



Cite this: *Chem. Commun.*, 2023, 59, 3850

Received 2nd February 2023,  
Accepted 5th March 2023

DOI: 10.1039/d3cc00495c

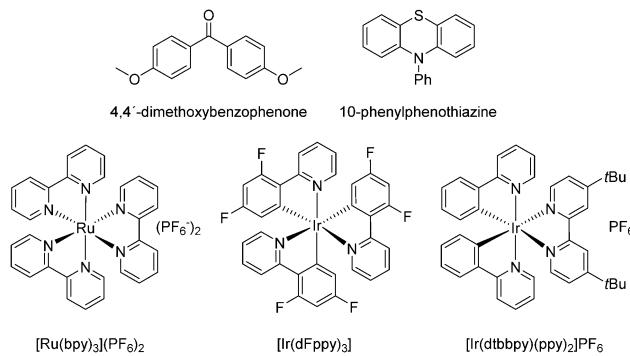
[rsc.li/chemcomm](http://rsc.li/chemcomm)

**The greenhouse gas  $SF_5CF_3$  acts as  $CF_3$  source for the photocatalytic trifluoromethylation of arenes on using  $[Ir(dtbbpy)(ppy)_2]PF_6$  (4,4'-di-*tert*-butyl-2,2'-dipyridyl, ppy = 2-phenylpyridine) as catalyst. The trifluoromethylation of  $C_6D_6$  in the presence of 1-octanol results in the concomitant generation of 1-fluorooctane, presumably by intermediate  $SF_4$ .**

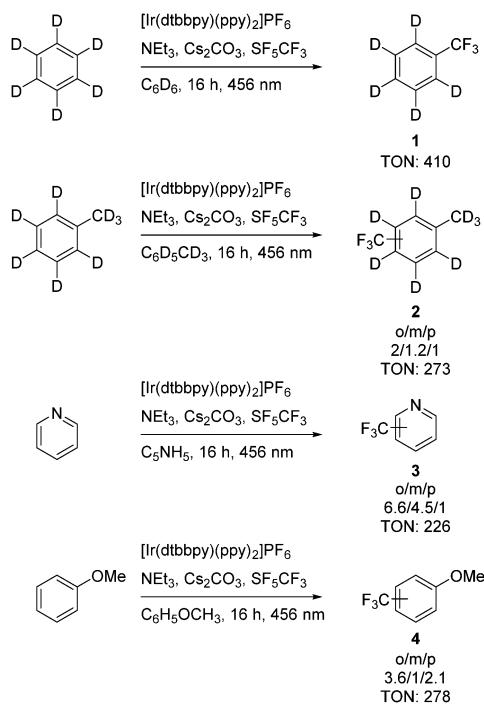
The  $CF_3$  group plays an important role in medicinal chemistry in part due to their ability to increase the lipophilicity of compounds, and thereby enhance the rate of absorption and transport of drugs across the blood–brain barrier.<sup>1</sup> In 1963 Bedard *et al.* reported on the thermal homolysis of the trifluoromethyl derivatives  $CF_3I$ ,  $CF_3Br$ ,  $CF_3Cl$  to achieve a radical trifluoromethylation of halobenzenes.<sup>2,3</sup> Silver trifluoroacetate and  $TiO_2$  as a photocatalyst were also used to form  $CF_3$  radicals in order to synthesize trifluoromethylated aromatics.<sup>4</sup> Kamigata *et al.* demonstrated the trifluoromethylation of aromatics on using a ruthenium(II)phosphine complex as a catalyst and trifluormethanesulfonylchloride as  $CF_3$  source in a thermal reaction.<sup>5</sup> In 2011 MacMillan *et al.* published a photocatalytic trifluoromethylation of aromatics with  $[Ru(phen)_3]Cl_2$  (phen = phenanthroline) as catalyst again using  $F_3CSO_2Cl$  as a source for the trifluoromethyl group.<sup>6</sup> The research group of Hu *et al.* described a photochemical trifluoromethylation reaction in which an electron donor–acceptor complex between an aromatic thiophenolate anion and trifluoromethylphenylsulfone initiates a single electron transfer, and therefore the generation of  $CF_3$  radicals.<sup>7</sup> In other photocatalytic trifluoromethylations of aromatics  $CF_3SO_2Na$ <sup>8</sup> or trifluoromethanesulfonic anhydride<sup>9</sup> were used as trifluoromethyl radical source. Note also that in 2009 MacMillan *et al.* reported on an enantioselective trifluoromethylation of aldehydes *via* a photoredox process coupled with organocatalysis on using the Ir redox catalyst  $[Ir(dtbbpy)(ppy)_2]PF_6$

