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Applying deep learning to iterative screening
of medium-sized molecules for protein–protein
interaction-targeted drug discovery†

Yugo Shimizu, a Tomoki Yonezawa,a Yu Bao,a Junichi Sakamoto,b

Mariko Yokogawa,a Toshio Furuya,c Masanori Osawa a and Kazuyoshi Ikeda *ad

We combined a library of medium-sized molecules with iterative

screening using multiple machine learning algorithms that were

ligand-based, which resulted in a large increase of the hit rate

against a protein–protein interaction target. This was demonstrated

by inhibition assays using a PPI target, Kelch-like ECH-associated

protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2),

and a deep neural network model based on the first-round assay

data showed a highest hit rate of 27.3%. Using the models, we

identified novel active and non-flat compounds far from public

datasets, expanding the chemical space.

Protein–protein interactions (PPIs) are important targets in
drug discovery research.1 Given the low hit rate in primary
screening with small-molecule libraries for PPI targets, it is
difficult to obtain new active compounds based on the com-
monality of structures and properties of hit compounds (i.e.,
hit expansion).2 Compounds with relatively large molecular
weights, multiple aromatic rings, and non-flat structures are
suitable for inhibiting PPI targets.3,4 We previously successfully
identified hit compounds that inhibit the Kelch-like ECH-
associated protein 1/nuclear factor erythroid 2-related factor 2
(Keap1/Nrf2) PPI using a combination of machine learning
(ML) and a PPI-oriented library (DLiP1).5 Keap1/Nrf2 PPI is an
important target that regulates antioxidant defense system and
is involved in various diseases such as neurodegenerative and
metabolic disorders.6 DLiP1 consists of 12 593 medium-sized

compounds suitable for the PPI interface. Recently, we developed
a new PPI library called DLiP2 containing 2722 of these
compounds. The DLiP1/DLiP2 library compounds were syn-
thetic medium-sized molecules with molecular weights
between 400 and 650, designed with consideration for further
structural expansion in the hit-to-lead process to molecules
with molecular weights Z 500.

In recent years, ML including deep learning (DL), has been
increasingly applied during the early stages of drug discovery
research.7 However, some limitations of using ML for hit and
lead identification exist. For example, the applicability of
models is limited when the training and test data are located
in distant chemical spaces.8 Although we showed that ligand-
based virtual screenings (LBVSs) using ML methods can slightly
increase the hit rate even when the chemical space is far apart,
they are still not efficient enough for drug discovery to reach
the next stages such as hit expansion.5 To solve this problem,
an iterative screening method is considered a promising
approach.9,10 Iterative screening methods involve repeating a
cycle of assays using a relatively small number of compounds
selected based on predictive models, adding new experimental
results from the assays into the training data of the models,
and then reconstructing the models. Reker et al. used iterative
screening combined with active learning to efficiently identify
PPI inhibitors from a large, high-throughput screening (HTS)
compound collection of small molecules.11 However, PPIs are
challenging targets, and adaptation of iterative screening for
PPI targets with medium-sized molecules has not yet been
demonstrated.

In this study, we applied a model update approach using DL
(Fig. 1) to identify Keap1/Nrf2 PPI inhibitors from the DLiP2 library
to expand the chemical space of hit compounds from our first
assay5 against the DLiP1 library using time-resolved fluorescence
resonance energy transfer (TR-FRET). We propose a new approach
using libraries of medium-sized molecules and demonstrate the
effectiveness of this method in expanding hits against PPI targets to
which small molecular libraries are difficult to adapt.
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Whereas the DLiP1 library was designed based on structure-
based drug design approach (docking calculations for the
interfaces of known PPI targets), the DLiP2 library was designed
as containing compounds that had non-flat (sphere-like)
shapes or new scaffolds (spiro) suitable for PPI inhibitors. For
the retrieval of sphere-like compounds, the criterion for the
sum of the two normalized principal moments of inertia ratios
(NPR1 + NPR2) 4 1.3 was used, resulting in 48% (1294/2722) of
the DLiP2 compounds meeting this criterion. In our first assay5

for Keap1/Nrf2 using DLiP1, fifteen compounds were identified
as hit compounds and 47% (7/15) of those had NPR1 + NPR2
values 4 1.3, which was higher than the 11% (1382/12 492) of
the DLiP1. Therefore, the DLiP2 library was considered as
prospective for discovering new Keap1/Nrf2 PPI inhibitors.

