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Very high T; magnetic resonance imaging (MRI) switches can be
obtained with pH-responsive polymer-coated paramagnetic meso-
porous silica nanoparticles (MSNs), as the local environment tra-
verses the pK, of the polymer coat (Ar; ~ 50 mM~ts 1 at 1.5 T and
Ar; ~ 22 mM™! 571 at 3 T). We assign these characteristics to a
strong peripheral hydration capping at the mesopores, impacting
channel-confined water mobility such that outer sphere contribu-
tions to contrast are greatly enhanced.

Magnetic resonance imaging (MRI) is a powerful non-invasive
diagnostic technique with micron spatial resolution and deep
tissue penetration that empowers clinicians to resolve and
monitor a wide variety of potentially fatal internal pathological
conditions.’” Frequent low contrast-to-noise problems can be alle-
viated through the use of contrast agents (CAs), most notably
chelated paramagnetic ions, such as gadolinium(Gd®").*> The con-
trast generating efficiency for a Gd*"-based CA can be defined by its
longitudinal relaxivity, denoted r; (r; = 4(1/T4)/[CA]; where T; is the
longitudinal relaxation time and [CA] is the concentration of the CA),
with a high r; correlating to a lower required Gd** dose, which is, of
course, clinically desirable. To improve the natively low molecular ry
values a broad range of paramagnetically doped nanomaterials, with
reduced tumbling rates (zg), have been reported.” Nanoparticulate
CAs additionally present a route to controlled blood circulation
times, additional imaging modality incorporation, and tumour
accumulation.” In prior work, we, and other researchers, have shown
that Gd-chelate modified mesoporous silica nanoparticles (Gd-
MSNs) offer a synthetically tuneable, and biocompatible, platform
with high associated image contrast.®** It has been prior noted that
restricted water mobility (elongated diffusional correlation times, 7p,)
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within the nanoconfinement of a porous reservoir significantly
boosts 4, in large part by increasing the role played by outer sphere
effects.">**

Stimuli-responsive “smart” nanoparticulate CAs, where contrast
can be switched by an endogenous or exogeneous stimulus, such as
light, enzyme activity, redox environment, or local pH,"® can provide
specific information on the local physiological environment, facil-
itating the ability to distinguish between healthy tissues and lesions,
for example.'®"” In reference to proton relaxation theory,'®'® tune-
able contrast generation can be achieved by the modulation of the
diffusive mobility of either inner-sphere (those bound to the metal
ions at ~3.1 A) or outer-sphere (with water-to-Gd distances > 4.0 A)
water molecules.” For example, a number of switchable nanoparti-
culate CAs have been designed where the inner-sphere (IS) water
exchange rate (7)) can be modulated by the local environment.”*~*
Prior reported smart CAs possess, however, only moderate relaxo-
metric switches (ie. Ar; < 15 mM s~ and often much less).>*?° It
is also known that relaxivity unhelpfully decreases for typical Gd-
based CAs at the higher imaging field strengths that are becoming
increasingly common.”’®*” There is, therefore, substantial room to
design a high field effective CA that exhibits a significant environ-
mentally triggered switch. To date, no stimuli-responsive CA char-
acteristics have been reported that operate through a modulation of
OS contributions.

Herein, we report a versatile surface-initiated reversible addition-
fragmentation chain-transfer (SI-RAFT) polymerisation approach to
modify Gd-chelate doped MSNs with a stimuli-responsive, externally
grafted, polymer shell (Fig. 1a). Poly(methacrylic acid) (pMAA) has
been widely reported within pH-responsive drug delivery
applications,”®° possessing an associated pK, of 5.2, clinically
relevant, for example, to mapping deviations in pH associated with
chronic inflammation.*'** It is also known that in its charged state
PMAA has a particularly strong association with water.*® It was
envisaged that such a capping would impact the mobility of particle
internalised water, and hence optimise OS relaxivities ().

Initially, paramagnetic Gd-MSNs (with gadolinium ()
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, Gd-DO
TA, modified pore channels) were synthesised according to
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(a) An illustration highlighting the pH-responsive T; switch for pMAA-Gd-MSNs. For an uncharged/collapsed conformation (1), the peripheral

pMAA shell possesses limited hydration, and moderate r; values. As the polymer shell charges and swells, its hydration increases dramatically, and a
“water cap” is formed (2). (b) A plot showing the longitudinal relaxivity values (at 1.41 T) for the bare Gd-MSNs and pMAA-Gd-MSNs. The latter exhibits a
A% > 182%, with the r, trend fitted using a Boltzmann equation to give an associated estimated pKa = 5.2 (R* = 0.99) as expected.