(4,4'-di-*tert*-butyl-2,2'-dipyridyl, ppy = 2-phenylpyridine). In an reductive quenching cycle  $CF_3I$  is being reduced to give a  $CF_3$  radical.<sup>10</sup> Furthermore,  $[Ir(dtbbpy)(ppy)_2]PF_6$  was used in a photocatalytic approach for the trifluoromethylation of alkynes.<sup>11</sup> Note that apart from  $CF_3$  transfer other fluoroalkyl groups can be transferred as well *via* photocatalysis.<sup>12</sup>

In the last few years the activation of the greenhouse gas  $SF_6$  and its use as fluorinating agent has been studied extensively.<sup>13–18</sup> Conversions are often initiated by an electron transfer to  $SF_6$  to yield  $SF_6^-$ . The latter can either transform into a  $SF_5$  radical and a fluoride or  $SF_5^-$  and a fluoro radical.<sup>16,17,19</sup> Examples for the photochemical activation of  $SF_6$  include the application of the photocatalysts  $[Ru(phen)_3]Cl_2$ ,<sup>6</sup> 4,4-dimethoxybenzophenone<sup>15</sup> or  $[Ir(dtbbpy)(ppy)_2]PF_6$ .<sup>18</sup> The  $SF_6$  derivative  $SF_5CF_3$  has also a high global warming potential and a long atmospheric life-time.<sup>20</sup> It is assumed that  $SF_5CF_3$  is a breakdown product of  $SF_6$  in high-voltage equipment. The latter contains fluoropolymers which are sources for  $CF_3$  moieties that can react with  $SF_5$  radicals formed by high voltage discharges.<sup>20</sup> However, electron transfer to  $SF_5CF_3$  can result in the generation of  $SF_5^-$  and a  $CF_3$  radical. Thus, the formation of  $SF_5^-$  has been observed in low-energy attachment experiments by mass spectrometry.<sup>21,22</sup>  $SF_5CF_3$  activation processes are rare and in solution only one example is known in the literature, to the best of our knowledge.<sup>14</sup>


In this contribution we report on an unprecedented trifluoromethylation of aromatic compounds by photocatalytic generation of  $CF_3$  radicals from the greenhouse gas  $SF_5CF_3$ .