To improve our previous models for predicting Keap1/Nrf2
PPI inhibitory activities of medium-sized molecules, we created
new training datasets combining public datasets and our first
inhibitory assay (FA) results (i.e., the initial batch of iterative
screening). We used two datasets obtained from public data
sources: one was a database (DB) dataset (also used in our
previous work)5 including 108 active and 106 inactive com-
pounds against the Keap1/Nrf2 PPI and the other was a mis-
cellaneous putative inactive (MISC-PI) dataset including 12 973
active compounds against PPI targets other than Keap1/Nrf2.
The MISC-PI dataset was created based on the assumption that
compounds that inhibit a target other than Keap1/Nrf2 rarely
inhibit Keap1/Nrf2 as well. We created two deep neural network
(DNN) models from molecular descriptor feature sets: one was
a DNN-hybrid model from the DB and FA datasets, and
the other was a DNN-hybrid-PI model from the DB, FA, and
MISC-PI datasets. Two random forest (RF) models using the
fingerprint feature set were also created: one was from the FA
dataset only (RF-FA), and the other was from both the FA
and DB datasets (RF-hybrid). In addition, two RF-DB models

(RF-true inactive, RF-DB-TI and RF-putative inactive, RF-DB-PI)
created in our previous work5 without the FA dataset were also
used for comparison. We performed LBVSs using the models to
identify medium-sized molecular inhibitors of the Keap1/Nrf2
PPI and investigated the performance of iterative screening.

We selected 312 compounds using the LBVSs against 2722
newly synthesized library compounds (DLiP2) and tested the
inhibitory activity of them against the Keap1/Nrf2 PPI using the
TR-FRET assay (second assay). Forty-five compounds had an
inhibition rate 4 15% at a 100 mM concentration against the
Keap1/Nrf2 PPI, among which five compounds were also active
against the Bcl6/F1325 PPI. Therefore, 40 (12.8%) of the 312
compounds were considered specific hits for the Keap1/Nrf2
PPI (Fig. 2 and Table S1, ESI†). Most specific hits had molecular
weights between 600 and 650 (Fig. S1, ESI†). The plot of the
principal moments of inertia (PMI) clearly shows that the hits
exist in a region apart from the rod-and-disc plane, indicating
that most of them have non-flat structures that are less com-
mon in the DLiP1 (Fig. 3). Approximately 31% of the active
compounds in the first assay had the common substructure of
an ortho-substituted aromatic amide with a carboxylated
piperidine.5 Compound 24 also had the common substructure,
demonstrating the effectiveness of this substructure in inhibit-
ing the Keap1/Nrf2 PPI. Fig. 4 (and Fig. S2 and S3, ESI†)
visualizes the chemical space of the hit and library compounds
of the first and second assays and the active compounds
of the DB dataset. Some of the hits of both assays coexisted
in a cluster due to the common active substructure (i.e., addition-
ally acquired new cluster members by the second assay).

Fig. 1 Overview of the study. Using our first assay data, new ML (random
forest, RF and deep neural net, DNN) models were created updating our
first models that learned public data, and used for LBVSs to identify
inhibitory compounds of the Keap1/Nrf2 PPI from the DLiP2 library, which
validated in the second TR-FRET assay.

Fig. 2 Structures and inhibition rates at 100 mM concentration of com-
pounds 1–5 that had the top five inhibition rates among the specific hit
compounds.
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Interestingly, the second hits not only existed around clusters
of the first hits, but also formed DLiP2-specific clusters, includ-
ing new structures with novel spiro-ring scaffolds (e.g., com-
pound 35). Thus, Fig. 3 and 4 show that our iterative screening
with ML models clearly extended the initial chemical space.

In the LBVSs, compounds were ranked based on their
prediction scores for ‘‘active’’ and approximately 4% of the
top-ranked compounds were extracted as candidates for the
following experimental validation using the TR-FRET assay.
The RF-FA and RF-hybrid models showed nearly identical
molecules among the top 4% of predicted compounds. The
RF models were created using structural fingerprints as the
features, and the maximum structural similarities of the DLiP2

compounds against the DB dataset were much less than those
against the FA dataset (Fig. S4, ESI†). These results suggest that
the top 4% prediction of the RF-hybrid model was performed
mainly by the contribution of the FA dataset in the training.
Therefore, we used the LBVS results of the DNN-hybrid,
DNN-hybrid-PI, RF-FA, RF-DB-TI, and RF-DB-PI models to select
320 compounds for the experimental assay. In fact, 312 avail-
able compounds, including 110, 67, 100, 96, and 100 com-
pounds from the LBVS results of the DNN-hybrid, DNN-hybrid-
PI, RF-FA, RF-DB-TI, and RF-DB-PI models, respectively, were
selected and used in the following assays. The 312 compounds
were not selected based only on their structural similarities to
the known actives (Fig. S5, ESI†). The maximum structural
similarities of the 312 compounds against known active com-
pounds were not high (o0.31 against the DB dataset and o0.71
against the FA dataset, Fig. 5), indicating their novelty.

