3
were less effective than K,COs3, thus giving 3aa in 45 and 53%
yields, respectively (entries 11 and 12). The reaction in p-xylene
at 140 °C gave 3aa in 87% yield (entry 13). The catalytic activity
of [RuCl,(benzene)], was quite low (entry 14). Ru;(CO);,>¢ and
Ru-MACHO™? did not work as catalysts (entries 15-17).
Scheme 2 summarizes the results obtained for the reaction
of several primary carbohydrate alcohols. The reactions of O-
methylated a-glucose 2b, B-glucose 2¢, and B-galactose 2d with
aniline (1a) gave the corresponding sugars 3ab-3ad in 42-53%

[RuCl,(p-cymene)],
1a (5 mol% Ru)
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K,CO3 (10 mol%)
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[ e,
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Scheme 2 Scope of carbohydrate alcohols. Reaction conditions: 1la
(0.10 mmol), 2 (0.12 mmol), [RuCly(p-cymene)], (0.0025 mmol, 5 mol%
of Ru), L1 (6 mol%) and K,COs3 (10 mol%) in p-xylene (0.15 mL) at 140 °C for
21 h.
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yields. Alcohol 2e having benzyl ether moieties and 2f with a
free hydroxy group reacted with 1a to give N-alkylated products
3ae and 3af in 25% and 35% yields, respectively. The reaction of
C-glycoside 2g and deoxyglucose 2h also proceeded to give the
corresponding aminosugars 3ag and 3ah.

A variety of aniline derivatives 1 participated in the
reaction with carbohydrate alcohol 2a as summarized in
Scheme 3. N-Alkylation of anilines having electron-donating
and -withdrawing substituents (2a-2m) at the o-, m-, and
p-positions proceeded to give the corresponding aminosugars
in 18-97% yields, where anilines substituted with electron-
withdrawing groups displayed the low reactivity. In particular,
the loss of the catalytic activity was observed in reaction of
p-bromoaniline (1f). Dimethyl (1n) and dimethoxyanilines (10
and 1p) reacted with 2a to give aminosugars 3na, 30a, and 3pa,
respectively, in high yields. Modest yields were observed for
3,4,5-trifluoroaniline (1q), 5-methoxy-1-naphthylamine (1r),
and 6-methyl-2-aminopyridine (1s). In sharp contrast, N-
methylaniline or aliphatic amines such as n-butylamine and
piperidine were not alkylated under the present reaction
conditions.

In summary, we have developed ruthenium-catalysed N-
alkylation of anilines with primary carbohydrate alcohols. A
variety of aniline derivatives were applied to the reaction to give

Ar\NH
12 [Ru(p-cymene)Clyl,
(5 mol% Ru)
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Scheme 3 Scope of anilines 1. Reaction conditions: 1 (0.10 mmol), 2a
(0.12 mmol), [RuCla(p-cymene)l, (0.0025 mmol, 5 mol% of Ru), ligand

(6 mol%), and K,COs (10 mol%) in p-xylene (0.15 mL) at 140 °C for 21 h.
20.20 mmol scale reaction. °For 48 h.
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the corresponding aminosugars in high yields. Several O-
protected sugar derivatives could be used as alkylating agents
for N-alkylation of aniline derivatives.
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