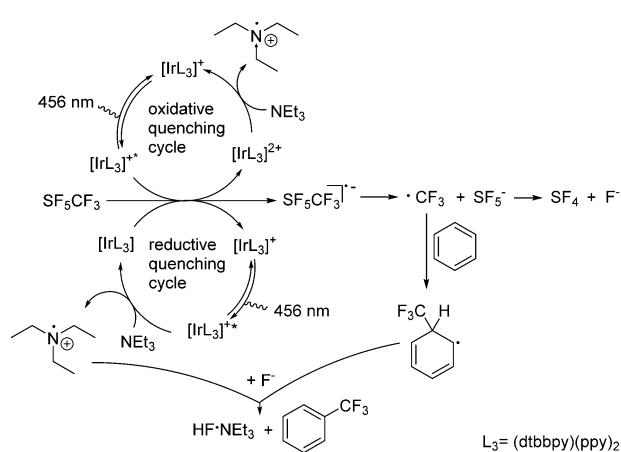
Irradiation of  $SF_5CF_3$  at a wavelength of 353 nm in  $C_6D_6$  in the presence of 4,4'-dimethoxybenzophenone as an organic photocatalyst (Scheme 1) led to the generation of small amounts of  $\alpha,\alpha,\alpha$ -trifluorotoluene-d<sub>5</sub>. Similar, only traces of  $\alpha,\alpha,\alpha$ -trifluorotoluene-d<sub>5</sub> were observed when 10-phenylphenothiazine (Scheme 1) was used to activate  $SF_5CF_3$ . However, irradiation of  $SF_5CF_3$  in the presence of the photoredox catalyst  $[Ir(dtbbpy)(ppy)_2]PF_6$  (Scheme 1), triethylamine and cesium carbonate with a 456 nm LED lamp for 16 h in  $C_6D_6$  yielded  $\alpha,\alpha,\alpha$ -trifluorotoluene-d<sub>5</sub> with a turnover number (TON) of 410 (TON are based on the concentration of the catalyst on using 1,4-difluorobenzene as internal standard) (Scheme 2). Note

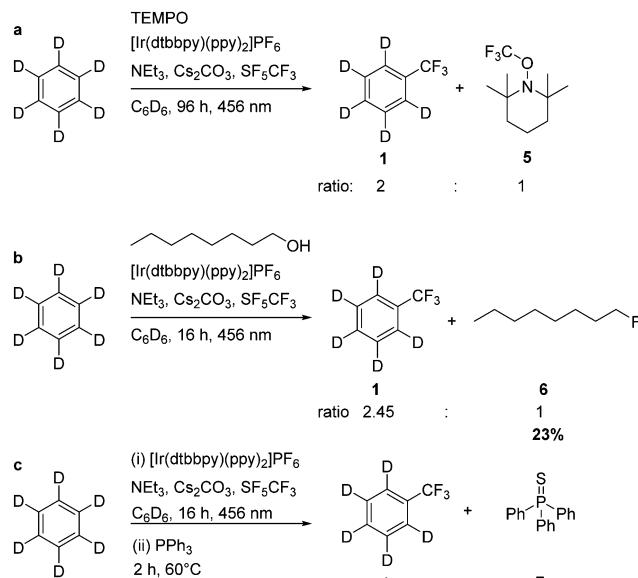

Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany. E-mail: [thomas.braun@chemie.hu-berlin.de](mailto:thomas.braun@chemie.hu-berlin.de)

† Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3cc00495c>



Scheme 1 Catalysts studied for the reduction of  $\text{SF}_5\text{CF}_3$ .


that without the presence of  $\text{Et}_3\text{N}$  the conversion does not proceed. Attempts to use  $\text{K}_2\text{HPO}_4$  as an alternative base failed. Triethylamine and cesium carbonate in a ratio of 1:1 led to the highest turnover numbers.  $^{19}\text{F}$  NMR experiments revealed the presence of DF when no  $\text{Cs}_2\text{CO}_3$  was present. Using 4-methoxydiphenylamine and  $\text{Cs}_2\text{CO}_3$  as bases in a ratio of 1:1 led to a decrease of the TON to 26. Note that with the photoredox catalyst  $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$  or  $[\text{Ir}(\text{dFppy})_3]$  lower TONs of 28 and 46, respectively, were observed in the presence of  $\text{NEt}_3$  and  $\text{Cs}_2\text{CO}_3$  in a ratio of 1:1. Reactions with  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]\text{PF}_6$  as catalyst with only stoichiometric amounts of benzene in acetonitrile or dichloroethane as solvents gave  $\alpha,\alpha,\alpha$ -trifluorotoluene- $\text{d}_5$  only in very low yield. Mainly the generation of trifluoromethane and other minor unidentified products was observed (ratio  $\text{CF}_3\text{H}$  to  $\text{PhCF}_3$ : 71:1 in acetonitrile, 52:1 in dichloroethane). With dichloromethane and tetrahydrofuran as


Scheme 2 Trifluoromethylation of arenes on using  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]\text{PF}_6$  as photoredox catalyst.

solvents in the presence of stoichiometric amounts of benzene did not lead to any product formation.