The hit rates of the models are listed in Table 1. Among the
five models, the DNN-hybrid model had the highest hit rate of
27.3%. While the DNN-hybrid-PI model had the second highest
hit rate of 23.9%, it showed no new hits compared with the
DNN-hybrid model. Although the DNN-hybrid model hits
included three non-specific hits, those of the DNN-hybrid-PI
model included no non-specific hits, suggesting that the inclu-
sion of compounds with inhibitory activity against targets other
than Keap1/Nrf2 as putative inactives in the training contrib-
uted to the exclusion of non-specific actives in the DNN-hybrid-
PI model. The hit rates of the RF-FA, RF-DB-TI, and RF-DB-PI
models were 20.0, 8.0, and 14.6%, respectively. The models

Fig. 3 PMI plot of DLiP1 compounds (gray dots) and the 40 specific hit
compounds (magenta triangles for NPR1 + NPR2 Z 1.3 and orange
triangles for NPR1 + NPR2 o 1.3).

Fig. 4 Chemical space of active compounds from the first assay (gray
triangles) and from the second assay (orange dots). The UMAP compo-
nents using Jaccard distance of fingerprints (FCFP_6) are shown. The
UMAP calculation was performed using the DB dataset and DLiP library
compounds. Clusters including compound 24 and those including spiro-
compounds are indicated at left-center and right-up parts, respectively.

Fig. 5 Distribution of structural similarities (Tanimoto coefficient of
FCFP_6) from the 312 assayed compounds to their closest known
Keap1/Nrf2 PPI inhibitory compounds (from public databases: cyan; from
our first assay: light red).

Table 1 Performance of models in identifying Keap1/Nrf2 PPI inhibitors.
The numbers of the hits and selected compounds of the models are
shown. The hit rates in percentages are shown in parentheses

Assay Models Selected Hits Specific hits

First RF-DB-PI 202 12 (5.9%) 11 (5.4%)
First RF-DB-TI 223 6 (2.7%) 5 (2.2%)
First Random 291 3 (1.0%) 3 (1.0%)
Second DNN-hybrid 110 30 (27.3%) 27 (24.5%)
Second DNN-hybrid-PI 67 16 (23.9%) 16 (23.9%)
Second RF-FA 100 20 (20.0%) 19 (19.0%)
Second RF-DB-PI 96 14 (14.6%) 13(13.5%)
Second RF-DB-TI 100 8 (8.0%) 6 (6.0%)
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using our first assay data in the training data (DNN-hybrid,
DNN-hybrid-PI, and RF-FA) exhibited much higher hit rates
than the previous models (RF-DB-TI and RF-DB-PI), indicating
the effectiveness of the iterative screening.

Furthermore, the DNN models exhibited higher hit rates
than the RF-FA model did, indicating the effectiveness of
combining DNN and iterative screening. The hit rate of the
DNN-hybrid model was extremely high compared with that of
conventional HTS (o0.1%). Notably, the hit rates of the RF
models were lower than those of the DNN models, and the hits
of the RF models also differed slightly from those of the DNN
models (Table S1, ESI†). The results show that the use of models
with different algorithms or features is effective for obtaining
diverse hits. The hit rates of the RF-DB-TI and RF-DB-PI models,
(8.0% and 14.6%, respectively), were higher than those in the
first assay (2.7% and 5.9%, respectively), suggesting that the
new library compounds may have more three-dimensional
conformational diversity than the previous library compounds
and thus be applicable to Keap1/Nrf2 PPI inhibitors.

Docking calculations were performed on the hit compounds
to inspect their interactions with Keap1. Our observations of
the docking poses of the top five specific active compounds
(Fig. 2) in this study showed that these compounds were bound
at a position surrounded by arginine residues (Arg415 and
Arg483) and aromatic residues (Tyr334, Tyr572, and Phe577)
(Fig. S6 and S7, ESI†). The ligand binding site of the Keap1/Nrf2
PPI inhibitor is divided into five subpockets (P1–P5 in Fig. S6B,
ESI†) and the number of subpockets occupied by the ligand has
a significant influence on its inhibitory activity.6 We found that
the top five hit compounds mainly interacted with a polar
subpocket, P1, and hydrophobic subpockets, P3 and P4
(Fig. S6 and S7, ESI†). Of these, the top hit compound (com-
pound 1) had aromatic ring interactions with the side chains of
Tyr572 and Phe577, hydrogen bonds with the side chains of
Gln530 and Ser555, while the bromophenyl group was located
at the P1 subpocket just next to Arg415, and the fluorophenyl
group occupied the P3 subpocket in the inner cavity of the
Keap1 Kelch domain (Fig. S6B, ESI†). These hit compounds had
a branched structure near the piperidine (Fig. 2), contributing
to the binding of multiple subpockets.

By combining DL with iterative screening, we obtained
training data with a chemical space similar to that of the
candidate compounds and significantly increased hit rates in
the subsequent assay. Hit analysis showed that our method
succeeded in expanding the initial chemical space, leading to
the discovery of novel inhibitors of the Keap1/Nrf2 PPI. This
method is expected to contribute to efficient lead acquisition in
assays for PPI drug discovery using medium-sized molecule
compounds, which are difficult to screen on a large scale.
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