prior reports.>*?> The particles exhibited high colloidal uniformity
with an associated size of 49.5 + 4.2 nm (resolved by transmission
electron microscopy, TEM, ESI 1at) and a corresponding pore
diameter of 3.2 + 0.2 nm (Barrett-Joyner-Halenda pore size
analysis, ESI 21). A time delayed co-condensation method (with
0.15 mol% of an aminated silane added), biases the localisation of
amino anchor groups at either the internal or external pore
channel, as prior reported.’*® Chemical modification with an
activated DOTA-NHS ester and subsequent metalation leads to
the generation of the desired paramagnetic MSNs. The outer
surface of Gd-MSNs was exclusively modified with a 2-(dodec-
ylthiocarbonothioylthio)-2-methylpropionic acid modified silane
(DDMAT-silane) chain transfer agent (CTA), (~2.9 nm in size, too
large to enter the mesopores, ESI 37). Particle modification was
confirmed by ultraviolet-visible spectroscopy (UV-Vis, ESI 4%),
thermogravimetric analysis (TGA, ESI 51) and attenuated total
reflectance infrared spectroscopy (ATR-IR, ESI 61), with a calcu-
lated CTA grafting density of ca. 4.5 groups nm ™2 (ESI 7%). This
density facilitates the formation of a dense, thickness tuneable
(based on RAFT conditions, ESI 87), polymer brush coating from a
wide variety of potential polymerizable monomers.*”° The gen-
erated polymer coated Gd-MSNs show an observed (and expected)
increase in particle diameter after the SI-RAFT polymerisation
(TEM, ESI 1b, ¢, and DLS ESI 8f). The living-character of the
polymerisation process was confirmed by proton nuclear mag-
netic resonance spectroscopy (*H NMR, ESI 91), where monomer
consumption was shown to follow pseudo-first-order kinetics
(ESI 9 insetst).*>*' The generated pMAA-Gd-MSNs possess high
colloidal stability, across a broad pH range (in 10 mM Britton-
Robinson buffer solution, pH 4.0-9.0), with extremely low poly-
dispersity variation over 30 days (ESI 10,T polydispersity indices
< 0.08). An expected pH-responsive switch in hydrodynamic
diameter as the pK, of pMAA*? is traversed (ESI 8at). The particles
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exhibit no toxic effects during a 48 h exposure to HeLa cells or
HEK-293T cells (ESI 11+%).

Relaxivities of pMAA-Gd-MSNs were first assessed by
NMR (1.4 T), where dramatic enhancements in r, were
observed as the pK, of pMAA is traversed (Fig. 1b, Ar; =
30.3 + 3.2 mM ' s7! across 1.0 pH-unit, from pH 4.0 to pH
7.0). This “switch-on”” response is not observed in the
absence of a pMAA polymer coating; native Gd-MSNs exhibit
constant relaxivities across the full pH range. In analogous
poly(dimethylaminoethyl methacrylate) (pDMAEMA) brush
coated particles, where a much weaker H-bond association
with bulk water is expected,*®** (ESI 121) the determined
relaxivities overlap with those of bare Gd-MSNs and are non-
responsive (ESI 13t). For the pMAA particles, associated
image contrast enhancements were confirmed through
spatially-resolved T;-mapping experiments on clinical ima-
ging scanners (1.5 T and 3 T; Fig. 2a), with associated T; and
R, values shown in ESI 14.1 These switches in r; are the
highest reported at both magnetic field strengths (Fig. 2b
and ¢, Ar; =50.5 mM ' s ' at 1.5 T and at Ar; =21.8 mM ' s *
at 3 T).*®?® It is also notable that the relaxivities, at
both fields, exceed the theoretical maxima for solely IS
contributions (optimised r,"* ~ 40 mM™" s™' at 1.5 T and
~ 20 mM " s7! at 3 T),>>* suggesting the presence of a
composite IS/OS contribution. In fact,*** IS contributions are
expected to be much lower than that here (ca. 16 mM " s~ at
1.5 T, seen ESI 167). OS contributions are, then, both substan-
tial and responsible for the observed Ar; switch (more analyses
detailed below).

In examining the effect of polymer thickness and Gd-
localisation within the particle mesopores, we note that a larger
magnitude switch is observed with thicker polymer shells (at
1.4 T, ESI 17at) but that switching magnitudes are largely
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Fig. 2 (a) Ty maps, recoded at pH 4.0, pH 5.2 and pH 70 (1.5 Tand 3 T
clinical MRI scanners), for the pMAA-Gd-MSNs (denoted as “P-"). The Ty
maps for the bare-Gd-MSNs are reported at pH 7.0 (denoted as “B-"). The
MR derived relaxivities for the associated nanoparticles, across a range of
pH, are included at both 1.5 T (b) and 3 T (c).

insensitive to Gd-depth (at 1.4 T, ESI 17bt). This is further
confirmatory of a polymer-mediated origin.

To further examine the origin of this large magnitude
relaxivity switch we refer to Solomon-Bloembergen-Morgan
(SBM) theory (ESI 15t). Contributions from polymer-swelling
induced changes in global particle rotation are negligible (ESI
16at). An analysis of Eu-analogues confirms metal hydration to
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be the same (ESI 187) in polymer modified particles at both pH
4.0 and pH 7.0. Additionally, the modulation of the water
exchange rate (ty;) through changes in the conformational state
of the polymer cannot fully account for such a high observed
switch in the acquired r; value. Specifically, the modelled
nuclear magnetic relaxation dispersion (NMRD) profile (ESI
16bt) for the IS contribution to r; highlights that the role of
7y is much less significant than the expected influence of tp,
accounting only for (at best) ~20% of the switch in relaxivity.
In recent work the presence of an MSN peripheral immobile
water layer has been reported to have a substantial effect on the
diffusion coefficient (D) of pore-internal water.*® It is known
that a charged polyacid brush has an unusually strong associa-
tion with water, dramatically reducing its mobility.*”*® Within
a modified SBM model (ESI 15t), an entirely realistic (30-90
fold) reduction in internal water diffusion, D, can account for
the enhancement in relaxivity (Fig. 3). We propose, then, that
the triggered polymer charging generates a peripheral particle
water ‘“‘cap’” that dramatically increases OS relaxivity by virtue
of its impact on particle internalised water.

To summarise, we present here paramagnetic inorganic-
organic hybrid nanoparticles that exhibit a pH-mediated contrast
switch that is sharp (across < 1.0 pH-unit), of an unprecedented
magnitude, clinically relevant, and mechanistically new.
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