To expand the scope of the conversions, pyridine, anisole, 1,2,3,4-tetrafluorobenzene and deuterated toluene (Scheme 2) were studied towards a photochemical trifluoromethylation on using a stock solution of  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]\text{PF}_6$  as photocatalyst. All the conversions were run with the substrate as solvent. Selectivities can be explained when considering that the  $\text{CF}_3$  radical shows an electrophilic character.<sup>2,6</sup> Transformations of toluene- $\text{d}_8$  and anisole resulted mainly in the formation of isomers with the  $\text{CF}_3$  group in the *ortho* or *para* position. Pyridine gives mainly the *ortho*-product, but also considerable amounts of *meta*-trifluoromethylpyridine. Minor amounts of trifluoromethane were also detected. 1,2,3,4-Tetrafluorobenzene however did not show any reactivity under the standard conditions. The trifluoromethylated aromatics were characterized by their signals in the  $^{19}\text{F}$  NMR spectra for the  $\text{CF}_3$  groups in the *para*, *meta* or *ortho* positions as well as by GC-MS.

Mechanistically, it can be presumed that after irradiation at 456 nm a single electron transfer (SET) from the photocatalytic system to  $\text{SF}_5\text{CF}_3$  leads to the  $\text{SF}_5\text{CF}_3^-$  radical anion (Scheme 3). As mentioned above, the subsequent trifluoromethylation does not proceed without the presence of  $\text{NEt}_3$  as reductant. Thus,  $\text{NEt}_3$  can reduce the photoexcited species  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]^{+*}$  generated after excitation of  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]^+$  in a reductive quenching cycle (Scheme 3). This step is followed by the SET from the reduced  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]$  ( $E_{\text{pc}} = -1.51 \text{ V vs. SCE}$ )<sup>23,24</sup> to  $\text{SF}_5\text{CF}_3$ . Alternatively,  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]^{+*}$  ( $E_{\text{pc}} = -0.96 \text{ V vs. SCE}$ )<sup>23,24</sup> reduces  $\text{SF}_5\text{CF}_3$  and the generated  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]^{2+}$  is then reduced by  $\text{NEt}_3$  in an oxidative quenching cycle. Note that photocatalytic conversions of  $[\text{Ir}(\text{dtbbpy})(\text{ppy})_2]^+$  have a tendency to proceed *via* a reductive quenching cycle.<sup>10,25</sup> However, the  $\text{SF}_5\text{CF}_3^-$  radical anion then decomposes to give a  $\text{CF}_3$  radical and  $\text{SF}_5^-$ .<sup>22,26</sup> The  $\text{SF}_5^-$  anion is not very stable and furnishes  $\text{SF}_4$  and fluoride.<sup>16,27</sup> The  $\text{CF}_3$  radical reacts then with benzene forming a cyclohexadienyl radical. The generation of the latter in trifluoromethylation reactions has been proposed by Kamigata *et al.*<sup>5</sup> and others.<sup>6,9,28</sup> Oxidation of the cyclohexadienyl

Scheme 3 Proposed mechanism for the trifluoromethylation of arenes by  $\text{SF}_5\text{CF}_3$ .



**Scheme 4** Quenching of the photocatalytic trifluoromethylation with TEMPO or 1-octanol (a and b); generation of  $\text{Ph}_3\text{P} = \text{S}$  after addition of  $\text{PPh}_3$  to the reaction mixture (c).

radical by the  $\text{NEt}_3^{\bullet+}$  radical cation and subsequent deprotonation of the cyclohexadienyl cation by fluoride yields the trifluoromethylated aromatic product and  $\text{NEt}_3\text{HF}$ .<sup>2,6,9,29</sup> Alternatively, hydrogen atom abstraction HAT from the cyclohexadienyl radical would give the intermediate  $\text{Et}_3\text{NH}^+$ , and in the presence of fluoride the same products.<sup>23</sup> Cesium carbonate acts as an HF scavenger. There is no indication for the formation of HD or  $\text{H}_2$  along with an iminium ion from the  $\text{NEt}_3$  radical. However, the observed generation of trifluoromethane in acetonitrile or dichloromethane can involve HAT from the solvent or the  $\text{NEt}_3^{\bullet+}$  radical. The latter is consistent with the fact that higher  $\text{NEt}_3$  concentrations deliver more  $\text{CF}_3\text{H}$ .

Furthermore, to confirm the intermediate formation of a  $\text{CF}_3$  radical, TEMPO (2,2,6,6-tetramethylpiperidinyloxy) was added to the photocatalytic trifluoromethylation reaction of  $\text{C}_6\text{D}_6$ , and indeed TEMPO inhibited the conversion (Scheme 3). However, after 96 h TEMPO- $\text{CF}_3$  as well as the  $\alpha,\alpha,\alpha$ -trifluorotoluene- $\text{d}_5$  were observed in a ratio of 1:2. The formation of  $\text{SF}_4$  was not observed by low temperature NMR experiments, presumably because of the presence of  $\text{Cs}_2\text{CO}_3$ . Nevertheless, when the trifluoromethylation of  $\text{C}_6\text{D}_6$  was run in the presence of 1-octanol in the generation of 1-fluorooctane was observed, which was identified by GC-MS and  $^{19}\text{F}$  NMR spectroscopy (Scheme 4). The experiment suggests the deoxyfluorination of the alcohol by intermediate  $\text{SF}_4$ .<sup>30</sup> Hence, trifluoromethylation steps can be coupled with the fluorination of an alcohol. However, under the UV irradiation  $\text{SF}_4$  might also be further reduced yielding elemental sulfur, as it was also proposed by Nagorny *et al.* for the activation of  $\text{SF}_6$  in the presence of the organophotocatalyst 4,4-dimethoxybenzophenone.<sup>15</sup> Indeed, when  $\text{PPh}_3$  was added to the reaction mixture after the photolytic formation of  $\text{C}_6\text{D}_5\text{CF}_3$ , the generation of small amounts of  $\text{SPPPh}_3$  (7) was observed after heating the reaction mixture for two hours at 60 °C, which might be due to the presence of sulfur (Scheme 4).

In conclusion, a catalytic photoredox process for the activation of the greenhouse gas  $\text{SF}_5\text{CF}_3$  and a concomitant trifluoromethylation of aromatics were reported.  $\text{SF}_5\text{CF}_3$  acts as source for  $\text{CF}_3$  radicals and at the same time  $\text{SF}_4$  and sulfur can be furnished. The former can be used for fluorination to couple the trifluoromethylation of aromatics with a fluorination of an alcohol. Note also that iridium photocatalyzed processes were applied for the defluorination of fluorinated organic substrates,<sup>31</sup> which was not observed for the described transformations.

Experiments, data collection (NMR and GC-MS) and analysing the data was performed by D. Herbstritt. The manuscript was drafted by D. Herbstritt. T. Braun supervised the work, designed the project and contributed to manuscript writing.

We acknowledge financial support from the CRC 1349 funded by the Deutsche Forschungsgemeinschaft (German Research Foundation; Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387284271 – SFB 1349) The work was also supported by the DFG under Germany's Excellence Strategy – EXC 2008 – 390540038 – UniSysCat.

## Conflicts of interest

There are no conflicts to declare.

## Notes and references

- (a) M. G. Perrone, P. Vitale, A. Panella, A. Tolomeo and A. Scilimati, ed., *Current and emerging applications of fluorine in medicinal chemistry*, *MedComm*, 2015, vol. 11; (b) K. Müller, C. Fehl and F. Diederich, *Science*, 2007, **317**, 1881–1886; (c) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, *Chem. Soc. Rev.*, 2008, **37**, 320–330.
- A. Studer, *Angew. Chem., Int. Ed.*, 2012, **124**, 9082–9090.
- E. S. Huyser and E. Bedard, *J. Org. Chem.*, 1964, **29**, 1588–1590.
- C. Lai and T. E. Mallouk, *J. Chem. Soc., Chem. Commun.*, 1993, 1359–1361.
- N. Kamigata, T. Ohtsuka, T. Fukushima, M. Yoshida and T. Shimizu, *J. Chem. Soc., Perkin Trans. 1*, 1994, 1339–1346.
- D. A. Nagib and D. W. C. MacMillan, *Nature*, 2011, **480**, 224–228.
- Z. Wei, Z. Lou, C. Ni, W. Zhang and J. Hu, *Chem. Commun.*, 2022, **58**, 10024–10027.
- C. Tian, Q. Wang, X. Wang, G. An and G. Li, *J. Org. Chem.*, 2019, **84**, 14241–14247.
- Y. Ouyang, X.-H. Xu and F.-L. Qing, *Angew. Chem., Int. Ed.*, 2018, **57**, 6926–6929.
- D. A. Nagib, M. E. Scott and D. W. C. MacMillan, *J. Am. Chem. Soc.*, 2009, **131**, 10875–10877.
- T. Koike and M. Akita, *Acc. Chem. Res.*, 2016, **49**, 1937–1945.
- (a) N. J. W. Straathof, S. E. Cramer, V. Hessel and T. Noël, *Angew. Chem., Int. Ed.*, 2016, **128**, 15778–15782; (b) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, *J. Am. Chem. Soc.*, 2012, **134**, 8875–8884; (c) T. Liu, J. Liu, Y. Hong, H. Zhou, Y.-L. Liu and S. Tang, *Synthesis*, 2022, 1919–1938; (d) T. Chatterjee, N. Iqbal, Y. You and E. J. Cho, *Acc. Chem. Res.*, 2016, **49**, 2284–2294; (e) S. Barata-Vallejo, S. M. Bonesi and A. Postigo, *Org. Biomol. Chem.*, 2015, **13**, 11153–11183.
- (a) L. Zámostná and T. Braun, *Angew. Chem., Int. Ed.*, 2015, **127**, 10798–10802; (b) M. Wozniak, T. Braun, M. Ahrens, B. Braun-Cula, P. Wittwer, R. Herrmann and R. Laubenstein, *Organometallics*, 2018, **37**, 821–828; (c) M. Rueping, P. Nikolaienko, Y. Lebedev and A. Adams, *Green Chem.*, 2017, **19**, 2571–2575; (d) F. Buß, C. Mück-Lichtenfeld, P. Mehlmann and F. Dielmann, *Angew. Chem., Int. Ed.*, 2018, **130**, 5045–5049; (e) T. Eder, F. Buß, L. F. B. Wilm, M. Seidl, M. Podewitz and F. Dielmann, *Angew. Chem., Int. Ed.*, 2022, **61**, e202209067; (f) P. Tomar, T. Braun and E. Kemnitz, *Chem. Commun.*, 2018, **54**, 9753–9756; (g) P. Holze, B. Horn, C. Limberg, C. Matlachowski and S. Mebs, *Angew. Chem., Int. Ed.*, 2014, **126**, 2788–2791; (h) D. Rombach and H.-A. Wagenknecht, *ChemCatChem*,



2018, **10**, 2955–2961; (i) B. S. N. Huchenski and A. W. H. Speed, *Chem. Commun.*, 2021, **57**, 7128–7131; (j) R. F. Weitkamp, B. Neumann, H.-G. Stammller and B. Hoge, *Chem. – Eur. J.*, 2021, **27**, 6460–6464; (k) A. Taponard, T. Jarrosson, L. Khrouz, M. Médebielle, J. Broggi and A. Tlili, *Angew. Chem., Int. Ed.*, 2022, **61**, e202204623; (l) S. Kim and P. Nagorny, *Org. Lett.*, 2022, **24**, 2294–2298; (m) C. Berg, T. Braun, M. Ahrens, P. Wittwer and R. Herrmann, *Angew. Chem., Int. Ed.*, 2017, **56**, 4300–4304; (n) D. Dirican, M. Talavera and T. Braun, *Chem. – Eur. J.*, 2021, **27**, 17707–17712; (o) D. Dirican, N. Pfister, M. Wozniak and T. Braun, *Chem. – Eur. J.*, 2020, **26**, 6945–6963.

14 L. Zámostná, T. Braun and B. Braun, *Angew. Chem., Int. Ed.*, 2014, **53**, 2745–2749.

15 S. Kim, Y. Khomutnyk, A. Bannykh and P. Nagorny, *Org. Lett.*, 2021, **23**, 190–194.

16 G. Iakobson, M. Pošta and P. Beier, *J. Fluorine Chem.*, 2018, **213**, 51–55.

17 D. Rombach and H.-A. Wagenknecht, *Angew. Chem., Int. Ed.*, 2020, **132**, 306–310.

18 T. A. McTeague and T. F. Jamison, *Angew. Chem., Int. Ed.*, 2016, **55**, 15072–15075.

19 A. Akhgarnusch, R. F. Höckendorf and M. K. Beyer, *J. Phys. Chem. A*, 2015, **119**, 9978–9985.

20 W. T. Sturges, T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney and C. A. M. Brenninkmeijer, *Science*, 2000, **289**, 611–613.

21 C. M. R. A. Kennedy, *Int. J. Mass Spectrom.*, 2001, **206**, vii–x.

22 W. Sailer, H. Drexel, A. Pelc, V. Grill, N. J. M. Eugen Illenberger, J. D. Skalny, T. Mikoviny, P. Scheier and T. D. Märk, *Chem. Phys. Lett.*, 2001, 71–78.

23 L. Zhou, *Molecules*, 2021, **26**, 7051.

24 M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl Jr., R. A. Pascal, G. G. Malliaras and S. Bernhard, *Chem. Mater.*, 2005, **17**, 5712–5719.

25 J. W. Tucker and C. R. J. Stephenson, *J. Org. Chem.*, 2012, **77**, 1617–1622.

26 (a) R. Chim, R. Kennedy and R. Tuckett, *Chem. Phys. Lett.*, 2003, **367**, 697–703; (b) S. Solovev, A. Palmentieri, N. D. Potekhina and T. E. Madey, *J. Phys. Chem. C*, 2007, **111**, 18271–18278.

27 (a) J. T. Goettel, N. Kostiuk and M. Gerken, *Angew. Chem., Int. Ed.*, 2013, **125**, 8195–8198; (b) N. Kostiuk, J. T. Goettel and M. Gerken, *Inorg. Chem.*, 2020, **59**, 8620–8628.

28 C. F. Harris, C. S. Kuehner, J. Bacsá and J. D. Soper, *Angew. Chem., Int. Ed.*, 2018, **57**, 1311–1315.

29 J. Xie, X. Yuan, A. Abdukader, C. Zhu and J. Ma, *Org. Lett.*, 2014, **16**, 1768–1771.

30 G. A. Boswell Jr., W. C. Ripka, R. M. Scribner and C. W. Tullock, ed., *Organic Reactions, Fluorination with Sulfur Tetrafluoride*, 21st edn, 1974.

31 (a) S. M. Senaweer, A. Singh and J. D. Weaver, *J. Am. Chem. Soc.*, 2014, **136**, 3002–3005; (b) D. B. Vogt, C. P. Seath, H. Wang and N. T. Jui, *J. Am. Chem. Soc.*, 2019, **141**, 13203–13211.

